JPH01262686A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH01262686A
JPH01262686A JP9193888A JP9193888A JPH01262686A JP H01262686 A JPH01262686 A JP H01262686A JP 9193888 A JP9193888 A JP 9193888A JP 9193888 A JP9193888 A JP 9193888A JP H01262686 A JPH01262686 A JP H01262686A
Authority
JP
Japan
Prior art keywords
layer
type
doped
face
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9193888A
Other languages
Japanese (ja)
Inventor
Akiko Gomyo
明子 五明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9193888A priority Critical patent/JPH01262686A/en
Publication of JPH01262686A publication Critical patent/JPH01262686A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2238Buried stripe structure with a terraced structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To contrive an increase in the efficiency of a head for an optical disc and an increase in the reliability of the head by a method wherein laser oscillation wavelengths in a double hetero structure on first and second surfaces equivalent to the face (001) and face (110) of a GaAs substrate are made to differ from each other. CONSTITUTION:A stepped n-type GaAs substrate 101 having the face (001) and the As face (111) as growth surfaces is formed. An Se-doped n-type GaAs buffer layer 102, an Se-doped n-type (Al0.4Ga0.6)0.5In0.5P clad layer 103, an undoped Ga0.5In0.5P active layer 104, an undoped Ga0.5In0.5P active layer 110 on the face (111) of As, a Zn-doped p-type (Al0.4Ga0.6)0.5In0.5P layer 105, a Zn- doped p-type GaAs layer 106 and an Se-doped n-type GaAs current blocking layer 107 are grown in order on the substrate 101 to form a current injection region and moreover, a p-type GaAs ohmic contact layer 108 is grown on the side of the Zn-doped p-type GaAs layer. Then, two semiconductor lasers are removed by etching up to the substrate 101, are isolated from each other and a p-type electrode 109 and an n-type electrode 110 are formed. Thereby, a secondary integration type semiconductor laser having oscillation wavelengths of 0.68mum and 0.65mum is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体レーザ装置に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a semiconductor laser device.

(従来の技術) 光ディスクなどの光情報処理用の光源として波長0.7
81zm帯の短波長半導体レーザ装置および波長0.5
8〜0.681Jnの可視半導体レーザ装置はその重要
性を増している。
(Prior art) As a light source for optical information processing such as optical discs, a wavelength of 0.7 is used.
81zm band short wavelength semiconductor laser device and wavelength 0.5
8-0.681 Jn visible semiconductor laser devices are gaining in importance.

光デイスク用光源として、1つのヘッドで光ディスクに
記録した信号を、記録と同時に独立に検出できるデュア
ル半導体レーザ装置が注目されている。従来例を第2図
に示す、n型GaAs基板201上に順次n型Aρ0.
41G a 0.51A 5層202、n型AρO,)
SG a o6sA sガイド層203、アンドープA
ρ0.09G a 0.91A 5層204 、 P型
Aρ。。
As a light source for optical discs, a dual semiconductor laser device that can independently detect signals recorded on an optical disc using a single head at the same time as recording is attracting attention. A conventional example is shown in FIG. 2, in which n-type Aρ0.
41G a 0.51A 5 layers 202, n-type AρO,)
SG a o6sA s guide layer 203, undoped A
ρ0.09G a 0.91A 5 layers 204, P type Aρ. .

G a o、 s A s層205 、p型Aρa、 
s*G a 0.62A 5層206 、n型GaAs
層207 、Z n拡散領域208が順次形成されてい
る。その後、2つのレーザ装置の間をエツチングで除去
し、2つの半導体レーザの集積された半導体レーザ装置
を形成している。
Gao, sAs layer 205, p-type Aρa,
s*Ga 0.62A 5 layers 206, n-type GaAs
A layer 207 and a Zn diffusion region 208 are sequentially formed. Thereafter, the space between the two laser devices is removed by etching to form a semiconductor laser device in which two semiconductor lasers are integrated.

この従来例の様に発光部が2つあり、それぞれの駆動を
独立に行なえる、集積型の半導体レーザ装置ができる。
As in this conventional example, an integrated semiconductor laser device can be obtained which has two light emitting sections and can drive each of them independently.

(応用物理学会講演会予稿集28p−2tl−6par
tll[L714.  (1987,春))。
(Proceedings of the Society of Applied Physics Conference 28p-2tl-6par
tll[L714. (1987, Spring)).

(発明が解決しようとする課題) ところが、2個のレーザの発振波長が同じであるレーザ
装置で光ディスクに記録すると同時にその光ディスクか
ら検出を行なった場合、記録あるいは検出時に雑音を導
入しやすく、光デイスク用ヘッドの高性能化および高信
頼化を行なうことかできなかった。
(Problem to be solved by the invention) However, when recording on an optical disk and simultaneously detecting from the optical disk using a laser device in which two lasers have the same oscillation wavelength, noise is likely to be introduced during recording or detection, and the optical It was not possible to improve the performance and reliability of the disk head.

従来技術は以上に説明した様な欠点を有している。そこ
で、本発明の目的は、この様な従来の欠点を除去し、光
デイスク用ヘッドの高性能化、高信頼化を行なえる半導
体レーザ装置を提供することにある。
The prior art has the drawbacks described above. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a semiconductor laser device which can eliminate such conventional drawbacks and improve the performance and reliability of an optical disk head.

(課題を解決するための手段) 前述の課題を解決するために本発明が提供する手段は、
(001)面に等価な第1の面および(111)As面
または<110)面に等価な第2の面が形成されている
段差のあるGaAs基板と、Gao、s  I no、
Pまたは(AρえGa+−x ) o、I no、s 
P (0<x<1. )を活性層とし、(Aρy G 
a l−F ) (1,5I n 11.5 P(O≦
x<y≦1)またはAρo、s I no、s Pをク
ラッド層とするダブルヘテロ構造とを有し、該ダブルヘ
テロ構造は前記GaAs基板上に形成されており、前記
第1の面上の前記ダブルヘテロ構造におけるレーザ発振
の波長と前記第2の面上の前記ダブルヘテロ構造におけ
るレーザ発振の波長とが互いに異なることを特徴とする
2波長集積型半導体レーザ装置である。
(Means for Solving the Problems) Means provided by the present invention to solve the above-mentioned problems are as follows:
Gao, s I no, Gao, s I no,
P or (AρeGa+-x) o, I no, s
P (0<x<1.) is the active layer, (Aρy G
a l−F ) (1,5I n 11.5 P(O≦
x<y≦1) or Aρo, sIno, sP as a cladding layer, the double heterostructure is formed on the GaAs substrate, and the double heterostructure is formed on the GaAs substrate, and A two-wavelength integrated semiconductor laser device characterized in that the wavelength of laser oscillation in the double heterostructure and the wavelength of laser oscillation in the double heterostructure on the second surface are different from each other.

(作用) 本発明の作用を以下に説明する。(effect) The operation of the present invention will be explained below.

前に(発明が解決しようとする課題)の項で述べた様に
2個のレーザを集積した半導体レーザ(以下デュアルの
半導体レーザと記す)のそれぞれの発振波長が互いに等
しい場合、1つのヘッドで光ディスクに記録と検出とを
同時に独立に行なう際に記録あるいは検出にa差を生じ
やすい。
As mentioned in the previous section (Problems to be Solved by the Invention), if the oscillation wavelengths of two integrated semiconductor lasers (hereinafter referred to as dual semiconductor lasers) are equal to each other, one head can When recording and detecting on an optical disc are performed simultaneously and independently, a difference in a is likely to occur in recording or detection.

この誤りは、例えば第2図では2個の発光部が約100
1JII離れているが、2個のレーザ光をヘッド側で区
別できず、記録の為のレーザ光の反射あるいは散乱光が
同一ヘッド内の検出部分に入射し、雑音として導入され
、また、検出のためのレーザ光が同一ヘッド内の記録部
分に入射することに起因している。2個のレーザ光をヘ
ッド側で区別するためには、2個のレーザの発振波長を
互いに異なる波長に選択し、ヘッドに波長を選択するフ
ィルター、すなわち、2個のうちの目的とする一方の波
長のレーザ光だけを通過させ、他方のレーザ光を通過さ
せない様にすればよいことがわかる。
This error is caused by, for example, the two light emitting parts in FIG.
Although the two laser beams are separated by 1 JII, the two laser beams cannot be distinguished on the head side, and the reflected or scattered light of the laser beam for recording enters the detection part in the same head and is introduced as noise. This is due to the fact that the laser beam for recording is incident on the recording portion within the same head. In order to distinguish between the two laser beams on the head side, the oscillation wavelengths of the two lasers are selected to be different from each other, and a filter for selecting the wavelength is installed in the head, that is, one of the two laser beams is used. It can be seen that it is sufficient to allow only the laser beam of one wavelength to pass through, and not to allow the other laser beam to pass through.

ところで、有機金属気相成長法(MOVPE)で成長し
た、G a A s基板に格子整合するGao、s I
 na、s Pあるいは(Aρx・G a +−x・)
 o、 qI no、s P (0<x’ <1 )の
バンドギャップエネルギー(Eg)は、<001 )G
aAs基板上に成長した場合組成一定のもとで、成長時
の温度およびV/I比およびドーピングによって1.8
5eVから1.91eVまで約60m e V変化する
By the way, Gao,sI, which is lattice matched to a GaAs substrate and grown by metal organic vapor phase epitaxy (MOVPE),
na, s P or (Aρx・G a +−x・)
The bandgap energy (Eg) of o, qI no, s P (0<x'<1) is <001)G
1.8 when grown on an aAs substrate, depending on the growth temperature, V/I ratio, and doping under a constant composition.
It changes by about 60m eV from 5eV to 1.91eV.

ところが、(111)As面あるいは<110>面上に
成長した場合、上記Gao5I no、s Pあるいは
(AN xGa+−x・) 0.5 I no、s P
(0<x’ <1)のEgは成長時の温度、V/I[比
、ドーピングによらず常に1.91e Vとなる。
However, when grown on the (111) As plane or <110> plane, the above Gao5I no, s P or (AN xGa+-x・) 0.5 I no, s P
Eg (0<x'<1) is always 1.91 e V regardless of the growth temperature, V/I [ratio, or doping.

このEgの違いは結晶中の■族副格子上の配列の違いに
よって生じ、レーザの発振波長と直接関係する。
This difference in Eg is caused by a difference in the arrangement on the group II sublattice in the crystal, and is directly related to the oscillation wavelength of the laser.

そこで、第1図(後に詳しく説明する本発明の一実施例
の断面図)に示す様に、同−GaAs基板101上に、
Gao、s I no、s Ptたは(Aρ工Ga+−
x ) o、s I no、s P (0<x< 1 
)を活性層とし、(001)面にMOVPE成長する。
Therefore, as shown in FIG. 1 (a cross-sectional view of an embodiment of the present invention to be described in detail later), on the GaAs substrate 101,
Gao, s I no, s Pt or (Aρ Engineering Ga+-
x ) o, s I no, s P (0<x<1
) is used as an active layer and grown on the (001) plane by MOVPE.

活性層のEgが(110)面に成長する場合よりも小さ
い様に、成長時の温度およびV1m比を泗んで成長した
(001)基板上の半導体レーザと、(1,11) A
 s面あるいは(110)面基板上の半導体レーザとを
集積することにより、従来のデュアルの半導体レーザの
機能を全く損うことなく、ヘッド搭載時の高性能化およ
び高信顆化を行なうことができる。
A semiconductor laser on a (001) substrate grown by adjusting the growth temperature and V1m ratio so that the Eg of the active layer is smaller than that when grown on a (110) plane, and a (1,11) A semiconductor laser.
By integrating a semiconductor laser on an s-plane or (110)-plane substrate, it is possible to achieve higher performance and higher reliability when mounted on a head without compromising the functionality of conventional dual semiconductor lasers. can.

(実施例) 第1図は本発明の一実施例を示す断面図である。(Example) FIG. 1 is a sectional view showing an embodiment of the present invention.

本図の実施例はn型GaAs基板101上に、活性層に
アンドープGao、s I no、s P層104を用
い、(001)面上に成長した活性層104および(1
11)As面上に成長した活性層110をそれぞれの半
導体レーザ構造にもつ、2波長集積型の半導体レーザ装
置である。
The embodiment shown in this figure uses an undoped Gao, s I no, s P layer 104 as an active layer on an n-type GaAs substrate 101, and has an active layer 104 grown on a (001) plane and a (1
11) This is a two-wavelength integrated semiconductor laser device in which each semiconductor laser structure has an active layer 110 grown on an As surface.

(001)面および(111)As面を成長面にもつ段
差のあるGaAs基板101を形成し、MOVPB法に
より、n型GaAs基板101上に、SeドープGaA
sバッファ層102(厚さ1−)、Seドーグ(Ag3
.4 Gao、s ) o、s  I no、s Pク
ラッド層103(厚さl μm) 、Gao、s I 
na、sP活性層104.110 (各層の厚さ0.1
四)、Znドープ(Ag3.4 Gao、* ) o、
s  I no、s P層105(厚さILII+)、
znドープGaAs層106、SeドープGaAs電流
ブロック層107を順次に成長し、電流注入領域を形成
し、さらにZnドープGaAsp側オーミックコンタク
ト層108層を成長する。その後、2つの半導体レーザ
間を、エツチングによりnGaAs基板101まで除去
することにより分離し、Pus極109を2個のレーザ
構造に独立に設け、n電極110を形成する。2個のレ
ーザ構造は互いの発光部を約1100u離して形成する
。また、活性層成長時の温度を700°C1V/III
比を400に設定した。このようにして製作した本実施
例は、同一基板上に発振波長0.68u+nの半導体レ
ーザ′v4造および発振波長0.65四の半導体レーザ
構造を有する2波長集積型の半導体レーザ装置である。
A stepped GaAs substrate 101 with (001) plane and (111) As plane as growth planes is formed, and Se-doped GaAs is grown on the n-type GaAs substrate 101 by the MOVPB method.
s buffer layer 102 (thickness 1-), Se dog (Ag3
.. 4 Gao, s ) o, s I no, s P cladding layer 103 (thickness l μm), Gao, s I
na, sP active layer 104.110 (thickness of each layer 0.1
4), Zn doped (Ag3.4 Gao, *) o,
s I no, s P layer 105 (thickness ILII+),
A Zn-doped GaAs layer 106 and a Se-doped GaAs current blocking layer 107 are sequentially grown to form a current injection region, and then a Zn-doped GaAsp side ohmic contact layer 108 is grown. Thereafter, the two semiconductor lasers are separated by etching to remove down to the nGaAs substrate 101, and the PuS poles 109 are provided independently in the two laser structures to form the n-electrode 110. The two laser structures are formed with their light emitting parts separated by about 1100 u. In addition, the temperature during active layer growth was set to 700°C1V/III.
The ratio was set to 400. The present embodiment manufactured in this manner is a two-wavelength integrated semiconductor laser device having a semiconductor laser structure with an oscillation wavelength of 0.68u+n and a semiconductor laser structure with an oscillation wavelength of 0.654 on the same substrate.

本発明は(111)As面GaAs上成長のかわりに(
110)面GaAs上成長を行なった場合にも適用でき
る。また、他の組成にも適用できる。
In the present invention, instead of growing on (111) As-plane GaAs, (
110) It can also be applied to the case where growth is performed on plane GaAs. It is also applicable to other compositions.

(発明の効果) 以上に述べた様に、本発明によれば従来ある通常のデュ
アルの半導体レーザの機能を全く損わず、2個のレーザ
の発振波長をかえることができる。
(Effects of the Invention) As described above, according to the present invention, the oscillation wavelengths of two lasers can be changed without impairing the functions of conventional dual semiconductor lasers.

そこで、本発明の半導体レーザ装置を光デイスク装置の
ヘッドに利用すれば、そのヘッドにより同時に行う記録
および検出の性能を高め、信頼性を向上できる。
Therefore, if the semiconductor laser device of the present invention is used in the head of an optical disk device, the performance of simultaneous recording and detection performed by the head can be improved, and the reliability can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の断面図、第2図は従来の半
導体レーザ装置の断面図である。 101 、201 ・・・n−GaAs基板、102−
n −GaAsバッファ層、103 ・・・n  (A
 ’) 0.4GFLo、b ) o、s I no、
s Pクラッド層、104゜110 ・”Gao、s 
I no、s P活性層、105−p −(Aj! 0
.4 Gao、s ) o、s I no、s Pクラ
ッド層、106−p−GaAs層、107−n−GaA
s層、108=−p−GaAs層、109・・・p側電
極、110−・・nlF!l電極、202 ・= n 
 A A G、 41G a o、 seA Sガイド
層、203−n −Aρo、 ssG a o、 as
A S層、204− A j! o、 o*G a o
、 *+A s活性層、205 ・P −Aρo、 s
 G a o、 s A S層、206 ・p−Aρa
、 s。 G a 0.62A S層、207−n−GaAs層、
208−・・Zn拡散領域。
FIG. 1 is a sectional view of an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional semiconductor laser device. 101, 201...n-GaAs substrate, 102-
n-GaAs buffer layer, 103...n (A
') 0.4GFLo, b) o, s I no,
s P cladding layer, 104°110 ・”Gao, s
I no, s P active layer, 105-p -(Aj! 0
.. 4 Gao, s) o, s I no, s P cladding layer, 106-p-GaAs layer, 107-n-GaA
s layer, 108=-p-GaAs layer, 109... p-side electrode, 110-... nlF! l electrode, 202 ・= n
AAG, 41G ao, seA S guide layer, 203-n -Aρo, ssG ao, as
A S layer, 204- A j! o, o*G a o
, *+A s active layer, 205 ・P −Aρo, s
G ao, s A S layer, 206 ・p-Aρa
, s. Ga 0.62A S layer, 207-n-GaAs layer,
208--Zn diffusion region.

Claims (1)

【特許請求の範囲】[Claims] (001)面に等価な第1の面および(111)As面
または(110)面に等価な第2の面が形成されている
段差のあるGaAs基板と、Ga_0_._5In_0
_._5Pまたは(Al_xGa_1_−_x)_0_
._5In_0_._5P(0<x<1)を活性層とし
、(Al_yGa_1_−_y)_0_._5In_0
_._5P(0≦x<y≦1)またはAl_0_._5
In_0_._5Pをクラッド層とするダブルヘテロ構
造とを有し、該ダブルヘテロ構造は前記GaAs基板上
に形成されており、前記第1の面上の前記ダブルヘテロ
構造におけるレーザ発振の波長と前記第2の面上の前記
ダブルヘテロ構造におけるレーザ発振の波長とが互いに
異なることを特徴とする2波長集積型半導体レーザ装置
A GaAs substrate with a step, in which a first surface equivalent to the (001) plane and a second surface equivalent to the (111) As plane or the (110) plane are formed, and a Ga_0_. _5In_0
_. _5P or (Al_xGa_1_-_x)_0_
.. _5In_0_. _5P (0<x<1) is used as an active layer, (Al_yGa_1_-_y)_0_. _5In_0
_. _5P (0≦x<y≦1) or Al_0_. _5
In_0_. _5P as a cladding layer, the double heterostructure is formed on the GaAs substrate, and the wavelength of laser oscillation in the double heterostructure on the first surface and the second A two-wavelength integrated semiconductor laser device, wherein wavelengths of laser oscillation in the double heterostructure on the surface are different from each other.
JP9193888A 1988-04-14 1988-04-14 Semiconductor laser device Pending JPH01262686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9193888A JPH01262686A (en) 1988-04-14 1988-04-14 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9193888A JPH01262686A (en) 1988-04-14 1988-04-14 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH01262686A true JPH01262686A (en) 1989-10-19

Family

ID=14040535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9193888A Pending JPH01262686A (en) 1988-04-14 1988-04-14 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH01262686A (en)

Similar Documents

Publication Publication Date Title
US5045897A (en) Quaternary II-VI materials for photonics
US6680492B2 (en) Semiconductor light emitting device and method for producing the same
US4644378A (en) Semiconductor device for generating electromagnetic radiation
JP6452651B2 (en) Semiconductor optical device manufacturing method and semiconductor optical device
US6593595B2 (en) Semiconductor light-emitting device and method for producing same
JPH0381317B2 (en)
KR910003465B1 (en) Opto-electronic device
US20050035355A1 (en) Semiconductor light emitting diode and semiconductor light emitting device
US5956362A (en) Semiconductor light emitting device and method of etching
JP2010118702A (en) Nitride semiconductor light-emitting device
JP2000058915A (en) Gallium nitride-based semiconductor laser element and optical pickup device
USRE43159E1 (en) Semiconductor light emitting device
US5268328A (en) Method of fabricating a semiconductor laser
JPH01204487A (en) Semiconductor laser
US5185755A (en) Semiconductor laser
JPH05235476A (en) Semiconductor laser diode
JPH11186665A (en) Semiconductor light emitting element
JP2003519931A (en) Group III nitride semiconductor structure with suppressed phase separation
JPH03236276A (en) Optical functional element
JPH01262686A (en) Semiconductor laser device
JP2819160B2 (en) Multi-wavelength semiconductor laser diode
JPH05160504A (en) Semiconductor laser device
US7539225B2 (en) Semiconductor laser
JP2007013207A (en) Semiconductor light emitting element
JPH08186286A (en) Semiconductor light-emitting element