JPH01260327A - Method and apparatus for quantification and sensitivity evaluation for sound or vibration - Google Patents

Method and apparatus for quantification and sensitivity evaluation for sound or vibration

Info

Publication number
JPH01260327A
JPH01260327A JP8960588A JP8960588A JPH01260327A JP H01260327 A JPH01260327 A JP H01260327A JP 8960588 A JP8960588 A JP 8960588A JP 8960588 A JP8960588 A JP 8960588A JP H01260327 A JPH01260327 A JP H01260327A
Authority
JP
Japan
Prior art keywords
sound
data
vibration
component
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8960588A
Other languages
Japanese (ja)
Inventor
Osamu Maehara
修 前原
Shigefumi Sasaoka
笹岡 茂史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ono Sokki Co Ltd
Original Assignee
Ono Sokki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ono Sokki Co Ltd filed Critical Ono Sokki Co Ltd
Priority to JP8960588A priority Critical patent/JPH01260327A/en
Publication of JPH01260327A publication Critical patent/JPH01260327A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To perform objective evaluation on the basis of quantitative data, by taking out the appropriate frequency component of generated vibration or sound to reproduce the same and comparing said component with actual generated sound to obtain sensory evaluation data. CONSTITUTION:The generated sound of a rotary machine is converted to an electric signal by a microphone 2 and inputted to a Fourier transform part 11 to be subjected to Fourier transform, and processed according to the order of rotation on the basis of the reference point signal from an 1P/R sensor 3. The output of the Fourier transform part 11 is inputted to a window processing part 12 to take out the component of a predetermined degree of rotation and the taken-out component is stored in a memory part 14 as reproduced data through an inverse Fourier transform part 13. The reproduced data stored in the memory part 14 is read by the reading order from the reading part 21 of a reproducing apparatus 20 and the sound corresponding thereto is generated from a sound regenerating part 22. By this method, the degree of contribution of the specific component influencing all of generated sounds can be recognized.

Description

【発明の詳細な説明】 音叉よ!11旧と1 本発明は、騒音、振動の定量並びに官能評価方法および
その装置に関する。
[Detailed description of the invention] Tuning fork! 11 Old and 1 The present invention relates to a method for quantifying noise and vibration, a sensory evaluation method, and an apparatus therefor.

従来の技術 機器の発生音、振動については定量的な計測、解析がな
されているが、依然として官能評価も重要な位置を占め
ている。その大きな理由は、様々な要因を総合的にとら
える官能評価に対して定量解析結果が必ずしも対応する
ものばかりではないことによる。
Although quantitative measurements and analyzes have been made of the sounds and vibrations generated by conventional technical equipment, sensory evaluation still plays an important role. The main reason for this is that quantitative analysis results do not necessarily correspond to sensory evaluations that comprehensively consider various factors.

発明が解決しようとする問題点 しかしながら、官能評価には熟練を要し、かつ個人差が
生じることも避けられない、このため、官能評価を定量
評価と比較検討し、その対応関係を把握する必要性がと
なえられてはいるが、実際には非常に難しい問題である
0本発明は、特定された定量解析データに対する官能評
価が容易であり、かつ定量解析データと官能評価結果と
の比較も容易な、音あるいは振動の定量並びに官能評価
方法およびその装置を提供することを目的としている。
Problems to be solved by the invention However, sensory evaluation requires skill and it is inevitable that individual differences will occur.For this reason, it is necessary to compare and examine sensory evaluation with quantitative evaluation and understand the correspondence relationship between them. The present invention makes it easy to perform sensory evaluation on the specified quantitative analysis data, and it is also easy to compare the quantitative analysis data and the sensory evaluation results. The purpose of the present invention is to provide a method for quantifying sound or vibration, a sensory evaluation method, and an apparatus therefor.

問題点を解決するための方法 上記目的を達成するために、被評価体の発生音あるいは
振動の時間軸波形を検出し、その検出波形をフーリエ変
換した後、その中から着目する周波数軸上の成分を切り
出し、次いでその切り出データの逆フーリエ変換を行な
って、着目成分の時間軸波形を再現、記憶させ、その記
憶波形に基づき定量評価データを得、その記憶波形を再
生装置に導入して再生させた音あるいは振動と被評価体
の発生音あるいは振動とに基づく官能試験により官能評
価データを得るようにしたものである。
Method for resolving the problem In order to achieve the above purpose, the time-domain waveform of the sound or vibration generated by the object to be evaluated is detected, the detected waveform is Fourier transformed, and then the frequency-domain waveform to be focused on is detected. The component is cut out, and then the cut-out data is subjected to inverse Fourier transform to reproduce and store the time axis waveform of the component of interest, quantitative evaluation data is obtained based on the stored waveform, and the stored waveform is introduced into a reproducing device. Sensory evaluation data is obtained through a sensory test based on the reproduced sound or vibration and the sound or vibration generated by the object to be evaluated.

また、上記の方法を実施する装置は、被評価体の発生音
あるいは振動の時間軸波形を検出するセンサと、そのセ
ンサ出力をフーリエ変換し、そのフーリエ変換データか
ら切出された所定データを逆フーリエ変換して記憶部に
記憶させるFFTアナライザと、その記憶部の記憶デー
タに基づき、音あるいは振動を発生する再生装置とから
なるものである。
In addition, the device that implements the above method includes a sensor that detects the time-domain waveform of sound or vibration generated by the object to be evaluated, Fourier transforms the output of the sensor, and inverts predetermined data extracted from the Fourier transform data. It consists of an FFT analyzer that performs Fourier transform and stores it in a storage section, and a playback device that generates sound or vibration based on the data stored in the storage section.

制」 上記装置により定量並びに官能評価を行なう方法を説明
すると、先ずセンサにより被評価体の発生音あるいは振
動の時間軸波形を検出し、それをFFTアナライザに導
入してスペクトル分析し、続いてその中から官能評価と
の対応関係を求めたい周波数軸上の成分を切出し、それ
について逆フーリエ変換する。
To explain how to perform quantitative and sensory evaluation using the above device, first, a sensor detects the time axis waveform of the sound or vibration generated by the object to be evaluated, it is introduced into an FFT analyzer for spectrum analysis, and then the The components on the frequency axis for which the correspondence with the sensory evaluation is desired are extracted and inverse Fourier transform is performed on them.

これにより切出成分のみの時間軸波形データが再現され
、それを記憶部に記憶させる。しかして、この記憶波形
データは定量データであり、例えばその振幅、位相、時
間的な遷移などが特定される。また、記憶波形データを
再生装置に送り、それに対応した音あるいは振動を発生
させ、それと被評価回転機の音あるいは振動との関係を
官能評価する。これにより切り出威分が被評価体のある
いは振動に影響する度合が官能評価によりとらえられる
As a result, the time axis waveform data of only the cutout component is reproduced, and it is stored in the storage section. Therefore, this stored waveform data is quantitative data, and for example, its amplitude, phase, temporal transition, etc. are specified. In addition, the stored waveform data is sent to a reproducing device to generate corresponding sound or vibration, and the relationship between this and the sound or vibration of the rotary machine to be evaluated is sensory-evaluated. As a result, the degree to which the cutting power affects the vibration of the object to be evaluated can be grasped through sensory evaluation.

以下、上記を種々の着目成分に対して実施し、その定量
データと官能評価結果とを得ることにより、それに基づ
いての、官能評価に影響するあるいは影響しない定量デ
ータ、すなわち影響因子か否かの同定、あるいは官能評
価の定量化が行なわれる。
Hereinafter, by performing the above on various components of interest and obtaining quantitative data and sensory evaluation results, we will determine quantitative data that may or may not affect the sensory evaluation, that is, whether or not it is an influencing factor. Identification or quantification of sensory evaluation is performed.

K嵩且 第1図において、1はモータおよび歯車伝達系からなる
被評価回転機であり、その発生音がマイクロホン2によ
り、また回転機の出力軸の1回転あた91パルスの基準
点信号がI P/Rセンサ3により検出され、各検出出
力はFFTアナライザ10の7一リエ変換部11に導入
されている。そのFFTアナライザ10は前記7一リエ
変換部11の出力から予め定めた回転次数成分を切り出
すウィンドウ処理部12、その切出成分の逆フーリエ変
換部13、その逆フーリエ変換データの記憶部14とか
らなり、その記憶部14のデータが再生装置20の読出
部21に送出されている。
In Figure 1, 1 is a rotating machine to be evaluated consisting of a motor and a gear transmission system, and the sound generated by it is transmitted by a microphone 2, and a reference point signal of 91 pulses per revolution of the output shaft of the rotating machine is detected. It is detected by the I P/R sensor 3, and each detection output is introduced into the 7-channel transformer 11 of the FFT analyzer 10. The FFT analyzer 10 includes a window processing section 12 that cuts out a predetermined rotational order component from the output of the 7-tier transform section 11, an inverse Fourier transform section 13 for the extracted component, and a storage section 14 for the inverse Fourier transform data. The data in the storage section 14 is sent to the reading section 21 of the reproducing device 20.

再生装置20は前記読出部21および音声再生部22よ
りなり、読出部21の読出データをD/^変換器および
スピーカよりなる音声再生部22に送り、その続出デー
タに対応した音の発生を行なう。
The playback device 20 includes the readout section 21 and the audio playback section 22, and sends the read data from the readout section 21 to the sound playback section 22, which includes a D/^ converter and a speaker, and generates sound corresponding to the successive data. .

以上のものにおいて、回転器1の発生音はマイクロホン
2により電気信号に変換され、7一リエ変換部11に入
力されてフーリエ変換されると共に、I P/Rセンサ
 3から入力される基準点信号に基づいて回転次数によ
り整理される。続いてそれは予め定められた回転次数の
成分を切出すウィンドウ処理部12を介してその切出さ
れた成分が逆フーリエ変換部13に送られ、その成分の
時間軸波形の再現が行なわれた後、その再現データが記
憶部14に保存される。この保存データは、再生装置2
0の読出部21に読出指令が印加されると、前記記憶部
14から読出され、音声再生部22からそれに対応した
音が発せられる。
In the above system, the sound generated by the rotator 1 is converted into an electric signal by the microphone 2, inputted to the 7-chip transformer 11 and subjected to Fourier transformation, and the reference point signal inputted from the I P/R sensor 3. It is organized by rotation order based on . Next, the extracted component is sent to the inverse Fourier transformer 13 via the window processing unit 12 which extracts a component of a predetermined rotational order, and the time axis waveform of the component is reproduced. , the reproduction data is stored in the storage unit 14. This saved data is stored on the playback device 2.
When a read command is applied to the read unit 21 of No. 0, the data is read from the storage unit 14, and the sound reproduction unit 22 emits a corresponding sound.

そこで、この発生音と実際の回転機1からの発生音とを
人が聞いて比較することにより、官能的に評価される全
発生音中に影響する特定成分の寄与度が判明し、さらに
これを種々の切出成分あるいは回転W11の稼動条件の
もとで実施することによりどの成分の寄与が大きいかが
判明する。
Therefore, by listening and comparing this generated sound with the actual sound generated from the rotating machine 1, it was possible to determine the degree of contribution of specific components that affect the total generated sound that is sensually evaluated. By performing this under various cutting components or operating conditions of rotation W11, it becomes clear which component has a large contribution.

また、この官能評価結果とそのときの切出成分の定量デ
ータを比較することにより両者の相関関係が判明し、さ
らにはその結果から官能評価の定量化も行なわれる。
Further, by comparing the results of this sensory evaluation with the quantitative data of the cut-out components at that time, the correlation between the two is determined, and furthermore, the sensory evaluation is quantified from the results.

すなわち、例えば切出成分を回転1filの回転次数お
よび歯車伝達系の噛合比に対応した次数の個々および組
合せに基づいて切出成分を決定することにより、その発
生音の寄与度、さらには発生音の影響因子の同定が行な
え、かつ官能評価の定量化も行なえることになる。
That is, for example, by determining the cutout component based on the rotational order of 1 fill of rotation and the order corresponding to the meshing ratio of the gear transmission system, the contribution of the generated sound and the generated sound can be determined. This makes it possible to identify influencing factors and quantify sensory evaluation.

1肚悲廟i 以上のとおりであり、本発明は、発生振動あるいは音中
の適宜に選択した周波数の成分を切り出して振動あるい
は音を再生し、それと実際の発生音とを比較して官能評
価データを得るので、その寄与度の確定さらには影響因
子の同定が容易であり、かつその再生音あるいは振動は
定量的な切り出データに基づくものであり、容易に官能
評価と定量データとの対応関係を求めることができ、そ
の定量データに基づき、より客観的な評価が行なえる。
As described above, the present invention extracts an appropriately selected frequency component of the generated vibration or sound, reproduces the vibration or sound, and performs a sensory evaluation by comparing it with the actually generated sound. Since the data is obtained, it is easy to determine the degree of contribution and identify the influencing factors, and since the reproduced sound or vibration is based on quantitative cut-out data, it is easy to correlate sensory evaluation with quantitative data. Relationships can be determined, and more objective evaluations can be made based on the quantitative data.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すブロック線図である。 11 : 7一リエ変換部 12 : ウィンドウ処理部 13 : 逆フーリエ変換部 14 : 記憶部 21 : 続出部 22 : 音声発生部 FIG. 1 is a block diagram showing an embodiment of the present invention. 11: 7-rie conversion section 12: Window processing section 13: Inverse Fourier transform section 14: Storage section 21: Continued part 22: Sound generation section

Claims (1)

【特許請求の範囲】 1、被評価体の発生音あるいは振動の時間軸波形を検出
し、その検出波形をフーリエ変換した後、その中から着
目する周波数軸上の成分を切り出し、次いでその切り出
データの逆フーリエ変換を行なって、着目成分の時間軸
波形を再現、記憶させ、その記憶波形に基づき定量評価
データを得、その記憶波形を再生装置に導入して再生さ
せた音あるいは振動と被評価体の発生音あるいは振動と
に基づく官能試験により官能評価データを得るところの
音あるいは振動の定量並びに官能評価方法。 2、被評価体の発生音あるいは振動の時間軸波形を検出
するセンサと、そのセンサ出力をフーリエ変換し、その
フーリエ変換データから切出された所定データを逆フー
リエ変換して記憶部に記憶させるFFTアナライザと、
その記憶部の記憶データに基づき、音あるいは振動を発
生する再生装置とからなるところの音あるいは振動の定
量並びに官能評価装置。
[Claims] 1. After detecting the time axis waveform of the sound or vibration generated by the object to be evaluated and Fourier transforming the detected waveform, extracting a component on the frequency axis of interest from the detected waveform, and then cutting out the component. Perform inverse Fourier transform on the data to reproduce and store the time axis waveform of the component of interest, obtain quantitative evaluation data based on the stored waveform, and introduce the stored waveform into a playback device to reproduce sound or vibration. Quantification of sound or vibration and sensory evaluation method in which sensory evaluation data is obtained by a sensory test based on the sound or vibration generated by an evaluation object. 2. A sensor that detects the time axis waveform of sound or vibration generated by the object to be evaluated, Fourier transforms the sensor output, inverse Fourier transforms predetermined data extracted from the Fourier transform data, and stores it in the storage unit. FFT analyzer and
A sound or vibration quantitative and sensory evaluation device comprising a playback device that generates sound or vibration based on data stored in the storage section.
JP8960588A 1988-04-12 1988-04-12 Method and apparatus for quantification and sensitivity evaluation for sound or vibration Pending JPH01260327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8960588A JPH01260327A (en) 1988-04-12 1988-04-12 Method and apparatus for quantification and sensitivity evaluation for sound or vibration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8960588A JPH01260327A (en) 1988-04-12 1988-04-12 Method and apparatus for quantification and sensitivity evaluation for sound or vibration

Publications (1)

Publication Number Publication Date
JPH01260327A true JPH01260327A (en) 1989-10-17

Family

ID=13975386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8960588A Pending JPH01260327A (en) 1988-04-12 1988-04-12 Method and apparatus for quantification and sensitivity evaluation for sound or vibration

Country Status (1)

Country Link
JP (1) JPH01260327A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122140A (en) * 1994-10-20 1996-05-17 Isuzu Motors Ltd Gear-noise evaluating apparatus
US7401000B2 (en) 2003-08-28 2008-07-15 Honda Motor Co., Ltd. Acoustic vibration analyzing apparatus and acoustic vibration analyzing method, program for analyzing acoustic vibration, and recording medium, readable by computer, on which program for analyzing acoustic vibration is stored
JP2012137327A (en) * 2010-12-24 2012-07-19 Okuma Corp Vibration detecting device and vibration detecting method
JP2020101411A (en) * 2018-12-20 2020-07-02 株式会社小野測器 Hearing Experiment Tool and Hearing Experiment Server

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136626A (en) * 1983-01-26 1984-08-06 Mitsubishi Electric Corp Noise measuring device
JPS618631A (en) * 1984-06-22 1986-01-16 Toshiba Corp Turbine vibration monitoring apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136626A (en) * 1983-01-26 1984-08-06 Mitsubishi Electric Corp Noise measuring device
JPS618631A (en) * 1984-06-22 1986-01-16 Toshiba Corp Turbine vibration monitoring apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122140A (en) * 1994-10-20 1996-05-17 Isuzu Motors Ltd Gear-noise evaluating apparatus
US7401000B2 (en) 2003-08-28 2008-07-15 Honda Motor Co., Ltd. Acoustic vibration analyzing apparatus and acoustic vibration analyzing method, program for analyzing acoustic vibration, and recording medium, readable by computer, on which program for analyzing acoustic vibration is stored
JP2012137327A (en) * 2010-12-24 2012-07-19 Okuma Corp Vibration detecting device and vibration detecting method
JP2020101411A (en) * 2018-12-20 2020-07-02 株式会社小野測器 Hearing Experiment Tool and Hearing Experiment Server

Similar Documents

Publication Publication Date Title
Delgado-Arredondo et al. Methodology for fault detection in induction motors via sound and vibration signals
WO2022012195A1 (en) Audio signal processing method and related apparatus
US20190295568A1 (en) Abnormal sound determination apparatus and determination method
CN112492453A (en) Automatic detection method for audio interface
JP3020349B2 (en) Error detection method and device
JPH01260327A (en) Method and apparatus for quantification and sensitivity evaluation for sound or vibration
CN116564332A (en) Frequency response analysis method, device, equipment and storage medium
WO2010114409A1 (en) Method for reproducing an audio recording with the simulation of the acoustic characteristics of the recording conditions
US8750530B2 (en) Method and arrangement for processing audio data, and a corresponding corresponding computer-readable storage medium
JP2003085157A (en) Frequency analyzer by applying fft algorithm and abnormality determining device and abnormality determining system
CN114242085A (en) Fault diagnosis method and device for rotating equipment
Abramov et al. Increasing the Accuracy of Sound Signal Spectral Estimation According to the Properties of Hearing Analyzer
JP3214265B2 (en) Apparatus and method for testing and determining brake noise
He et al. Online grinding chatter detection based on minimum entropy deconvolution and autocorrelation function
Younes et al. The influence of the sound pressure level on the identification of the defects severity in gear transmission by the sound perception
US6549628B1 (en) Method for determining and optionally eliminating a disturbing noise subjectively perceived by an operator
CN112461552A (en) Detection method and system of electronic power-assisted brake system and readable storage medium
CN111314536B (en) Method and equipment for detecting listening module of terminal equipment
CN111885474A (en) Microphone testing method and device
JPH01257224A (en) Processing method for time series signal
HU220539B1 (en) Sound evaluation process
JP3521821B2 (en) Musical sound waveform analysis method and musical sound waveform analyzer
JP2005504347A (en) Process for characterizing timbre of an acoustic signal based on at least one descriptor
CN113473348B (en) Method for positioning frequency sweeping sound source, method, system and equipment for testing quality of audio equipment
Zhang Applicability of Different Loudness Models to Time-Varying Sound in Vehicle