JPH0125638B2 - - Google Patents

Info

Publication number
JPH0125638B2
JPH0125638B2 JP57167848A JP16784882A JPH0125638B2 JP H0125638 B2 JPH0125638 B2 JP H0125638B2 JP 57167848 A JP57167848 A JP 57167848A JP 16784882 A JP16784882 A JP 16784882A JP H0125638 B2 JPH0125638 B2 JP H0125638B2
Authority
JP
Japan
Prior art keywords
liquid
treated
treatment
waste liquid
organic substances
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57167848A
Other languages
Japanese (ja)
Other versions
JPS5959299A (en
Inventor
Asao Horiuchi
Ichiro Yamamoto
Masaki Aizawa
Toyoichi Yokomaku
Toyohiko Matsushima
Keiichi Koshiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kankyo Engineering Co Ltd
Original Assignee
Kankyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kankyo Engineering Co Ltd filed Critical Kankyo Engineering Co Ltd
Priority to JP57167848A priority Critical patent/JPS5959299A/en
Publication of JPS5959299A publication Critical patent/JPS5959299A/en
Publication of JPH0125638B2 publication Critical patent/JPH0125638B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は糖蜜廃液の新規かつ有効な処理方法に
関する。 本発明の処理対象である糖蜜廃液は、主とし
て、砂糖精製工程から排出される廃糖蜜を原料と
して、アルコール、アミノ酸、核酸誘導体、及び
パン酵母等の発酵製品を製造する過程で排出され
るものであるが、この廃液は一般に、水質的は
BOD、CODとも5000〜100000mg/と極めて濃
厚なものであり、排出液量も100〜3000m3/日と
大量である場合が多い。 従来、この糖蜜廃液は生物学的な方法のみで処
理されていたが、この方法では廃液中のBOD成
分を除去することはできるが、COD及び色度成
分の除去性は悪く、生物学的処理液のCODは
1500〜5000mg/、色度は3000〜20000゜である。 この生物学的処理液におけるCOD、色度成分
の主体はメラノイジン等の生物難分解性の有機高
分子化合物であが、この種の有機高分子化合物を
含む排水の処理には各種の方法が開発されてお
り、特開昭55−34135号の「有機性排水の処理方
法」もその1つである。 この公知方法は、有機性排水に第2鉄塩を主と
する凝集剤を添加して、PH3乃至5.5の範囲に調
整したのち、懸濁物質、有機物質、及び色度成分
を水酸化第2鉄フロツクと共に凝集分離する第1
工程と、第1工程の処理水に新たに鉄塩、過酸化
水素を添加して有機物質及び色度成分を酸化分解
する第2工程と、その酸化処理水にアルカリを加
えてPH4以上で鉄塩触媒を水酸化鉄フロツクと
して析出分離する第3工程とから成る一連の工程
で有機性物質を含む排水を処理して、排水中の有
機物質及び色度成分を高度に除去しようとするも
のであり、場合により予め、活性汚泥法、散水
床法、又は嫌気性消化法等の生物学的処理方法を
用いて排水のBODを100ppm以下まで極力低下さ
せておくことが、薬剤使用量を大巾に減少させる
上で必要であるとしている。 本発明は、前記公知方法を糖蜜廃液の処理に利
用するに当り、一層適切な前処理工程を組合せる
ことにより、これまで有効に処理することができ
なかつた糖蜜廃液を簡易かつ低コストで、しかも
極めて高度に処理できるようにしたものである。 そして、本発明における前処理の特徴は、第1
発明では、糖蜜廃液を好気性生物処理法で処理し
てその溶解性BODを特に50mg/以下にする点
であり、第2発明では、糖蜜廃液を一旦95℃以上
に加熱してから冷却し、次いで好気性生物処理法
で処理する点であり、第3発明では、糖蜜廃液を
先ずメタン発酵法で処理し、次いで好気性生物処
理法で処理する点である。 以下、第1発明ないし第3発明について各別に
具体的に説明する。 第1図により第1発明の一実施態様について説
明するに、処理対象の糖蜜廃液は管1で好気性生
物処理部2に導かれ、ここで、必要により窒素、
りん等の栄養塩3を添加して、廃液の溶解性
BODが50mg/以下になるまで、好気性生物処
理法で処理される(第1工程)。 第1工程処理液の溶解性BODが50mg/以下
になるまで処理することが、第1発明の重要な構
成要件であつて、50mg/以上では、第2工程以
後での凝集剤、酸化剤等の薬品注入量が著しく増
加するばかりでなく、処理効果が極端に悪くな
り、最終的な処理限界水質が上昇して、本発明の
目的を達成することができない。なお、微生物フ
ロツク等に起因するSS(浮遊固形物)性のBOD
の存在は薬注量と処理効果に悪影響を及ぼさな
い。 好気性生物処理の方法には特に限定はなく、活
性汚泥法、散水床法、接触酸化法、回転円板法
等の何れでもよく、又はこれらの併用でもよい。 ただ、処理液のBODを50mg/以下に維持管
理するには、正当なBOD容積負荷で運転されて
いるか、必要な酸素が十分に供給されているか、
BOD汚泥負荷が適正であるか等、処理状況に十
分な注意が必要である。 なお、第1工程で生じた余剰生物汚泥は、濃縮
分離した後、別途処理してもよいが、第1工程処
理液と共に下記の第2工程で処理して、COD及
び色度成分と共に凝集分離することもできる。 第2工程では、先ず、第1混和槽4において第
1工程処理液に撹拌しつつ第2鉄塩を主とする凝
集剤5を所定量添加し、次いで、第1PH調整槽
6でPH調整剤7の添加によりPHを所定値(3
〜5.5、好ましくは4〜4.5)に調整した後、中間
固液分離槽8において凝集助剤9の添加の下に、
処理液中の懸濁物質、有機物質、及び色度成分を
水酸化第2鉄フロツクと共に凝集させ、これを
過、沈殿等適宜手段で分離する。 ここで使用する第2鉄塩を主とする凝集剤は、
硫酸第2鉄、塩化第2鉄、ポリ硫酸鉄の何れでも
よく、又、添加量は、量に比例して処理効果は向
上するが、通常は、鉄原子換算で25〜2500mg/
とする。 中間固液分離槽8で分離した固形分は、管10
で排出して、必要に応じて別途処理した後、処分
し、液分は次の第3工程へ送る。 第3工程では、先ず、第2混和槽11におい
て、撹拌しつつ、酸化剤としての過酸化水素12
と酸化触媒としての鉄塩13の添加を行い、その
液を酸化反応槽14に導いて酸化反応を行わせ、
液中の有機物質及び色度成分を酸化分解する。 過酸化水素の添加量は、特に限定はなく、廃液
の組成、濃度、処理目標水質等により決定する
が、通常は、廃液中のCODMo量に対して過酸化
水素中の有効酸素換算で0.1〜2倍の範囲とする。 鉄塩は、硫酸第1又は第2鉄塩、塩化第1又は
第2鉄塩、ポリ硫酸鉄等の化合物、及びその水溶
液であるが、通常は、酸化触媒能が高く、価格が
低廉なことから硫酸第1鉄塩を用いる。又、鉄塩
の添加量は、廃液の濃度、組成、過酸化水素の添
加量、反応時間、及び酸化反応後の固液分離法等
により決定するのであるが、数mg/程度から効
果を発揮し、多量になるほど反応速度が早くなる
一方、スラツジの発生量が増大するので、通常
は、鉄原子換算で10〜2000mg/の範囲とする。 鉄塩は液中で過酸化水素と反応して強力な酸化
性を有する水酸基ラジカルを生成するとともに加
水分解して、反応至適のPH4以下になるが、必
要により最適反応PHに調整するために第2混和
槽11においてPH調整剤15を添加する。 酸化反応槽14は、通常、機械撹拌又は空気撹
拌される。そして、酸化反応槽14での反応時間
は、廃液の組成、濃度、反応温度、過酸化水素
量、鉄塩量により異るが、通常は、常温で5分な
いし24時間である。 なお、反応が短時間で完結する条件の場合には
第2混和槽11での反応だけで十分である。 次に第4工程では、前記酸化反応処理液を中和
槽16に導いてアルカリ剤17及び必要に応じて
還元剤18を添加し、最終固液分離槽19におい
て、通常は凝集助剤20の添加の下に、鉄イオン
を水酸化鉄フロツクとして析出させると同時に、
廃液の有機物も合わせて凝集させ、これを過、
沈殿等の適宜手段で分離する。 酸化反応において未反応の過酸化水素が残留す
ると、COD測定時にCOD値として検出されて見
掛のCODが増加するが、還元剤は、この場合に
残留の過酸化水素を分解するために添加するので
あつて、硫酸第1鉄、塩化第1鉄、亜硫酸ソー
ダ、チオ硫酸ソーダ等が用いられる。 最終固液分離槽19で分離した液分は管21よ
り取出して、必要によりPH調整をした後、放流
するか、又はより高度の処理のために他の処理工
程に送る。一方、固形分(水酸化鉄フロツク)は
管22より排出して処分するが、場合によつては
塩酸、硫酸等の鉱酸を加えて水酸化鉄を溶解し、
第2工程における第2鉄塩を主とする凝集剤とし
て再使用することもできる。 実験例 1 酵母製造工場から排出された第1表に示す液質
の糖蜜廃液を清水で5倍希釈し、処理方法が容積
10の曝気槽を用いた回分式活性汚泥法、BOD
負荷が2.0Kg−BOD/m3日、液温が35℃の条件
で、曝気量を8/分、5/分、3/分の3
段階に変化させて、好気性生物処理を行つたとこ
ろ、それら処理液の液質は第2表に示す通りであ
つた。
The present invention relates to a novel and effective method for treating molasses wastewater. Molasses waste liquid, which is the target of the treatment of the present invention, is mainly discharged in the process of manufacturing fermented products such as alcohol, amino acids, nucleic acid derivatives, and baker's yeast using the waste molasses discharged from the sugar refining process as a raw material. However, this waste liquid generally has a water quality of
Both BOD and COD are extremely concentrated, ranging from 5,000 to 100,000 mg/day, and the volume of discharged fluid is often large, ranging from 100 to 3,000 m 3 /day. Conventionally, this molasses wastewater has been treated only by biological methods, but although this method can remove BOD components in the wastewater, the removal of COD and color components is poor, and biological treatment is not recommended. The COD of the liquid is
1500~5000mg/, chromaticity is 3000~20000°. The main COD and chromaticity components in this biological treatment solution are organic polymer compounds that are difficult to biodegrade, such as melanoidin, but various methods have been developed to treat wastewater containing this type of organic polymer compound. ``Method for treating organic wastewater'' in Japanese Patent Application Laid-Open No. 55-34135 is one of them. In this known method, a flocculant mainly containing ferric salt is added to organic wastewater to adjust the pH to a range of 3 to 5.5, and then suspended solids, organic substances, and chromaticity components are removed from hydroxylated ferric salts. The first step is to coagulate and separate the iron flocs.
The second step is to add new iron salts and hydrogen peroxide to the water treated in the first step to oxidize and decompose organic substances and color components, and the second step is to add alkali to the oxidized water to remove iron at a pH of 4 or above. This process aims to highly remove organic substances and chromaticity components from wastewater by treating wastewater containing organic substances through a series of processes including a third process in which a salt catalyst is precipitated and separated as iron hydroxide flocs. However, depending on the case, using biological treatment methods such as activated sludge method, sprinkler bed method, or anaerobic digestion method to reduce the BOD of wastewater to 100 ppm or less can greatly reduce the amount of chemicals used. It is said that it is necessary to reduce the The present invention utilizes the above-mentioned known method for treating molasses waste liquid, and by combining it with a more appropriate pretreatment step, the molasses waste liquid, which has not been able to be effectively treated up to now, can be treated simply and at low cost. Moreover, it is designed to be able to be processed at an extremely high level. The characteristics of the pretreatment in the present invention are as follows:
In the invention, the molasses waste liquid is treated by an aerobic biological treatment method to particularly reduce the soluble BOD to 50 mg/or less, and in the second invention, the molasses waste liquid is heated to 95°C or higher and then cooled, This is followed by treatment using an aerobic biological treatment method, and in the third invention, the molasses waste liquid is first treated with a methane fermentation method and then treated with an aerobic biological treatment method. Hereinafter, each of the first to third inventions will be specifically explained. To explain one embodiment of the first invention with reference to FIG. 1, molasses waste liquid to be treated is led to an aerobic biological treatment section 2 through a pipe 1, where it is treated with nitrogen, if necessary.
Addition of nutrient salts such as phosphorus3 improves the solubility of waste liquid.
It is treated using an aerobic biological treatment method until the BOD becomes 50 mg/or less (first step). An important component of the first invention is to treat the first step treatment solution until the soluble BOD becomes 50 mg/or less. Not only does the amount of chemical injection increase significantly, but the treatment effect becomes extremely poor, and the final treatment limit water quality increases, making it impossible to achieve the purpose of the present invention. In addition, SS (suspended solids) BOD caused by microbial flocs, etc.
The presence of does not have a negative effect on drug dosage and treatment efficiency. The method of aerobic biological treatment is not particularly limited, and may be any of the activated sludge method, sprinkled bed method, contact oxidation method, rotating disk method, etc., or a combination thereof. However, in order to maintain and manage the BOD of the processing liquid to 50mg/or less, it is necessary to check whether the operation is performed at a proper BOD volume load and whether the necessary oxygen is being supplied sufficiently.
Sufficient attention must be paid to the treatment status, including whether the BOD sludge load is appropriate. The surplus biological sludge generated in the first step may be concentrated and separated and then treated separately, but it can be treated together with the first step treatment liquid in the second step below and coagulated and separated together with COD and chromaticity components. You can also. In the second step, first, a predetermined amount of flocculant 5 mainly composed of ferric salt is added to the first step treatment liquid while stirring in the first mixing tank 4, and then a PH adjusting agent 5 is added in the first PH adjusting tank 6. By adding 7, the pH is adjusted to the specified value (3
5.5, preferably 4 to 4.5), in an intermediate solid-liquid separation tank 8, with the addition of a coagulation aid 9,
Suspended substances, organic substances, and chromaticity components in the treatment solution are coagulated together with ferric hydroxide flocs, and separated by appropriate means such as filtration or precipitation. The flocculant mainly composed of ferric salt used here is
Any of ferric sulfate, ferric chloride, and polyferrous sulfate may be used.Although the treatment effect improves in proportion to the amount added, it is usually 25 to 2500 mg/iron atom equivalent.
shall be. The solid content separated in the intermediate solid-liquid separation tank 8 is transferred to a pipe 10.
The liquid is discharged, treated separately if necessary, and then disposed of, and the liquid is sent to the next third step. In the third step, first, in the second mixing tank 11, hydrogen peroxide 12 as an oxidizing agent is mixed while stirring.
and iron salt 13 as an oxidation catalyst are added, and the liquid is led to an oxidation reaction tank 14 to carry out an oxidation reaction,
Oxidatively decomposes organic substances and color components in the liquid. The amount of hydrogen peroxide added is not particularly limited and is determined depending on the composition, concentration, target water quality, etc. of the waste liquid, but usually it is 0.1 in terms of effective oxygen in hydrogen peroxide based on the amount of COD Mo in the waste liquid. ~2 times the range. Iron salts include compounds such as ferrous or ferric sulfate, ferrous or ferric chloride, polyferrous sulfate, and their aqueous solutions, but they usually have high oxidation catalytic ability and are inexpensive. A ferrous sulfate salt is used. The amount of iron salt added is determined by the concentration and composition of the waste liquid, the amount of hydrogen peroxide added, the reaction time, and the solid-liquid separation method after the oxidation reaction, but it is effective from a few mg/kg. However, as the amount increases, the reaction rate becomes faster, but the amount of sludge generated also increases, so the amount is usually in the range of 10 to 2000 mg/in terms of iron atoms. Iron salt reacts with hydrogen peroxide in the liquid to generate hydroxyl radicals with strong oxidizing properties and is hydrolyzed to reduce the reaction pH to below 4, which is the optimum reaction pH.If necessary, it can be adjusted to the optimum reaction pH. A PH regulator 15 is added in the second mixing tank 11. The oxidation reaction tank 14 is usually mechanically or air agitated. The reaction time in the oxidation reaction tank 14 varies depending on the composition, concentration, reaction temperature, amount of hydrogen peroxide, and amount of iron salt of the waste liquid, but is usually 5 minutes to 24 hours at room temperature. In addition, in the case of conditions where the reaction is completed in a short time, the reaction in the second mixing tank 11 is sufficient. Next, in the fourth step, the oxidation reaction treated liquid is led to a neutralization tank 16, where an alkaline agent 17 and, if necessary, a reducing agent 18 are added. At the same time, iron ions are precipitated as iron hydroxide flocs under the addition of
The organic matter of the waste liquid is also coagulated and filtered.
Separate by appropriate means such as precipitation. If unreacted hydrogen peroxide remains during the oxidation reaction, it will be detected as a COD value during COD measurement and the apparent COD will increase, but in this case a reducing agent is added to decompose the remaining hydrogen peroxide. Ferrous sulfate, ferrous chloride, sodium sulfite, sodium thiosulfate, etc. are used. The liquid separated in the final solid-liquid separation tank 19 is taken out from the pipe 21, and after adjusting the pH if necessary, it is either discharged or sent to other processing steps for more advanced treatment. On the other hand, the solid content (iron hydroxide floc) is discharged from the pipe 22 and disposed of, but in some cases mineral acids such as hydrochloric acid or sulfuric acid may be added to dissolve the iron hydroxide.
It can also be reused as a flocculant mainly consisting of ferric salt in the second step. Experimental example 1 The molasses waste liquid discharged from a yeast manufacturing factory and having the liquid quality shown in Table 1 was diluted five times with fresh water, and the treatment method was
Batch activated sludge process using 10 aeration tanks, BOD
Load is 2.0Kg-BOD/m for 3 days, liquid temperature is 35℃, aeration rate is 8/min, 5/min, 3/min.
When aerobic biological treatment was performed in different stages, the liquid quality of the treated solutions was as shown in Table 2.

【表】【table】

【表】 但し、BODはNo.5Cの紙で過した液の値 次に、これらの処理液に対して、第2工程で
は、処理方法が1ビーカーによる回分処理で、
固液分離は沈降法、塩化第2鉄の添加量が3価の
鉄イオン換算で500mg/、PH調整剤が1Nの水
酸化ナトリウム液、凝集時のPHが4の条件で、
第3工程では、処理方法が1ビーカーによる回
分処理、過酸化水素の添加量が有効酸素換算で
100mg/、硫酸第1鉄の添加量が2価の鉄イオ
ン換算で300ml/、反応PHが2.9、反応時間が
30分の条件で、第4工程では、処理方法が1ビ
ーカーによる回分処理で、固液分離は沈降法、ア
ルカリ剤は1Nの水酸化ナトリウム液、凝集時の
PHは7、還元剤は無添加の条件で、第1発明に
おける第2〜第4工程の処理を行つたところ、そ
の処理液の液質は第3表に示す通りであつた。
[Table] However, BOD is the value of the liquid passed through No. 5C paper.Next, for these processing liquids, in the second step, the processing method is batch processing using one beaker.
Solid-liquid separation was carried out by the sedimentation method, the amount of ferric chloride added was 500 mg in terms of trivalent iron ions, the pH adjuster was a 1N sodium hydroxide solution, and the pH at the time of coagulation was 4.
In the third step, the processing method is batch processing using one beaker, and the amount of hydrogen peroxide added is calculated in terms of effective oxygen.
100mg/, the amount of ferrous sulfate added is 300ml/ in terms of divalent iron ions, the reaction pH is 2.9, the reaction time is
In the 4th step, under the conditions of 30 minutes, the processing method was batch processing using one beaker, the solid-liquid separation was by sedimentation method, the alkaline agent was 1N sodium hydroxide solution, and the alkali agent was 1N sodium hydroxide solution.
When the second to fourth steps of the first invention were carried out under the conditions of pH 7 and no reducing agent added, the liquid quality of the treated solution was as shown in Table 3.

【表】 第3表によると、第1発明におけるCOD及び
色度の除去性が顕著に良好なことが明らかであ
る。 次に、第2表に示す第1工程処理液に対し、第
2工程における塩化第2鉄の添加量を種々変化さ
せた場合の第2工程処理液のCOD値と鉄フロツ
クによつて凝集除去されたCOD量の関係を第2
図に示す。 第2図によると、第1発明では第2工程の
CODの凝集除去性が格段に向上していることが
判る。 次に、第2表に示す3つの第1工程処理液に対
して塩化第2鉄の添加量を3価の鉄イオン換算で
それぞれ300mg/、450mg/、500mg/とし
て処理を行つた第2工程処理液のCODは、それ
ぞれ580mg/、530mg/、560mg/とほぼ同
程度の値を示したので、この第2工程処理液に対
して第3工程で過酸化水素の添加量を種々変化さ
せて、第3及び第4工程の処理を行つた場合の第
4工程処理液のCODと第3工程での過酸化水素
の添加量との関係を調べた(第3図)。 この第3図から明らかなように、第2工程処理
液のCOD値を同レベルに調整した場合でも、第
1工程で溶解性BODを50mg/以下まで処理す
ると少ない過酸化水素の添加で高いCODの除去
性を示すことが判る。 実験例 2 第1表に示す液質の糖蜜廃液に対して、曝気量
を種々変化させて活性汚泥処理を行い、溶解性
BODに差があるこの各処理液を第2工程で塩化
第2鉄の添加量を2価の鉄イオン換算で500ml/
として凝集処理を行い、各第2工程処理液の
COD値と第1工程処理液のBOD値との関係を調
べた(第4図)。 第4図によると、第1工程処理液のBODが50
mg/以下の場合に、第2工程におけるCODの
処理性が急激に向上することが判る。 次に、このように第2工程での処理性が異る第
1工程処理液を、第2工程において水酸化第2鉄
の添加量を変えて処理して、同程度のCOD値の
第2工程処理液となるように調整し、この各処理
液を第3工程において実験例1と同じ過酸化水素
と触媒の添加量で酸化処理し、各第4工程処理液
のCOD値と第1工程処理液のBOD値との関係を
調べた(第5図)。 第5図によると、第1工程処理液のBODが50
mg/の場合に、第4工程処理液のCOD値が急
激に減少することが判る。 以上の2つの実験の結果からも明らかなよう
に、第1工程の好気性生物処理において廃液の溶
解性BODを特に50mg/以下にしている第1発
明によれば、後の工程におけるCODの除去性が
顕著であり、薬品添加量の大巾な低減が期待で
き、その効果は前記公知例から予測される範囲を
遥かに超えるものである。 次に、第6図により第2発明の一実施態につい
て説明するに、処理対象の糖蜜廃液は管23で加
熱部24に導かれ、ここで加熱媒体25により95
℃以上の温度に加熱された後、冷却部26で冷却
媒体27により冷却される(第1工程)。 第2発明では第1工程における廃液の加熱温度
が重要であつて、必ず95℃以上の温度に加熱しな
ければ本発明の目的は達成されない。加熱温度が
95℃以下では、後段の工程での凝集剤、酸化剤等
の薬品の添加量が増大するばかりでなく、処理効
果が悪くなり、最終的な処理限界水質が上昇す
る。逆に廃液を95℃以上に加熱することにより、
単に薬品の添加量の低減が期待できるのみなら
ず、第2工程で必ずしも高度のBOD除去をしな
くても、以後の工程において高い有機物の除去性
を維持することができる。 加熱の方法には特に限定はなく、直火、水蒸
気、その他の加熱媒体の何れによつてもよい。
又、廃液を95℃以上に保つておく時間は、長いほ
ど効果は高く、保持温度が高くなれば短時間で十
分な効果を得ることができる。通常は、95℃で1
時間以上、105℃では10分以上で十分である。 冷却は廃液の温度を第2工程の生物処理が可能
な温度まで下げためで、その手段は任意である。 次に、第1工程処理液は生物処理部28に導か
れ、ここで、必要により窒素、りん等の栄養塩2
9を添加して、好気性生物処理を受ける(第2工
程)。 この第2工程は廃液中のBOD成分の除去を目
的としており、ここでのBODの除去率は高い程
よいが、通常は、第2工程処理液のBODが200
mg/以下であれば、後の工程での高度なCDと
色度の処理が期待できる。そして、好気性生物処
理の方法については特に限定はない。 第2工程処理液は、以後、第3工程ないし第5
工程の処理を受けるが、これらは第1の発明の第
2工程ないし第4工程と全く同様であるので、そ
の説明は省略する。 (実験例) 酵母工場から排出された第1表に示す液質の糖
蜜廃液を第2発明の第1工程(95℃、1時間加
熱)で処理し、この処理液を清水で5倍希釈した
後、第2工程において溶積10の曝気槽を用いて
回分式活性汚泥法により処理した。なお、この際
のBOD負荷は2Kg−BOD/m3・日、液温は35
℃、曝気量は3/分であつた。 一方、原液を直接5倍希釈して前記と同条件で
好気性生物処理を行つた(比較例)。 これらの処理液の液質は第4表に示す通りであ
り、水質的に大差はみられず、同程度の液質であ
ることが判る。
[Table] According to Table 3, it is clear that the removability of COD and chromaticity in the first invention is significantly good. Next, the amount of ferric chloride added in the second step was varied for the first step treatment solution shown in Table 2, and the COD value and iron flocs of the second step treatment solution were used to remove agglomerates. The relationship between the amount of COD
As shown in the figure. According to Figure 2, in the first invention, the second step
It can be seen that the ability to remove COD agglomerates has been significantly improved. Next, in the second step, the three first step treatment solutions shown in Table 2 were treated with the amounts of ferric chloride added in terms of trivalent iron ions of 300 mg/, 450 mg/, and 500 mg/, respectively. The COD of the treated solution was approximately the same, 580 mg/, 530 mg/, and 560 mg/, respectively, so the amount of hydrogen peroxide added to this second step solution was varied in the third step. The relationship between the COD of the fourth step treatment solution and the amount of hydrogen peroxide added in the third step was investigated when the third and fourth steps were performed (Figure 3). As is clear from Figure 3, even if the COD value of the second process treatment liquid is adjusted to the same level, if the soluble BOD is treated in the first process to 50mg/or less, the COD will increase even with the addition of less hydrogen peroxide. It can be seen that the removability of Experimental Example 2 Activated sludge treatment was performed on molasses wastewater with the liquid quality shown in Table 1 by varying the amount of aeration, and the solubility
In the second step, the amount of ferric chloride added to each of these treatment solutions, which have different BODs, was 500 ml/converted to divalent iron ions.
Coagulation treatment is performed as follows, and each second process treatment liquid is
The relationship between the COD value and the BOD value of the first step treatment liquid was investigated (Figure 4). According to Figure 4, the BOD of the first process treatment liquid is 50
It can be seen that when the amount of COD is less than mg/mg, the processability of COD in the second step is rapidly improved. Next, in the second step, the first step treatment solution having different treatability in the second step is treated by changing the amount of ferric hydroxide added, and the second step treatment solution with the same COD value is obtained. Each treatment solution was oxidized in the third step using the same amount of hydrogen peroxide and catalyst as in Experimental Example 1, and the COD value of each fourth step treatment solution and the first step were The relationship with the BOD value of the treatment solution was investigated (Figure 5). According to Figure 5, the BOD of the first process treatment liquid is 50
mg/, it can be seen that the COD value of the fourth step treatment liquid decreases rapidly. As is clear from the results of the above two experiments, according to the first invention, in which the soluble BOD of the waste liquid is particularly reduced to 50 mg/or less in the aerobic biological treatment in the first step, COD removal in the later step is possible. It is expected that the amount of chemicals added will be greatly reduced, and the effect far exceeds the range expected from the above-mentioned known examples. Next, an embodiment of the second invention will be described with reference to FIG.
After being heated to a temperature of .degree. C. or higher, it is cooled by a cooling medium 27 in a cooling section 26 (first step). In the second invention, the heating temperature of the waste liquid in the first step is important, and the object of the invention cannot be achieved unless the waste liquid is heated to a temperature of 95° C. or higher. heating temperature
If the temperature is below 95°C, not only will the amount of chemicals such as flocculants and oxidizers added in subsequent steps increase, but the treatment effect will deteriorate and the final treatment limit water quality will increase. Conversely, by heating the waste liquid to 95℃ or higher,
Not only can the amount of chemicals added be expected to be reduced, but also high organic matter removability can be maintained in subsequent steps even if a high degree of BOD removal is not necessarily performed in the second step. There are no particular limitations on the heating method, and direct flame, steam, or other heating medium may be used.
Furthermore, the longer the time the waste liquid is kept at 95°C or higher, the higher the effect, and the higher the holding temperature, the more effective the effect can be obtained in a short time. Usually 1 at 95℃
At least 10 minutes at 105°C is sufficient. The purpose of cooling is to lower the temperature of the waste liquid to a temperature that allows biological treatment in the second step, and any means may be used. Next, the first step treatment liquid is led to the biological treatment section 28, where it is treated with nutrients such as nitrogen and phosphorus, etc., as necessary.
9 and subjected to aerobic biological treatment (second step). The purpose of this second step is to remove BOD components in the waste liquid, and the higher the BOD removal rate here, the better, but usually the BOD of the second process treatment liquid is 200
If it is less than mg/, advanced CD and chromaticity processing can be expected in later processes. There are no particular limitations on the method of aerobic biological treatment. The second process treatment liquid will be used in the third to fifth processes.
The process is performed in the same way as the second to fourth steps of the first invention, so the explanation thereof will be omitted. (Experiment example) Molasses waste liquid discharged from a yeast factory and having the liquid quality shown in Table 1 was treated in the first step of the second invention (heating at 95°C for 1 hour), and this treated liquid was diluted 5 times with clear water. After that, in the second step, treatment was carried out by a batch activated sludge method using an aeration tank with a volume of 10. In addition, the BOD load at this time was 2Kg-BOD/ m3・day, and the liquid temperature was 35
℃, and the aeration rate was 3/min. On the other hand, the stock solution was directly diluted 5 times and subjected to aerobic biological treatment under the same conditions as above (comparative example). The liquid quality of these treatment liquids is as shown in Table 4, and it can be seen that there is no major difference in water quality, and the liquid quality is of the same level.

【表】 次に、これら処理液に対して第2鉄塩の添加量
を種々変化させて第2発明における第3工程の処
理を行い、前掲処理液のCOD値と鉄フロツクに
よつて凝集除去されたCOD量の関係を求めた
(第7図)。 第7図から、第2発明では比較例に比べて第3
工程でのCOD凝集除去性が格段に向上している
ことが明らかであり、また、第2発明では3価の
鉄イオン換算で300mg/、比較例では同じく
1000mg/の第2鉄塩を添加して処理した第3工
程処理液のCODは、第2発明では510mg/、比
較例では480mg/とほぼ同じ値を示した。 次に、この同程度のCOD値を持つ第3工程処
理液に対して、過酸化水素の添加量を種々変化さ
せて第2発明の第4工程の処理を行い、その処理
液のCOD過酸化水素の添加量との関係を求めた
(第8図)。 第8図から、第1工程で原液を加熱処理した第
2発明では少ない過酸化水素添加量で高いCOD
の除去性を示すことが明らかである。 以上の実験結果からも明らかなように、原液を
95℃以上に加熱する第1工程を付加している第2
発明によると、凝集剤や過酸化水素の使用量は大
巾に少なく、かつ処理液CODをはるかに低いレ
ベルまで処理することが可能である。 そして、第2発明では、好気性生物処理工程に
おけるBODの処理性にさほど制約を受けること
もなく、高度なCODと色度の処理を行うことが
できるのも大きな特長である。 次に、第9図により第3発明の一実施態様につ
いて説明するに、処理対象の糖蜜廃液(BODが
10000mg/以上の濃度の高いもの)は管30よ
りメタン発酵部31に入り、ここで、必要により
窒素、りん等の栄養塩32を添加して、メタン発
酵法による廃液中の有機物質の処理が行われる
(第1工程)。 第3発明では第1工程において廃液をメタン発
酵法で処理することを重要な構成要件としてお
り、この構成により第3及び第4工程における
COD、色度の除去性が向上する。 メタン発酵の方法については特に限定はなく、
発酵プロセスも任意のものを用いることができ
る。 発酵部31で発生したガスは、管33の系外に
導き、適当に処理した後、発酵の熱源等に利用
し、汚泥は、適当な手段で固液分離を行つて回収
し、新たな廃液の発酵処理に利用するが、余剰の
汚泥は管34で系外に導き、必要により適当な処
理を行つてから、処分する。 第1工程処理液は好気性処理部35において、
必面により管36より希釈水を加えて、好気性生
物処理法で処理する(第2工程)。 この工程は、残留しているBOD及び硫化水素
等の還元性物質を除去して、第3及び第4工程に
おける凝集剤及び酸化剤等の薬品添加量を少なく
するためのものであり、第2工程処理液の溶解性
BODは300mg/以下であることが望ましい。 そして、この工程における好気性生物処理の方
法については特に限定はない。 なお、この工程で発生した余剰汚泥は濃縮して
第1工程のメタン発酵部31に導いて減量化を図
ることができ、また別に第2工程処理液と共に第
3工程に導き、ここでCOD、色度成分と共に凝
集分離することも可能である。 第2工程処理液は、以後順次、第3工程ないし
第5工程の処理を受けるが、これらは第1発明の
第2工程ないし第4工程と全く同様であるので、
その説明は省略する。 (実験例) アルコール製造工場から排出された第5表に示
す液質の糖蜜廃液を、処理方法が2発酵槽によ
る回分処理、BOD負荷が4Kg−BOD/m3日、液
温が53℃の条件でメタン発酵処理を行い、この第
1工程処理液を清水で5倍希釈したもの、及び廃
液を直接5倍希釈したものをそれぞれ対象とし
て、下記の条件で第3発明の第2工程ないし第5
工程の処理を行つたところ、第3及び第4工程処
理液の液質は第6表に示す通りであつた。
[Table] Next, the third step in the second invention was carried out by varying the amount of ferric salt added to these treatment solutions, and the COD value of the treatment solutions mentioned above and the iron flocs were used to remove agglomerates. The relationship between the amount of COD was determined (Figure 7). From FIG. 7, it can be seen that in the second invention, the third invention
It is clear that the ability to remove COD agglomerates during the process has been significantly improved, and in the second invention, the amount of COD was 300 mg/in terms of trivalent iron ions, and in the comparative example, it was the same.
The COD of the third step treatment solution treated by adding 1000 mg of ferric salt was 510 mg/ in the second invention and 480 mg/ in the comparative example, which were almost the same values. Next, the fourth step of the second invention is performed on the third step treatment solution having the same COD value by varying the amount of hydrogen peroxide added, and the COD peroxide of the treatment solution is The relationship with the amount of hydrogen added was determined (Figure 8). From Figure 8, it can be seen that the second invention, in which the stock solution was heat-treated in the first step, had a high COD with a small amount of hydrogen peroxide added.
It is clear that the removability of As is clear from the above experimental results, the undiluted solution
The second process adds the first step of heating to 95℃ or higher.
According to the invention, the amount of flocculant and hydrogen peroxide used is significantly lower, and it is possible to treat the treatment liquid COD to a much lower level. Another major feature of the second invention is that it is not so restricted by the BOD treatment performance in the aerobic biological treatment process, and can perform advanced COD and chromaticity treatment. Next, an embodiment of the third invention will be explained with reference to FIG. 9. The molasses waste liquid to be treated (BOD is
(high concentration of 10,000mg/or more) enters the methane fermentation section 31 through a pipe 30, where nutrients such as nitrogen and phosphorus are added as necessary to treat organic substances in the waste liquid by the methane fermentation method. (first step). In the third invention, an important component is that the waste liquid is treated by methane fermentation in the first step, and with this configuration, in the third and fourth steps.
Improves removal of COD and chromaticity. There are no particular restrictions on the method of methane fermentation.
Any fermentation process can also be used. The gas generated in the fermentation section 31 is led out of the system through the pipe 33, treated appropriately, and then used as a heat source for fermentation, and the sludge is recovered by solid-liquid separation by appropriate means and used as a new waste liquid. However, excess sludge is led out of the system through a pipe 34, subjected to appropriate treatment if necessary, and then disposed of. The first step treatment liquid is in the aerobic treatment section 35,
If necessary, dilution water is added through the pipe 36 and the mixture is treated using an aerobic biological treatment method (second step). This step is to remove residual BOD and reducing substances such as hydrogen sulfide and reduce the amount of chemicals added such as flocculant and oxidizing agent in the third and fourth steps. Solubility of process treatment liquid
It is desirable that the BOD is 300mg/or less. There is no particular limitation on the method of aerobic biological treatment in this step. Incidentally, the surplus sludge generated in this step can be concentrated and led to the methane fermentation section 31 of the first step to reduce the amount of sludge, and separately led to the third step together with the second step treatment liquid, where COD, It is also possible to coagulate and separate the chromaticity component. The second step treatment liquid is then sequentially subjected to the third to fifth steps, which are exactly the same as the second to fourth steps of the first invention.
The explanation will be omitted. (Experiment example) Molasses waste liquid discharged from an alcohol manufacturing factory and having the liquid quality shown in Table 5 was treated in batches using two fermenters, with a BOD load of 4 kg-BOD/m for 3 days, and a liquid temperature of 53°C. The methane fermentation treatment was carried out under the following conditions, and the first step treated liquid was diluted 5 times with fresh water, and the waste liquid was directly diluted 5 times. 5
When the process was carried out, the liquid quality of the third and fourth process liquids was as shown in Table 6.

【表】 処理条件: 第2工程では、処理方法が容積10の曝気槽を
用いた回分式活性汚泥法、BOD負荷が1Kg−
BOD/m3・日、液温が35℃、曝気量が5/分。 第3工程では、処理方法が1ビーカーによる
回分処理で、固液分離は沈降法、塩化第2鉄添加
量が3価の鉄イオン換算で500mg/、PH調整
剤が1Nの水酸化ナトリウム液、凝集時のPHが
4。 第4工程では、処理方法が1ビーカーによる
回分処理、過酸化水素添加量が有効酸素換算で
150mg/、硫酸第1鉄添加量が2価の鉄イオン
換算で450mg/、反応PHが2.9、反応時間が30
分。 第5工程では、処理方法が1ビーカーによる
回分処理で、固液分離は沈降法、アルカリ剤が
1Nの水酸化ナトリウム液、凝集時のPHが7、還
元剤が無添加。
[Table] Treatment conditions: In the second step, the treatment method was a batch activated sludge method using an aeration tank with a volume of 10, and the BOD load was 1 kg.
BOD/m 3 days, liquid temperature 35℃, aeration rate 5/min. In the third step, the processing method is batch processing using one beaker, solid-liquid separation is by sedimentation method, the amount of ferric chloride added is 500 mg/in terms of trivalent iron ions, and the pH adjuster is 1N sodium hydroxide solution. PH at the time of aggregation is 4. In the fourth step, the processing method is batch processing using one beaker, and the amount of hydrogen peroxide added is calculated in terms of effective oxygen.
150mg/, ferrous sulfate addition amount is 450mg/ in terms of divalent iron ion, reaction pH is 2.9, reaction time is 30
Minutes. In the fifth step, the processing method is batch processing using one beaker, solid-liquid separation is sedimentation method, and alkaline agent is used.
1N sodium hydroxide solution, pH at the time of coagulation is 7, no reducing agent added.

【表】 なお、第10図は第3工程において塩化鉄の添
加量を種々変化させた場合の第3工程処理液の
COD値と除去COD量との関係を示す図である。 第3発明によれば、好気性生物処理の前にメタ
ン発酵を行つていることにより、BOD成分が原
液の50〜70%程度除去されるため、好気性処理工
程でのBOD負荷が軽減され、第1発明のような
BODが50mg/以下の処理液を得ることが容易
であるのみならず、第1工程において、好気性生
物処理で除去される有機成分以外のものも処理さ
れるので、好気性生物処理のみの処理液とは組
成、性状が異なるようになり、このことが後段の
処理工程に好結果をもたらして、高度なCODと
色度の処理効果が期待できる。
[Table] Figure 10 shows the results of the third process treatment solution when the amount of iron chloride added in the third process was varied.
FIG. 3 is a diagram showing the relationship between COD value and removed COD amount. According to the third invention, by performing methane fermentation before aerobic biological treatment, approximately 50 to 70% of BOD components are removed from the stock solution, so the BOD load in the aerobic treatment step is reduced, Like the first invention
Not only is it easy to obtain a treated solution with a BOD of 50mg/or less, but in the first step, organic components other than those removed by aerobic biological treatment are also treated, so aerobic biological treatment alone can be used. The composition and properties will be different from that of the liquid, and this will bring about good results in subsequent processing steps, and high-level COD and chromaticity processing effects can be expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1発明の工程説明図、第2図は第1
発明と比較例の第2工程における処理水CODと
除去COD量との関係図、第3図は第1発明と比
較例における過酸化水素添加量と処理水CODと
の関係図、第4図は第1発明における第1工程処
理液BODと第2工程処理液CODとの関係図、第
5図は第1発明における第1工程処理液BODと
第4工程処理液CODとの関係図、第6図は第2
発明の工程説明図、第7図は第2発明と比較例の
第3工程における処理液CODと除去COD量との
関係図、第8図は第2発明と比較例における過酸
化水素添加量と処理液CODとの関係図、第9図
は第3発明の工程説明図、第10図は第3発明と
比較例の第3工程における処理液CODと除去
COD量の関係図である。 2……好気性生物処理部、4……第1混和槽、
6……第1PH調整槽、8……中間固液分離槽、
11……第2混和槽、14……酸化反応槽、16
……中和槽、19……最終固液分離層、24……
加熱部、25……冷却部、28……生物処理部、
31……発酵部、35……好気性処理部。
Figure 1 is an explanatory diagram of the process of the first invention, Figure 2 is the process diagram of the first invention.
Figure 3 is a relationship diagram between the amount of hydrogen peroxide added and the amount of COD removed in the second step of the invention and comparative example, Figure 4 is a diagram of the relationship between the amount of hydrogen peroxide added and the COD of treated water in the first invention and comparative example. FIG. 5 is a relationship diagram between the first process solution BOD and second process solution COD in the first invention, FIG. 5 is a relationship diagram between the first process solution BOD and fourth process solution COD in the first invention, and FIG. The figure is the second
A process explanatory diagram of the invention, Fig. 7 is a diagram showing the relationship between the treatment liquid COD and the amount of COD removed in the third step of the second invention and the comparative example, and Fig. 8 is a diagram showing the amount of hydrogen peroxide added and the amount of hydrogen peroxide added in the second invention and the comparative example. Relationship diagram with treatment liquid COD, Figure 9 is a process explanatory diagram of the third invention, and Figure 10 is treatment liquid COD and removal in the third process of the third invention and comparative example.
It is a relationship diagram of COD amount. 2...Aerobic biological treatment section, 4...First mixing tank,
6...First PH adjustment tank, 8...Intermediate solid-liquid separation tank,
11...Second mixing tank, 14...Oxidation reaction tank, 16
... Neutralization tank, 19 ... Final solid-liquid separation layer, 24 ...
heating section, 25...cooling section, 28...biological treatment section,
31...Fermentation section, 35...Aerobic processing section.

Claims (1)

【特許請求の範囲】 1 糖蜜廃液を好気性生物処理法で処理して廃液
の溶解性BODを50mg/以下にする第1工程と、
第1工程処理液に第2鉄塩を主とする凝集剤を添
加し、PHを3〜5.5の範囲に調整した後、懸濁物
質、有機物質、及び色度成分を水酸化第2鉄フロ
ツクと共に凝集分離する第2工程と、第2工程処
理液に過酸化水素と酸化触媒としての鉄塩を添加
して有機物質及び色度成分を酸化分解する第3工
程と、この酸化処理液にアルカリを加えてPH4
以上で前記鉄塩を水酸化第2鉄として析出分離す
る第4工程とを包含することを特徴とする糖蜜廃
液の処理方法。 2 糖蜜廃液を95℃以上に加熱してから冷却する
第1工程と、第1工程処理液を好気性生物処理法
で処理する第2工程と、第2工程処理液に第2鉄
塩を主とする凝集剤を添加し、PHを3〜5.5の範
囲に調整した後、懸濁物質、有機物質、及び色度
成分を水酸化第2鉄フロツクと共に凝集分離する
第3工程と、第3工程処理液に過酸化水素と酸化
触媒としての鉄塩を添加して、有機物質及び色度
成分を酸化分解する第4工程と、この酸化処理液
にアルカリを加えてPH4以上で前記鉄塩を水酸
化第2鉄として析出分離する第5工程とを包含す
ることを特徴とする糖蜜廃液の処理方法。 3 糖蜜廃液をメタン発酵法で処理して廃液中の
有機物質を除去する第1工程と、第1工程処理液
を好気性生物処理法で処理する第2工程と、第2
工程処理液に第2鉄塩を主とする凝集剤を添加
し、PHを3〜5.5の範囲に調整した後、懸濁物
質、有機物質、及び色度成分を水酸化第2鉄フロ
ツクと共に凝集分離する第3工程と、第3工程処
理液に過酸化水素及び酸化触媒としての鉄塩を添
加して、有機物質及び色度成分を酸化分解する第
4工程と、この酸化処理液にアルカリを加えて
PH4以上で前記鉄塩を水酸化第2鉄として析出
分離する第5工程とを包含することを特徴とする
糖蜜廃液の処理方法。
[Claims] 1. A first step of treating molasses wastewater with an aerobic biological treatment method to reduce the soluble BOD of the wastewater to 50 mg/or less;
After adding a flocculant mainly consisting of ferric salt to the first process treatment solution and adjusting the pH to a range of 3 to 5.5, suspended solids, organic substances, and color components are removed from the ferric hydroxide floc. a second step in which hydrogen peroxide and an iron salt as an oxidation catalyst are added to the second step treatment liquid to oxidize and decompose organic substances and chromaticity components; Add PH4
A method for treating molasses waste liquid, comprising a fourth step of precipitating and separating the iron salt as ferric hydroxide. 2 The first step is to heat the molasses waste liquid to 95℃ or higher and then cool it, the second step is to treat the first step treated liquid using an aerobic biological treatment method, and the second step is to mainly use ferric salts in the second step treated liquid. A third step of adding a flocculant to adjust the pH to a range of 3 to 5.5, and then coagulating and separating suspended solids, organic substances, and color components together with ferric hydroxide flocs; A fourth step involves adding hydrogen peroxide and an iron salt as an oxidation catalyst to the treatment solution to oxidize and decompose organic substances and color components, and adding an alkali to the oxidation treatment solution to decompose the iron salt in water at a pH of 4 or above. A method for treating molasses waste liquid, comprising a fifth step of precipitating and separating it as ferric oxide. 3. A first step in which molasses waste liquid is treated by a methane fermentation method to remove organic substances in the waste liquid, a second step in which the liquid treated in the first step is treated by an aerobic biological treatment method, and a second step in which the liquid treated in the first step is treated by an aerobic biological treatment method.
After adding a flocculant mainly consisting of ferric salt to the process treatment solution and adjusting the pH to a range of 3 to 5.5, suspended solids, organic substances, and color components are flocculated together with ferric hydroxide flocs. a third step of separating, a fourth step of adding hydrogen peroxide and an iron salt as an oxidation catalyst to the third step treatment solution to oxidize and decompose organic substances and color components, and adding an alkali to the oxidation treatment solution. In addition
A method for treating molasses waste liquid, comprising a fifth step of precipitating and separating the iron salt as ferric hydroxide at a pH of 4 or higher.
JP57167848A 1982-09-27 1982-09-27 Treatment of waste syrup liquid Granted JPS5959299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57167848A JPS5959299A (en) 1982-09-27 1982-09-27 Treatment of waste syrup liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57167848A JPS5959299A (en) 1982-09-27 1982-09-27 Treatment of waste syrup liquid

Publications (2)

Publication Number Publication Date
JPS5959299A JPS5959299A (en) 1984-04-05
JPH0125638B2 true JPH0125638B2 (en) 1989-05-18

Family

ID=15857204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57167848A Granted JPS5959299A (en) 1982-09-27 1982-09-27 Treatment of waste syrup liquid

Country Status (1)

Country Link
JP (1) JPS5959299A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161197A (en) * 1985-01-11 1986-07-21 Kankyo Eng Kk Treatment of organic waste water
JPS6470196A (en) * 1987-09-10 1989-03-15 Hitachi Plant Eng & Constr Co Treatment of waste water of alcohol distillation
JP2621090B2 (en) * 1988-06-03 1997-06-18 環境エンジニアリング株式会社 Advanced wastewater treatment method

Also Published As

Publication number Publication date
JPS5959299A (en) 1984-04-05

Similar Documents

Publication Publication Date Title
US4294703A (en) Hydrogen peroxide treatment of effluent
JPS61197093A (en) Treatment of waste water
JP2506032B2 (en) Wastewater treatment method
JPH04349997A (en) Treatment of organic waste water
JPS5834197B2 (en) High speed inosyoriho
JPH0125638B2 (en)
JPS6135894A (en) Removal of arsenic in waste water
JPH0124558B2 (en)
JP2621090B2 (en) Advanced wastewater treatment method
JP4552164B2 (en) Waste liquid treatment method
JPS58153594A (en) Treatment of organic waste
JPS6320600B2 (en)
KR100208477B1 (en) Method for treating industrial waste water by flocculation and oxidation
JPS591118B2 (en) How to treat organic wastewater
JPH02293095A (en) Treatment of organic sewage
JPH0679715B2 (en) Biological treatment method of organic wastewater
JPH11319889A (en) Treatment of selenium-containing waste water and device therefor
JPS61161197A (en) Treatment of organic waste water
CN109205916A (en) The processing method of wash water is sprayed in production process of activated carbon
JPH0679713B2 (en) Biological treatment method of organic wastewater
CN113860386B (en) Production method of liquid polymeric ferric sulfate water purifying agent
JPS591117B2 (en) How to treat organic wastewater
JPH0331120B2 (en)
JPH0487685A (en) Treatment of used galvanizing solution
JPS63182100A (en) Treatment of water-soluble cutting/grinding waste liquid