JPH01260021A - Production of carbon fiber cloth - Google Patents

Production of carbon fiber cloth

Info

Publication number
JPH01260021A
JPH01260021A JP7799688A JP7799688A JPH01260021A JP H01260021 A JPH01260021 A JP H01260021A JP 7799688 A JP7799688 A JP 7799688A JP 7799688 A JP7799688 A JP 7799688A JP H01260021 A JPH01260021 A JP H01260021A
Authority
JP
Japan
Prior art keywords
fabric
fluidized bed
flame
carbon fiber
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7799688A
Other languages
Japanese (ja)
Inventor
Tatsuo Akimoto
秋本 龍夫
Masashi Ogasawara
小笠原 正史
Akira Nishimura
明 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP7799688A priority Critical patent/JPH01260021A/en
Publication of JPH01260021A publication Critical patent/JPH01260021A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To readily obtain a carbon fiber cloth excellent in mechanical characteristics, by forming precursor fibers into a fabric shape, heating the resultant fibrous material in a fluidized bed formed by heating medium particles with an oxidizing gas, flameproofing the fabric material and carbonizing the flameproofed fabric material in an inert gas atmosphere. CONSTITUTION:Precursor fibers are woven or knitted into a sheetlike or cylindrical form to provide a fabric material 101, which is then passed through a fluidized bed heating flameproofing furnace 1 and subjected to flameproofing treatment under a prescribed tension to afford a flameproofed fabric material 102. The resultant fabric material is carbonized in a carbonization furnace 2 to provide a carbon fiber cloth. A fluidized bed 5 of heating medium particles is formed on a dispersion plate 8 in the flameproofing furnace 1 and fluidized with the oxidizing gas fed through a feed hole 9 and passed through the dispersion plate 8 to discharge a gas after fluidizing from a gas discharged hole 10.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、炭素繊維布の製造方法に関し、とくに機械的
特性の優れた炭素繊維布を効率よく製造する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing carbon fiber cloth, and particularly to a method for efficiently manufacturing carbon fiber cloth with excellent mechanical properties.

[従来の技術] 従来、炭素繊維布は一般にポリアクリル(以下PANと
略す)系繊維、再生セルロース繊維、フェノール系繊維
、ピッチ系繊維等の有機重合体から成る繊維を前駆体繊
維として用い、200〜400℃の酸化性ガス雰囲気中
で焼成して耐炎化した後少なくとも1000℃の不活性
ガス雰囲気中で炭化し、得られた炭素繊維を織成してず
[帛にする方法により作成されている。しかしながら、
よく知られるように、炭素繊維は本質的に破断伸度が小
さく、屈折に弱いため衣料用繊維などのごとく通常の紡
編織をすることが難しく、比較的組織が単純で密度の粗
いものしか得られなかったし、その生産性も低い欠点が
あった。一方前駆体繊維から布帛を形成し、これを焼成
、炭化して一挙に炭素繊維布を製造するという試みは、
上記欠点を解消するものとして注目されるが、このよう
な布帛を前駆体として用いると、得られる炭素繊維布す
なわち該布帛を構成する炭素繊維の強度や弾性率が低く
なりすぎ実用性能が満足されないし、また前駆体布帛を
酸化性ガス雰囲気中で焼成中に該布帛もしくは布帛を構
成する繊維束の内部への酸化性ガスの侵入が不十分とな
り均一な耐炎化が行なわれなかったり、耐炎化時の発熱
により布帛中に熱が蓄積され易いのでいわゆる暴走反応
をひき起しやすく、これを防止するためには、布帛の密
度(目付)の粗いものしか耐炎化できないという問題が
あった。
[Prior Art] Conventionally, carbon fiber cloth has generally been produced using fibers made of organic polymers such as polyacrylic (hereinafter abbreviated as PAN) fibers, regenerated cellulose fibers, phenol fibers, and pitch fibers as precursor fibers. The carbon fibers are made by firing in an oxidizing gas atmosphere of ~400°C to make them flame resistant, then carbonizing them in an inert gas atmosphere of at least 1000°C, and then making the resulting carbon fibers into a cloth instead of being woven. however,
As is well known, carbon fiber inherently has a low elongation at break and is susceptible to bending, making it difficult to weave it into ordinary textiles such as textiles for clothing, and only those with relatively simple structures and low densities can be obtained. The problem was that the productivity was low. On the other hand, attempts to manufacture carbon fiber cloth all at once by forming cloth from precursor fibers, firing and carbonizing the cloth,
Although it is attracting attention as a solution to the above-mentioned drawbacks, when such a fabric is used as a precursor, the strength and elastic modulus of the resulting carbon fiber fabric, that is, the carbon fibers that constitute the fabric, are too low to satisfy practical performance. In addition, when the precursor fabric is fired in an oxidizing gas atmosphere, the oxidizing gas does not penetrate into the fabric or the fiber bundles that make up the fabric, and uniform flame resistance may not be achieved or the flame resistance may deteriorate. Heat is easily accumulated in the fabric due to the heat generated by the process, which tends to cause a so-called runaway reaction, and in order to prevent this, there is a problem that only fabrics with a coarse density (basis weight) can be made flame resistant.

このような問題を解消する方法として、連続繊維糸条を
一旦緊張下に焼成して耐炎化した後、得られた耐炎化糸
を織成して布帛を形成し、この布帛を炭化する方法が知
られているが、この方法は前記耐炎化糸の屈折は強いが
強度が低く、破断伸びが小さいため炭素繊維と同様に編
成、織成工程で毛羽、糸切れが多発し、製造上の問題が
残る。
As a method to solve these problems, a method is known in which continuous fiber threads are once fired under tension to make them flame resistant, the resulting flame resistant yarns are woven to form a fabric, and this fabric is carbonized. However, with this method, the flame-retardant yarn has strong refraction, but low strength and low elongation at break, resulting in frequent fuzz and yarn breakage during the knitting and weaving process, similar to carbon fiber, and manufacturing problems remain. .

上述のような各種問題を解消又は軽減する方法として、
特公昭61−11323@公報に示される方法が知られ
ている。この方法は、アクリル系重合体繊維からなる前
駆体布帛の耐炎化時の自由面積収縮率をある範囲に特定
するとともに、該布帛の酸化性ガス雰囲気中での耐炎化
処理時の収縮許容条件をある範囲に特定する方法である
。この方法により、1qられる炭素繊維イ[の強度と弾
性率が向上される。
As a way to eliminate or reduce the various problems mentioned above,
A method disclosed in Japanese Patent Publication No. 61-11323@ is known. This method specifies the free area shrinkage rate during flame resistance of a precursor fabric made of acrylic polymer fibers within a certain range, and also determines the allowable shrinkage conditions for the fabric during flame resistance treatment in an oxidizing gas atmosphere. This is a method of specifying a certain range. This method improves the strength and elastic modulus of the carbon fiber 1q.

[発明が解決しようとする課題] しかしながら、特公昭61−11323号公報の方法で
は、前駆体繊維布帛の耐炎化処理は活性ガス(酸化性ガ
ス)雰囲気中で加熱する気相処理により行われるので、
耐炎化時のイ「帛からの除熱効率を高めるには限界があ
り、目付(布帛単位面積当りの繊維組1の大きいものの
処理が困難である上、目付が小さくても耐炎化時間が0
.5〜2時間かかるという問題がある。すなわち、耐炎
化工程は酸化と環化を伴なう反応であって、高温で処理
する程反応速度を上げて耐炎化に必要な処理時間を短縮
できるが、反応発熱を伴うため、処理温度を高温にし過
ぎたり、目付の大きい高密度の布帛を処理したりする場
合、反応熱が該布帛内部に蓄熱して単糸間の融着や糸切
れ、場合によっては発火現象を生じる。そのため、耐炎
化工程の生産効率を上げるためには、被処理物の反応発
熱を効率良く除去しつつ可能な限り高温で処理できるプ
ロセスであることが肝要である。ところが、ガス雰囲気
のみによる布帛からの除熱においては、布帛とガスとの
間の熱伝達に限界があるので、結局除熱効率にも限界が
あり、上述の如く、目付の大きい布帛の処理が困難であ
る上、目付が小さくても処理時間が長くかかる。
[Problems to be Solved by the Invention] However, in the method disclosed in Japanese Patent Publication No. 61-11323, the flame-retardant treatment of the precursor fiber fabric is performed by vapor phase treatment by heating in an active gas (oxidizing gas) atmosphere. ,
When making flame resistant, there is a limit to increasing the efficiency of heat removal from the fabric, and it is difficult to process fabrics with a large fabric weight (1 fiber group per unit area of the fabric), and even if the fabric weight is small, the flame resistance time is
.. The problem is that it takes 5 to 2 hours. In other words, the flameproofing process is a reaction that involves oxidation and cyclization, and the higher the treatment temperature, the faster the reaction rate and the shorter the treatment time required for flameproofing. When the temperature is too high or when processing a high-density fabric with a large basis weight, the reaction heat accumulates inside the fabric, causing fusion between single yarns, yarn breakage, and, in some cases, ignition. Therefore, in order to increase the production efficiency of the flameproofing process, it is important that the process be able to efficiently remove the heat generated by the reaction of the object to be treated and to treat it at as high a temperature as possible. However, when removing heat from fabric using only a gas atmosphere, there is a limit to the heat transfer between the fabric and the gas, so there is a limit to the heat removal efficiency, and as mentioned above, it is difficult to treat fabrics with a large basis weight. Moreover, even if the fabric weight is small, the processing time is long.

本発明の目的は、このような問題点に着目し、目付の大
きい前駆体布帛であっても望ましい除熱が可能であるし
、日付が小ざくでも耐炎化時間を従来の熱風による耐炎
化より短縮可能な、したがって前駆体布帛を効率よく耐
炎化し、しかる後炭化せしめることにより機械的特性に
優れた炭素繊維布を容易に得ることが可能な方法を提供
することにある。
The purpose of the present invention is to focus on these problems, and to achieve desirable heat removal even with a precursor fabric with a large basis weight, and to achieve flame resistance even with a small date compared to the conventional flame resistance using hot air. It is an object of the present invention to provide a method that can be shortened and, therefore, can efficiently make a precursor fabric flame resistant and then carbonize it to easily obtain a carbon fiber fabric with excellent mechanical properties.

[課題を解決するための手段] この目的に沿う発明の炭素繊維布の製造方法は、前駆体
繊維をシート状もしくは筒状の織物、編物等の布帛状物
に形成し、該布帛状物を熱媒粒子を酸化性ガスで流動化
せしめた流動層中で加熱して耐炎化した後、不活性ガス
雰囲気中で炭化せしめる方法から成る。
[Means for Solving the Problems] A method for producing carbon fiber cloth according to the invention according to the present invention involves forming precursor fibers into a sheet-like or cylindrical fabric-like object such as a woven fabric or a knitted fabric, and forming the fabric-like object into It consists of a method in which heating medium particles are heated in a fluidized bed fluidized with an oxidizing gas to make them flame resistant, and then carbonized in an inert gas atmosphere.

本発明においては、耐炎化処理前に前駆体繊維の布帛状
物が形成され、該布帛状物が熱媒粒子の流動層中で加熱
されて耐炎化される。熱媒粒子の流動化は酸化性ガスに
よって行われる。流動層中の耐炎化処理においては、流
動化された固体熱媒粒子が前駆体繊維からなる布帛に間
欠的に接触伝熱しつつかつ該布帛外周の温度境界層を剥
離するため、該布帛への加熱および除熱の効率が前述し
た単にガス雰囲気中で処理を行う従来の方法(気相処理
)に比べて著しく高く、そのため耐炎化処理温度を従来
法より高く、例えばPAN系前駆体繊維ではおよそ20
0〜400℃、好ましくは240〜350℃、ピッチ系
では250〜550℃、好ましくは270〜500’C
での処理が可能になる。つまり、流動層の熱媒粒子と処
理布帛との間に、高熱伝達状態を確保でき、除熱効率が
著しく高められるため、日付の大きい布帛であっても容
易に目標とする耐炎化処理を短時間に行うことができる
ようになる。
In the present invention, a fabric of precursor fibers is formed before flame-retardant treatment, and the fabric is heated in a fluidized bed of heat transfer particles to make it flame-resistant. Fluidization of the heating medium particles is performed by an oxidizing gas. In flameproofing treatment in a fluidized bed, the fluidized solid heat transfer particles intermittently contact and transfer heat to the fabric made of precursor fibers and peel off the temperature boundary layer around the fabric. The efficiency of heating and heat removal is significantly higher than that of the conventional method (vapor phase treatment) that simply performs treatment in a gas atmosphere, and therefore the flame-retardant treatment temperature is higher than that of the conventional method. 20
0 to 400°C, preferably 240 to 350°C, 250 to 550°C for pitch systems, preferably 270 to 500'C
processing becomes possible. In other words, it is possible to ensure a high heat transfer state between the heat transfer particles in the fluidized bed and the treated fabric, and the heat removal efficiency is significantly increased, making it easy to carry out targeted flame-retardant treatment in a short period of time, even on older fabrics. You will be able to do this.

また、本発明方法ではイ[串状物に形成された前駆体繊
維が耐炎化され、その耐炎化された布帛状物がそのまま
炭化されるのであるから、前駆体繊維の破断伸度は大き
く、屈折にも強いので前述の従来方法におけるような製
編織上の困難性は伴なわず、機械的特性に優れた炭素繊
維布が得られる。
In addition, in the method of the present invention, (a) the precursor fibers formed on the skewers are made flame-resistant, and the flame-resistant fabric is carbonized as is, so the elongation at break of the precursor fibers is large; Since it is resistant to refraction, there are no difficulties in knitting and weaving as in the conventional method described above, and a carbon fiber cloth with excellent mechanical properties can be obtained.

しかも上述の如く、目付の大きいものでおっても所定の
耐炎化処理が可能であるので、密度の高いかつ機械特性
に優れた炭素繊維イ「が得られる。
Moreover, as mentioned above, even if the fiber has a large basis weight, it can be subjected to a prescribed flame-retardant treatment, so that a carbon fiber with high density and excellent mechanical properties can be obtained.

本発明において前駆体繊維とは、PAN系、再生セルロ
ーズ系、フェノール系、ピッチ系等に代表される有機重
合体を紡糸して(qられるフィラメント、ストランド、
トウ状の連続体もしくは不連続体及びその紡績糸等をい
い、特にその形態を問わない。
In the present invention, the precursor fiber refers to a filament, strand, or
Refers to tow-like continuous bodies or discontinuous bodies, spun yarns thereof, etc., and its form does not particularly matter.

また、本発明における布帛状物としては、平織、綾織、
朱子織、すだれ織や繊維が三方向に配列した三軸織物な
どの各種織物、丸編、経編ヤ細い編糸が形成するループ
に1個以上4個以下の太い糸状群を真直ぐ配列した各種
編物、各種組紐やフェルト、ウェブ、マットや多方向に
配列した太い糸状群をステッチ糸で一体に縫合した不織
布等シート状もしくは筒状の布帛が挙げられる。
In addition, the fabric-like material in the present invention includes plain weave, twill weave,
Various types of fabrics such as satin weave, blind weave, and triaxial fabrics in which fibers are arranged in three directions, circular knitting, warp knitting, and various types of fabrics in which one or more thick thread-like groups of one or more and four or less are arranged straight in a loop formed by thin knitting yarns. Examples include sheet-like or cylindrical fabrics such as knitted fabrics, various types of braids, felt, webs, mats, and nonwoven fabrics made of thick filament groups arranged in multiple directions sewn together with stitch threads.

本発明における流動層とは、固体熱媒粒子を気体で流動
化した状態下で加熱処理する手段であって、前記熱媒粒
子が酸化性ガスで流動化された状態と所定の温度好まし
くは200℃以上、より好ましくは230℃以上に加熱
された状態がこの流動層内で共存された状態をいう。
The fluidized bed in the present invention is a means for heat-treating solid heat transfer particles in a state where they are fluidized with a gas, and which is performed at a predetermined temperature, preferably 200°C, between the heat transfer particles in a state where they are fluidized with an oxidizing gas. This refers to a state in which the fluidized bed is heated to a temperature of .degree. C. or higher, more preferably 230.degree. C. or higher, in the fluidized bed.

本発明において酸化性ガスとは、空気の信金硫黄気体等
、前記前駆体繊維に対して加熱時広義の酸化反応を生ず
る気体を含む。
In the present invention, the oxidizing gas includes a gas that causes an oxidation reaction in a broad sense on the precursor fiber when heated, such as air-based Shinkin sulfur gas.

本発明に係る熱媒粒子とは、気体で流動化された状態で
用いる固体粒子をいい、耐炎化に必要な加熱温度に耐え
得る耐熱性、即ち350℃以上好ましくは400℃以上
の耐熱性を有する、例えば、主成分として炭素、アルミ
ナ、炭化ケイ素、ジルコニア、シリカ等が単独あるいは
共存して構成されるセラミックやガラス等の無機物粒子
を用いることができる。
The heating medium particles according to the present invention are solid particles used in a gaseous fluidized state, and have heat resistance that can withstand the heating temperature required for flame resistance, that is, heat resistance of 350°C or higher, preferably 400°C or higher. For example, inorganic particles such as ceramic or glass, which have carbon, alumina, silicon carbide, zirconia, silica, etc. as main components singly or in combination can be used.

更に、当該熱媒粒子の内、炭素を主成“分とする粒子(
炭素粒子)であることが好ましい。
Furthermore, among the heat transfer particles, particles whose main component is carbon (
carbon particles).

前記炭素粒子としては、カーボンブラック、サーマルブ
ラック、炭素中空球、活性炭粉末、球状活性炭、グラッ
シーカーボン粉末、メソフェーズピッチビーズ、天然黒
鉛粉末等に代表され、その組成上50%以上、好ましく
は90%以上の炭素成分から成る炭素粒子が良い。上記
熱媒粒子は、その組成中に炭化工程で炭素と反応する金
属成分、例えばFe、Ca、MCI、Mn、(:u、z
n、 Cr。
The carbon particles are typified by carbon black, thermal black, carbon hollow spheres, activated carbon powder, spherical activated carbon, glassy carbon powder, mesophase pitch beads, natural graphite powder, etc., and their composition accounts for 50% or more, preferably 90% or more. Carbon particles consisting of a carbon component of The above-mentioned heat transfer particles have metal components that react with carbon in the carbonization process, such as Fe, Ca, MCI, Mn, (:u, z
n, Cr.

Ni等が少ない程好ましい。炭素を主成分とする熱媒粒
子の場合、その熱媒粒子が繊維に付着してたとえ炭化工
程に持ち込まれたとしても、粒子中に含まれる金属成分
は該粒子の炭素と反応するだけであるから、本質的に炭
素IIの物性を低下させることがない。また、該粒子が
耐炎化時に当該繊維の単糸間中へ侵入することによって
単糸間融者を防止できるので、粒径の細かい方の限定は
特にない。
The less Ni etc., the more preferable. In the case of heating medium particles whose main component is carbon, even if the heating medium particles are attached to fibers and brought into the carbonization process, the metal components contained in the particles only react with the carbon in the particles. Therefore, the physical properties of carbon II are not essentially deteriorated. Furthermore, since the particles can penetrate into the interfilaments of the fibers during the flame-retardation process to prevent interfilament melting, there is no particular limitation on the finer particle size.

また、粒径としては、JISH8511−1960によ
る測定方法で、重量の80%以上が粒度10メツシユ(
タイラー式)以下、好ましくは28メツシユ以下の小径
の粒子が良い。粒径がこれ以上大き過ぎると、流動化に
必要な気体流量を多量に要し、該粒子が前駆体繊維布帛
へ衝突する際の運動エネルギーが大きくなるため毛羽等
の物理的損傷を生じ易い。
In addition, as for the particle size, more than 80% of the weight has a particle size of 10 mesh (
Particles with a small diameter of 28 meshes or less are preferable. If the particle size is too large, a large amount of gas flow is required for fluidization, and the kinetic energy when the particles collide with the precursor fiber fabric becomes large, which tends to cause physical damage such as fuzz.

逆に粒径が小さいと、流動化に必要な気体流量も減少す
るし、該繊維への損傷も低減できる。
Conversely, a smaller particle size reduces the gas flow rate required for fluidization and reduces damage to the fibers.

当該熱媒粒子の形状としては、特に限定しないがシャー
プエツジの無い球形状に近い粒子の方が、前駆体繊維布
帛への物理的損傷が少ないため好ましい。
Although the shape of the heating medium particles is not particularly limited, particles close to spherical shapes without sharp edges are preferable because they cause less physical damage to the precursor fiber fabric.

なお、粒径が、ある程度大きい方が該イ5帛への付着量
が少なく、除去もし易いので、除去を要する場合の粒径
の下限値は400メツシユが好ましく、200メツシユ
がより好ましい。
It should be noted that if the particle size is larger to a certain extent, the amount of adhesion to the A-5 sheet will be smaller and it will be easier to remove. Therefore, if removal is required, the lower limit of the particle size is preferably 400 mesh, more preferably 200 mesh.

また、熱媒層の上面レベルから、該熱媒層の床面に在り
かつ酸化性ガスを熱媒層中に均一に吹き込むための分散
板までの深さは、深くなる程層低部の静圧が高くなり前
駆体繊維に損傷を与え易くなる傾向にあるため、必要最
小限の深さとすることが好ましい。
In addition, the depth from the upper surface level of the heating medium layer to the dispersion plate that is on the floor of the heating medium layer and for uniformly blowing the oxidizing gas into the heating medium layer increases as the depth increases. Since the pressure tends to be high and the precursor fibers are likely to be damaged, it is preferable to set the depth to the minimum necessary.

熱媒粒子流動層中を通過される布帛状物は、その幅方向
を垂直に向けることが望ましい。熱媒粒子の流動化運動
は、主として上下方向に行われるので、布帛状物の姿勢
を上記のようにすることにより、熱媒粒子の流動化はほ
とんど妨げられず、良好に流動化された熱媒粒子と布帛
状物との間で高い熱伝導率が17られる。
It is desirable that the width direction of the fabric passed through the heat transfer particle fluidized bed be oriented vertically. The fluidization movement of the heating medium particles mainly occurs in the vertical direction, so by arranging the posture of the fabric as described above, the fluidization of the heating medium particles is hardly hindered, and the heat is well fluidized. A high thermal conductivity is achieved between the media particles and the fabric.

熱媒粒子流動層を通過した耐炎化布帛状物には、熱媒粒
子が付着することがあるが、熱媒粒子の種類、最終的に
得られる炭素繊維布の用途によっては、炭化工程前に付
着熱媒粒子を除去することが好ましい。熱媒粒子を除去
する方法としては、超音波洗浄、水洗、薬液洗浄、加撮
、吸引、エア吹付等の手段があるが、可能な限り静的な
方法によることが肝要で、固体接触式で加撮して除去す
る方法などは布帛状物へかえって損傷を与えることにな
るおそれがあるため好ましくない。
Heat transfer particles may adhere to the flame-retardant fabric that has passed through the heat transfer particle fluidized bed, but depending on the type of heat transfer particles and the intended use of the final carbon fiber cloth, it may be necessary to It is preferable to remove adhering heat transfer particles. Methods for removing heat transfer particles include ultrasonic cleaning, water washing, chemical cleaning, special imaging, suction, and air blowing, but it is important to use static methods as much as possible; A method of removing the material by adding additional images is not preferable because it may cause damage to the fabric-like object.

この熱媒について、炭素粒子単独で耐炎化し、引続いt
炭化処理し炭素繊維イ[を製造する場合には、該粒子中
に含まれる、炭素と反応可能な金属成分は炭化時に炭素
粒子自身と反応するので、炭化前に必ずしも除去する必
要がなく最も好ましい。
This heating medium was made flame resistant using carbon particles alone, and then t
When producing carbon fibers by carbonization, the metal component contained in the particles that can react with carbon reacts with the carbon particles themselves during carbonization, so it is not necessarily necessary to remove them before carbonization, which is most preferable. .

次に本発明に係る方法の望ましい態様について説明する
Next, desirable aspects of the method according to the present invention will be explained.

第1図および第2図は本発明の一実施態様に係る方法を
実施するための炭素繊維布製造装置を示している。
1 and 2 show a carbon fiber fabric manufacturing apparatus for carrying out a method according to an embodiment of the present invention.

第1図において、前駆体繊維をシート状もしくは筒状に
製編織した布帛状物101は、パッケージ30から繰り
出される。該前駆体繊維布帛状物101を耐炎化処理を
行うための流動層加熱耐炎化炉1を通して、所定の張力
下において耐炎化処理し耐炎化布帛状物102と成し、
次いで必要なら該イト帛秋物に付着残留した熱媒を除去
する除去手段20を通過せしめて所定の耐炎化布帛状物
103とした後、該耐炎化布帛状物103を炭化炉2に
て炭化して炭素繊維布となし、それをパッケージ32と
して巻き取るように構成した。
In FIG. 1, a fabric-like material 101 made of precursor fibers knitted and woven into a sheet-like or cylindrical shape is let out from a package 30 . The precursor fiber fabric 101 is passed through a fluidized bed heating flame resistant furnace 1 for flame resistant treatment and subjected to flame resistant treatment under a predetermined tension to form a flame resistant fabric 102;
Next, if necessary, the material is passed through a removing means 20 for removing the heat medium adhering to and remaining on the fabric to form a predetermined flame-resistant fabric 103, and then the flame-resistant fabric 103 is carbonized in a carbonization furnace 2. The package 32 was made into a carbon fiber cloth and wound up as a package 32.

耐炎化炉1内には、分散板8上に熱媒粒子の流動層5が
形成され、該流動層5は、供給孔9を介し分散板8を通
して送られてくる酸化性気体によって流動化され、流動
化後の気体は排気孔10から排出される。また、この熱
媒流動層5は、加熱手段(ヒータ)6によって所定の処
理温度に加熱制御される。当該布帛状物が本耐炎化炉の
流動層へ導入出される導入・導出孔は開放のままだと熱
媒や加熱気体が流出するので、加圧シール室11.11
−を設け、気体を供給孔13.13′から夫々へ供給し
、該加圧シール室内雰囲気圧を炉内の雰囲気圧より若干
高目の圧力にして熱媒と加熱空気をシールする。勿論そ
の他のシール方法、例えば炉内方向へ気体流を生じるエ
ジェクターであっても良いし、場合によってはシールせ
ずに流出した熱媒を溜めて流動層内へ順次自動的にもど
してやるシステムも可能である。
In the flameproofing furnace 1, a fluidized bed 5 of heat transfer particles is formed on a dispersion plate 8, and the fluidized bed 5 is fluidized by the oxidizing gas sent through the dispersion plate 8 through the supply holes 9. The fluidized gas is discharged from the exhaust hole 10. Further, this heat medium fluidized bed 5 is heated and controlled to a predetermined processing temperature by a heating means (heater) 6. If the introduction/exit holes through which the fabric material is introduced into the fluidized bed of this flame-retardant furnace are left open, the heating medium and heated gas will flow out, so the pressure seal chamber 11.11
- is provided, gas is supplied to each from the supply holes 13 and 13', and the atmospheric pressure in the pressurized sealing chamber is set to a pressure slightly higher than the atmospheric pressure in the furnace to seal the heating medium and the heated air. Of course, other sealing methods may be used, such as an ejector that generates a gas flow toward the inside of the furnace, or in some cases, a system that collects the heat medium that flows out without sealing and automatically returns it sequentially to the fluidized bed is also possible. It is.

また、本実施例では耐炎化炉1の炉内には1つの流動層
を形成したが、布帛状物走行方向に複数の部屋に分割し
て複数の流動層を形成し、それぞれ異なる処理温度に設
定した多段処理とすることもできる。
In addition, in this example, one fluidized bed was formed inside the flameproofing furnace 1, but it was divided into a plurality of rooms in the running direction of the fabric material to form a plurality of fluidized beds, each of which was heated to a different treatment temperature. It is also possible to perform set multi-stage processing.

耐炎化炉1の前後、および炭化炉2の前1変には、それ
ぞれ駆動ロール33.34.36が設けられている。
Drive rolls 33, 34, and 36 are provided at the front and rear of the flameproofing furnace 1 and at the front and rear of the carbonization furnace 2, respectively.

そして、耐炎化処理時の布帛状物の張力は、駆動ロール
33と34の回転速度を制御することによってコントロ
ールされ、炭化時の45帛秋物の張力は、駆動ロール3
4と36の回転速度を制御することによってコントロー
ルされる。
The tension of the fabric during flame-retardant treatment is controlled by controlling the rotational speed of the drive rolls 33 and 34, and the tension of the 45-woven fabric during carbonization is controlled by the drive roll 3.
It is controlled by controlling the rotational speed of 4 and 36.

耐炎化炉1の前後には、第2図の部分平面図にも示すよ
うに、走行される該布帛状物を両側から挟むように夫々
一対のフリーロール41.42および43.44が設け
られており、一対のフリーロール41.42および43
.44は該布帛状物走行方向に互に位置をずらして配設
されている。各一対のフリーロール41.42および4
3.44は、走行中の該布帛状物を直接ニップしても良
いが、緊張下にある該布帛状物を両側から第2図のよう
に押圧することにより、該布帛状物を強制的に拘束でき
る。これらロールの長手方向は上下方向とされているの
で、該布帛秋物の幅方向が上下方向、厚み方向が水平方
向となるように行われる。駆動ロール33で扁平化され
たイ[山状物は、第1図に示すように、ロール41で9
0度ひねられて、あるいは上下方向に拡幅されて、上下
に延びる扁平化布帛状物とされる。
As shown in the partial plan view of FIG. 2, a pair of free rolls 41, 42 and 43, 44 are provided before and after the flameproofing furnace 1, respectively, so as to sandwich the running fabric from both sides. and a pair of freerolls 41, 42 and 43
.. 44 are arranged so as to be shifted from each other in the running direction of the fabric-like article. Each pair of freerolls 41.42 and 4
In 3.44, the running fabric may be directly nipped, but the fabric may be forcibly nipped by pressing the fabric under tension from both sides as shown in Figure 2. can be restrained. Since the longitudinal direction of these rolls is the vertical direction, the width direction of the fabric autumn item is the vertical direction, and the thickness direction is the horizontal direction. As shown in FIG.
It is twisted 0 degrees or expanded in the vertical direction to form a flattened fabric that extends vertically.

更に、炭化炉2の前1変にフリーロールを同様に配置し
、耐炎化後の布帛状物103もその巾方向を垂直方向と
して炭化処理することも可能である。
Furthermore, it is also possible to similarly arrange a free roll at the front end of the carbonization furnace 2 and carbonize the flame-resistant fabric 103 with its width direction being in the vertical direction.

また、第1図は炭素繊維布製造工程について示したが、
本発明は、第4図に示すように、勿論、耐炎化工程のみ
の場合についても適用できる。第4図においては、耐炎
化繊維$103はガイドロール38を経た後パッケージ
31として巻取られる。本実施例では、耐炎化炉1は仕
切り板12によって2室に区画され、それぞれの室内に
熱媒流動層3.4が形成されるとともに、各流動層3.
4に対応してヒータ6.7が設けられている。その他の
構成は第1図に示した構成に準じる。
In addition, although Figure 1 shows the carbon fiber cloth manufacturing process,
As shown in FIG. 4, the present invention can of course be applied to only the flameproofing process. In FIG. 4, the flame-retardant fiber $103 is wound up as a package 31 after passing through a guide roll 38. In this embodiment, the flameproofing furnace 1 is divided into two chambers by a partition plate 12, and a heat medium fluidized bed 3.4 is formed in each chamber, and each fluidized bed 3.4 is formed in each chamber.
4, a heater 6.7 is provided. Other configurations are similar to those shown in FIG.

上記のように前駆体繊維から成る布帛状物101は、耐
炎化炉1の熱媒流動層5中では第3図に示すような状態
で通過し、耐炎化処理される。すなわち、該布帛状物の
幅W方向を実質的に垂直方向とし、厚み方向を水平方向
として走行される。
The fabric 101 made of the precursor fibers as described above passes through the heat medium fluidized bed 5 of the flame retardant furnace 1 in a state as shown in FIG. 3, and is subjected to flame retardant treatment. That is, the fabric is run with the width W direction being substantially vertical and the thickness direction being horizontal.

該布帛状物の耐炎化時の処理状態は、その幅方向を水平
方向とすることも可能ではあるが、熱媒の流動性を阻害
するおそれがある上、熱媒を該布帛状物上に載せて搬出
してしまうおそれがおるので好ましくない。配列状態を
第3図に示した如くイ5帛の幅方向を上下方向とすれば
、熱媒の流動化は殆んど阻害されず、該布帛状物との間
で高い熱伝達が得られる。また、上下方向に配列するこ
とにより、第5図に示すように多数本のイF帛状物を同
時に耐炎化炉に通すことが容易になり、各布帛間ピッチ
も小さくして処理密度を上げれるので、生産性を高める
ことができる。
Although it is possible to make the fabric material flame-resistant, the width direction of the fabric material may be in the horizontal direction. This is not preferable as there is a risk that it will be loaded and carried out. If the arrangement state is such that the width direction of the fabric is in the vertical direction as shown in Figure 3, the fluidization of the heat medium will hardly be inhibited, and high heat transfer between the fabric and the fabric will be achieved. . In addition, by arranging them in the vertical direction, it becomes easier to pass a large number of A-F fabrics through the flameproofing furnace at the same time as shown in Figure 5, and the pitch between each fabric is also reduced to increase the processing density. productivity can be increased.

[実施例−1] 単糸1デニール3,000本から成るPAN系前駆体繊
維で、目付3X3/cm (2309/rd> 、幅3
cmのテープ状織物を作り、これを第4図に示した如く
、フリーロールでその幅方向を垂直方向にして、粒度1
00〜200メツシユの黒鉛粉末を分散板からの深さ8
0mまで入れて流動化させた流動層中で、260℃/2
80’Cの二段階の処理温度で10分間滞留させて緊張
下に連続処理した。1qられた耐炎化繊物を、次いでN
2ガス雰囲気にて温度1350℃で炭化して炭化繊物を
得た。
[Example-1] A PAN-based precursor fiber consisting of 3,000 single denier filaments with a basis weight of 3 x 3/cm (2309/rd>, width of 3
A tape-like fabric with a diameter of 1 cm is made, and as shown in Fig. 4, it is free-rolled with its width direction perpendicular to the grain size of 1.
00 to 200 mesh graphite powder to a depth of 8 from the dispersion plate.
260℃/2 in a fluidized bed filled to 0m
The mixture was continuously treated under tension at a two-stage treatment temperature of 80'C for 10 minutes. 1q of the flame-resistant synthetic fiber was then heated with N.
Carbonized fibers were obtained by carbonization at a temperature of 1350° C. in a two-gas atmosphere.

この炭化繊物から繊維束を扱き取り、強度、ヤング率を
測定した結果を表−1に示す。
Table 1 shows the results of measuring the strength and Young's modulus of fiber bundles prepared from this carbonized fiber.

表−1 [実施例−2] テープ状織物の日付が6X6/cm (460g/rd
>、耐炎化時間を15分とした以外は、実施例−1と全
く同様の方法で炭化繊物を1qた。この炭化繊物から繊
維束を扱ぎ取り、強度、Vレグ率を測定した結果は、表
−2の通りである。
Table-1 [Example-2] The date of the tape-shaped fabric is 6X6/cm (460g/rd
>1 q of carbonized fibers were prepared in exactly the same manner as in Example-1 except that the flame resistance time was changed to 15 minutes. Fiber bundles were taken from this carbonized fiber, and the strength and V-leg ratio were measured, and the results are shown in Table 2.

表−2 [発明の効果] 以上説明したように、本発明の炭素繊維布の製造方法に
よるときは、前駆体繊維布帛状物を形成した複眼布帛状
物を耐炎化し、次いで炭化するので、製編織上の問題を
伴うことなく機械的特性に優れた炭素繊維布が得られ、
“かつ耐炎化処理を酸化性ガスで流動化された熱媒粒子
流!l1層中で行うようにしたので、高熱伝達率を利用
して布帛状物内部から効率よく除熱でき、従来法に比べ
目付けの大きい布帛状物の処理が可能になる。その結果
、(qられた炭素!Ii雑布を用いて繊組充填率の高い
CFRP (炭素FRP)を得ることができる。
Table 2 [Effects of the Invention] As explained above, when using the method for manufacturing carbon fiber cloth of the present invention, the compound fabric formed from the precursor fiber fabric is made flame resistant and then carbonized, so that the manufacturing process is improved. A carbon fiber cloth with excellent mechanical properties can be obtained without any problems in weaving.
“And since the flame-retardant treatment is carried out in a layer of heating medium particle flow fluidized with oxidizing gas, heat can be efficiently removed from the inside of the fabric by utilizing the high heat transfer coefficient. It becomes possible to process fabrics with a comparatively large basis weight.As a result, it is possible to obtain CFRP (carbon FRP) with a high fiber filling rate using (q) carbon!Ii miscellaneous fabric.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施態様に係る方法を実施するため
の炭素繊維製造装置の概略構成図、第2図は第1図の装
置の部分平面図、 第3図は第1図のZ−Z線に沿う、布帛状物を拡大表示
した断面図、 第4図は本発明の別の実施態様に係る方法を実施するた
めの耐炎化装置の概略構成図、第5図は耐炎化を多数本
同時に行う場合の耐炎化装置の平面図、 である。 1・・・・・・・・・・・・耐炎化炉 2・・・・・・冑・・・炭化炉 3.4.5・・・熱媒流動層 6.7・・・・・・ヒータ 8.8−・・・分散板 9.9−・・・給気孔 10・・・・・・・・・・・・排気孔 20・・・・・・・・・・・・熱媒粒子除去手段301
31.32・・・パッケージ 33.34.36・・・駆動ロール 37.38.40・・・フリーロール
FIG. 1 is a schematic configuration diagram of a carbon fiber manufacturing apparatus for carrying out a method according to an embodiment of the present invention, FIG. 2 is a partial plan view of the apparatus shown in FIG. 1, and FIG. 4 is a schematic diagram of a flame-retardant apparatus for carrying out a method according to another embodiment of the present invention, and FIG. FIG. 2 is a plan view of a flame-retardant device used when a large number of flame retardants are treated at the same time. 1... Flameproofing furnace 2... Armor... Carbonization furnace 3.4.5... Heat medium fluidized bed 6.7... Heater 8.8--Dispersion plate 9.9--Air supply hole 10...Exhaust hole 20...Heat medium particles Removal means 301
31.32...Package 33.34.36...Drive roll 37.38.40...Free roll

Claims (2)

【特許請求の範囲】[Claims] (1)前駆体繊維をシート状もしくは筒状の織物、編物
等の布帛状物に形成し、該布帛状物を熱媒粒子を酸化性
ガスで流動化せしめた流動層中で加熱して耐炎化した後
、不活性ガス雰囲気中で炭化せしめることを特徴とする
炭素繊維布の製造方法。
(1) Precursor fibers are formed into a sheet-like or cylindrical fabric, such as a woven or knitted fabric, and the fabric is heated in a fluidized bed in which heat transfer particles are fluidized with an oxidizing gas to make it flame-resistant. 1. A method for producing carbon fiber cloth, which comprises carbonizing the cloth in an inert gas atmosphere.
(2)前記布帛状物の幅方向を前記流動層中で垂直方向
に向ける請求項(1)記載の炭素繊維布の製造方法。
(2) The method for producing a carbon fiber cloth according to claim (1), wherein the width direction of the cloth is oriented vertically in the fluidized bed.
JP7799688A 1988-04-01 1988-04-01 Production of carbon fiber cloth Pending JPH01260021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7799688A JPH01260021A (en) 1988-04-01 1988-04-01 Production of carbon fiber cloth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7799688A JPH01260021A (en) 1988-04-01 1988-04-01 Production of carbon fiber cloth

Publications (1)

Publication Number Publication Date
JPH01260021A true JPH01260021A (en) 1989-10-17

Family

ID=13649421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7799688A Pending JPH01260021A (en) 1988-04-01 1988-04-01 Production of carbon fiber cloth

Country Status (1)

Country Link
JP (1) JPH01260021A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5580648A (en) * 1992-12-01 1996-12-03 Avco Corporation Reinforcement system for mastic intumescent fire protection coatings
CN105220276A (en) * 2015-10-12 2016-01-06 浙江精业新兴材料有限公司 A kind of carbonization technique pre-heating device for carbon fiber processing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5580648A (en) * 1992-12-01 1996-12-03 Avco Corporation Reinforcement system for mastic intumescent fire protection coatings
CN105220276A (en) * 2015-10-12 2016-01-06 浙江精业新兴材料有限公司 A kind of carbonization technique pre-heating device for carbon fiber processing

Similar Documents

Publication Publication Date Title
US3053775A (en) Method for carbonizing fibers
US5582912A (en) Crimped carbonaceous fibers
JP4412850B2 (en) Hybrid knitted fabric containing metal fibers
CN101583747A (en) Method for production of carbonized cloth, and carbonized cloth produced by the method
KR101975886B1 (en) Filament web typed precursor fabric for activated carbon fiber fabric and method of manufacturing the same
JPH01260021A (en) Production of carbon fiber cloth
JP4809757B2 (en) Flame-resistant heat treatment apparatus and method for producing flame-resistant fiber bundle
US4237108A (en) Process for producing carbon fabric
JPS58115121A (en) Acrylic carbon fiber
GB1592144A (en) Process for producing carbon fibres
CN113584708B (en) Ultra-low-density polyimide fiber mesh cloth and preparation method thereof
JPH026629A (en) Production of carbon fiber
EP0189134A2 (en) Improved warp knit fabric containing weft inserted activated carbon yarn
RU2000360C1 (en) Cloth from activated carbon fiber and method of its manufacture
US3926228A (en) Carbonaceous tapes
CN211665430U (en) Active carbon fiber felt for hydrogen storage
JPH0214022A (en) Fire-resistant treatment
JPH01207421A (en) Apparatus for making flame-resistance and method therefor
JPH01111021A (en) Production of carbon fiber
JPS6111323B2 (en)
JPH01118623A (en) Provision of precursor fiber with flame resistance
JPS62276023A (en) Production of flame-resistant fiber
JP2009150033A (en) Method and apparatus for producing flame retardant fiber
JPH04300328A (en) Production of carbon fiber and apparatus for producing the same
JPH01104835A (en) Production of fire-resistant fiber