JPH0125494B2 - - Google Patents

Info

Publication number
JPH0125494B2
JPH0125494B2 JP4719683A JP4719683A JPH0125494B2 JP H0125494 B2 JPH0125494 B2 JP H0125494B2 JP 4719683 A JP4719683 A JP 4719683A JP 4719683 A JP4719683 A JP 4719683A JP H0125494 B2 JPH0125494 B2 JP H0125494B2
Authority
JP
Japan
Prior art keywords
mole
flame retardant
laminate
diglycidyl ether
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4719683A
Other languages
Japanese (ja)
Other versions
JPS59172525A (en
Inventor
Takeshi Yoshioka
Akira Toko
Akinobu Kusuhara
Naoji Takeda
Tetsuro Tomita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP4719683A priority Critical patent/JPS59172525A/en
Publication of JPS59172525A publication Critical patent/JPS59172525A/en
Publication of JPH0125494B2 publication Critical patent/JPH0125494B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、耐熱性の優れた熱硬化性樹脂積層板
を製造する方法に関するものであり、詳しくは 一般式 (式中Xはハロゲン原子を示し、mは1〜2、
nは1〜2の整数。R1は炭素数1〜4のアルキ
リデン基またはアルキレン基を示す。) であらわされるハロゲン化ジヒドロキシ化合物(A)
と 一般式 (式中Xはハロゲン原子を示し、lは1〜3の
整数。R2はHまたは炭素数1〜4のアルキル基
を示す。) であらわされるハロゲン化モノグリシジルエーテ
ル(B)とを、A1モルに対してB1〜3モルの割合で
反応させた分子量700〜1400の生成物に、 一般式 (式中Xはハロゲン原子を示し、oは0〜2、
pは0〜2の整数。R3は炭素数1〜4のアルキ
リデン基またはアルキレン基。Qは0〜4を示
す。) であらわされるジグリシジルエーテル化合物(C)
を、A1モルに対してC0.1〜1.0モルの割合で更に
反応させたあと、更に続けてA1モルに対してフ
エノール0.01〜0.30モルの割合で反応させた合成
樹脂用難燃剤を配合してなる熱硬化性樹脂組成物
を積層板用基材に含浸し、乾燥後加熱加圧する事
を特徴とする積層板の製造方法に関するものであ
る。 その目的とするところは、従来公知の合成樹脂
用難燃剤を配合した積層板に見られる熱的に安定
で耐熱性が高いものは耐燃性が低く、逆に耐燃性
が優れるものは耐熱性が低くかつたり、たとえ熱
的に安定であつても製品を着色したり悪臭をつけ
たり、あるいは基材層間の接着力が低くて加工性
が悪かつたりするものが多いのに対し、耐熱性、
加工性が優れ、悪臭、着色性がなく、しかも著し
く耐燃性の優れた熱硬化性樹脂積層板を製造する
方法に関するものである。 石油化学の著しい発展により、これから誘導さ
れる合成樹脂の生産量は膨大なものとなつてきた
が、合成樹脂はその優れた特性を巧みに利用する
ことにより広い範囲に使用され、今後もますます
その用途は広められようとしているが、合成樹脂
は燃え易いという欠点のため厳しい規制がなされ
る様になつてきた。本明細書記載のUL規格もそ
の1つである。ULとは米国アンダーライター
ス・ラボラトリーズ・インコーポレーテツドとい
う公衆安全機関であり、その第94号にプラスチツ
ク材料の燃焼性規格(UL−94)がある。同規格
に定められた難燃性の評価は、難燃性の程度に応
じ94V−0,94V−1,94V−2,94HBの順で
格付けされている。試験方法は、所定寸法の試験
片を5片用意し、該試験片の上端をクランプで止
めて試験片を垂直にセツトし、下端に所定の長さ
のバーナー炎を10秒間あててはなし、試験片の燃
焼時間を測定する。消火したら直ちに再び10秒間
炎をあててはなし、燃焼時間を測定する。5片の
試験の燃焼時間の合計をTとし、最大値をMとす
ると、Tが50秒以下、Mが10秒以下でクランプま
で燃えず、炎のついた溶融物が落下し所定下の木
綿に着火しなければUL94V−0。 Tが250秒以下、Mが30秒以下で、その他はV
−0と同様な条件を満せばUL94V−1。T及び
MがV−1を同様な条件で炎のついた溶融物が落
下し木綿に着火すればUL94V−2。V−0,V
−1,V−2に不合格なものは水平燃焼試験を行
ない、所定の標線前で消火すればUL−94HBと
評価する。世の中の動向として難燃性に対する要
求は年毎に厳しくなり、現時点に於いては大半の
ものがUL94V−0を要求するようになつてきた。
これに対し合成樹脂の難燃化はハロゲン化合物、
リン化合物、窒素化合物あるいは金属酸化物など
の組合せによる相乗効果によりなされてきたが、
合成樹脂に難燃剤を添加すれば難燃性は向上する
が、逆に耐熱性、機械的性質、電気的性質あるい
は加工性などの諸特性が低下するのが必定であつ
た。そのためこれらの特性の低下を極力抑えた難
燃化方法及び難燃化された熱硬化性樹脂積層板が
強く要求される様になつてきた。 従来より、難燃効果が最も大きく、難燃剤成分
として必須とされるハロゲン化合物の改良は種々
行なわれてきた。 たとえば特公昭47−44537号公報では、式 (式中RはH又は低級アルキル基) で表わされる化合物が、 また特開昭53−56290号公報では、式 で表わされる化合物が、 また特開昭56−118414号公報では、式 (式中Zは−CH2OHまたはハロゲン、Xはハ
ロゲン、RはHまたは炭化水素基、Y・Y′はH
またはCH3、T・T′は−CH2CH2O−など) で表わされる化合物が提案されている。 これらの難燃性化合物はいずれも多数の芳香環
を有している為に熱的にかなり安定で、これらを
配合した熱硬化性樹脂よりなる積層板の耐熱性は
かなり優れたものであつた。 しかしながら特公昭47−44537号公報で得られ
る難燃性化合物は、そのもの自体が非常に剛直な
ため、積層板が硬くなり加工性が低下した。また
特開昭53−56290号公報で得られる難燃性化合物
は、ブロム含有量が40%以下と少ない為に難燃効
果が十分でなかつた。また特開昭56−118414号公
報で得られる難燃性化合物は、そのもの自体は非
常に柔軟で積層板にしても軟らかかつたが、接着
力が低い為に打抜加工時に層間剥離を発生した。 本発明者らは、熱硬化性樹脂が優れた機械的特
性、電気的特性、耐熱性、耐水性、耐薬品性、成
形性、加工性などを有するにも拘らず優れた難燃
剤が無い為に、その発展性が著しく阻害されてい
る事に着目し、従来公知の難燃剤を使用した積層
板の諸欠点を除く方法につき鋭意研究の結果、本
発明を完成するに至つたものである。 即ち本発明の利点は、従来公知の難燃剤に比べ
ハロゲン化合物を原料として多用しているため
に、得られた難燃剤のハロゲン含有量が多く、こ
のため難燃化したい熱硬化性樹脂に少量添加する
だけで十分に難燃化でき、しかも添加量が少ない
ので積層板としての機械的特性の低下、電気的特
性の低下、加工性の低下など他特性に及ぼす影響
が殆んどないことである。 本発明のもう1つの利点は、新しい難燃剤がそ
の分子構造中に芳香環を多数含んでいるため、熱
分解温度が高く、熱的に安定で、これを添加した
熱硬化性樹脂よりなる積層板の耐熱性を低下させ
るなどの悪影響を及ぼさないことである。また分
解温度が高いために変色も異臭も殆んどないこと
である。 本発明の方法は、 一般式
The present invention relates to a method for manufacturing a thermosetting resin laminate with excellent heat resistance. (In the formula, X represents a halogen atom, m is 1 to 2,
n is an integer of 1 to 2. R 1 represents an alkylidene group or an alkylene group having 1 to 4 carbon atoms. ) Halogenated dihydroxy compound (A)
and general formula (In the formula, X represents a halogen atom, l is an integer of 1 to 3, and R2 represents H or an alkyl group having 1 to 4 carbon atoms.) A halogenated monoglycidyl ether (B) represented by A product with a molecular weight of 700 to 1400 reacted at a ratio of 1 to 3 moles of B per mole has the general formula (In the formula, X represents a halogen atom, o is 0 to 2,
p is an integer from 0 to 2. R 3 is an alkylidene group or alkylene group having 1 to 4 carbon atoms. Q indicates 0-4. ) Diglycidyl ether compound (C)
is further reacted at a ratio of 0.1 to 1.0 mole of C to 1 mole of A, and then a flame retardant for synthetic resins is further reacted at a ratio of 0.01 to 0.30 mole of phenol to 1 mole of A. The present invention relates to a method for manufacturing a laminate, which comprises impregnating a base material for a laminate with a thermosetting resin composition, drying, and then heating and pressing the composition. The purpose of this study is that laminates that are thermally stable and have high heat resistance, as seen in conventional laminates containing flame retardants for synthetic resins, have low flame resistance, and conversely, those that have excellent flame resistance have low heat resistance. Even if they are thermally stable, they often color the product or give it a bad odor, or have poor processability due to low adhesion between base material layers.
The present invention relates to a method for producing a thermosetting resin laminate that has excellent processability, is free from bad odor and coloring, and has extremely excellent flame resistance. Due to the remarkable development of petrochemistry, the production of synthetic resins derived from this has become enormous.Synthetic resins have been used in a wide range of areas by skillfully utilizing their excellent properties, and will continue to be used in a wide range of areas. Although their uses are becoming more widespread, strict regulations have been put in place due to the disadvantage that synthetic resins are easily flammable. The UL standard described herein is one of them. UL is a public safety organization called Underwriters Laboratories, Inc., and its No. 94 is the Flammability Standard for Plastic Materials (UL-94). The flame retardant evaluation stipulated in the same standard is rated in the order of 94V-0, 94V-1, 94V-2, and 94HB depending on the degree of flame retardancy. The test method is to prepare 5 test pieces of a specified size, clamp the upper end of the test piece, set the test piece vertically, apply a burner flame of a specified length to the lower end for 10 seconds, and then perform the test. Measure the burning time of the pieces. Immediately after extinguishing the fire, apply the flame again for 10 seconds and measure the burning time. Let T be the total burning time of the test of 5 pieces, and let M be the maximum value. If T is 50 seconds or less and M is 10 seconds or less, the flame will not burn to the clamp, and the flaming molten material will fall and cause the cotton below the specified level to burn. If it does not ignite, it is UL94V-0. T is 250 seconds or less, M is 30 seconds or less, and other values are V.
UL94V-1 if the same conditions as -0 are met. If T and M are similar to V-1 and a flaming molten material falls and ignites cotton, it is UL94V-2. V-0,V
-1 and V-2, a horizontal combustion test is conducted for those that fail, and if the fire is extinguished before the designated marking line, it will be evaluated as UL-94HB. As a trend in the world, requirements for flame retardancy have become stricter year by year, and at present, most products require UL94V-0.
On the other hand, flame retardant synthetic resins are made using halogen compounds,
This has been achieved through the synergistic effect of combinations of phosphorus compounds, nitrogen compounds, or metal oxides, but
Adding a flame retardant to a synthetic resin improves flame retardancy, but on the contrary, various properties such as heat resistance, mechanical properties, electrical properties, and processability inevitably deteriorate. Therefore, there has been a strong demand for flame retardant methods and flame retardant thermosetting resin laminates that minimize deterioration of these properties. Conventionally, various improvements have been made to halogen compounds, which have the greatest flame retardant effect and are essential as flame retardant components. For example, in Japanese Patent Publication No. 47-44537, the formula (In the formula, R is H or a lower alkyl group) In JP-A No. 53-56290, the compound represented by the formula In JP-A-56-118414, the compound represented by the formula (In the formula, Z is -CH 2 OH or halogen, X is halogen, R is H or a hydrocarbon group, Y and Y' are H
or CH 3 , T.T' is -CH 2 CH 2 O-, etc.). All of these flame-retardant compounds have a large number of aromatic rings and are therefore quite thermally stable, and laminates made of thermosetting resins containing these compounds have considerably excellent heat resistance. . However, the flame-retardant compound obtained in Japanese Patent Publication No. 47-44537 was itself very rigid, resulting in hard laminates and poor workability. Furthermore, the flame retardant compound obtained in JP-A-53-56290 did not have a sufficient flame retardant effect because the bromine content was as low as 40% or less. Furthermore, the flame retardant compound obtained in JP-A No. 56-118414 was itself very flexible and could be made into a laminate, but due to its low adhesive strength, delamination occurred during punching. . The present inventors discovered that although thermosetting resins have excellent mechanical properties, electrical properties, heat resistance, water resistance, chemical resistance, moldability, processability, etc., there is no excellent flame retardant. The present invention has been completed as a result of intensive research into ways to eliminate the various drawbacks of laminates using conventionally known flame retardants. In other words, the advantage of the present invention is that halogen compounds are used more frequently as raw materials than conventionally known flame retardants, so the resulting flame retardant has a high halogen content. Just adding it can provide sufficient flame retardancy, and since the amount added is small, there is almost no effect on other properties such as deterioration of mechanical properties, deterioration of electrical properties, or deterioration of workability as a laminate. be. Another advantage of the present invention is that the new flame retardant contains many aromatic rings in its molecular structure, so it has a high thermal decomposition temperature and is thermally stable. It must not have any adverse effects such as reducing the heat resistance of the plate. Furthermore, because the decomposition temperature is high, there is almost no discoloration or off-odor. The method of the invention comprises the general formula

【式】 (式中Xはハロゲン原子を示し、mは1〜2、
nは1〜2の整数。R1は炭素数1〜4のアルキ
リデン基またはアルキレン基を示す。) であらわされるハロゲン化ジヒドロキシ化合物(A)
と 一般式
[Formula] (In the formula, X represents a halogen atom, m is 1 to 2,
n is an integer of 1 to 2. R 1 represents an alkylidene group or an alkylene group having 1 to 4 carbon atoms. ) Halogenated dihydroxy compound (A)
and general formula

【式】 (式中Xはハロゲン原子を示し、lは1〜3の
整数。R2はHまたは炭素数1〜4のアルキル基
を示す。) であらわされるハロゲン化モノグリシジルエーテ
ル(B)とを、A1モルに対してB1〜3モルの割合で
反応させた分子量700〜1400の生成物に、 一般式 (式中Xはハロゲン原子を示し、oは0〜2、
pは0〜2の整数。R3は炭素数1〜4のアルキ
リデン基またはアルキレン基。Qは0〜4を示
す。) であらわされるジグリシジルエーテル化合物(C)
を、A1モルに対してC0.1〜1.0モルの割合で更に
反応させたあと、更に続けてA1モルに対してフ
エノール0.01〜0.30モルの割合で反応させた合成
樹脂用難燃剤を配合してなる熱硬化性樹脂組成物
を積層板用基材に含浸し、乾燥後加熱加圧する事
を特徴とする積層板の製造方法に関するものであ
る。 本発明に係る難燃剤は後述の実験例で具体的に
示されるが、モデル的には下記の一般式で表わす
ことができる。すなわち (式中Xはハロゲン原子を示し、lは1〜3、
mは1〜2、nは1〜2の整数。R1は炭素数1
〜4のアルキリデン基またはアルキレン基を示し
R2はHまたは炭素数1〜4のアルキル基を示
す。) 本発明におけるハロゲン化ジヒドロキシ化合物
とハロゲン化モノグリシジルエーテルとの反応の
割合は、理想的には前者1モルに対して後者2モ
ルであり、この場合が最も難燃効果が大きく耐熱
性も高かつた。これは前者の分子構成をなすOH
基が完全に処理され、熱的安定性が高まつたため
であると考えられる。しかしながら、実際にはハ
ロゲン化ジヒドロキシ化合物1モルに対して、ハ
ロゲン化モノグリシジルエーテル2モルないしは
2モル以上を反応させても、前者1モルに対して
後者1モルが付加した化合物がかなり生成し、前
者のOH基を完全に処理する事はできなかつた。
そこで次に更にジグリシジルエーテル化合物を少
量添加し反応せしめてOH基を完全に処理するよ
うにした。ジグリシジルエーテル化合物は反応活
性が高い為に、ハロゲン化ジヒドロキシ化合物に
基因する未反応残留OH基を完全に始末すること
ができるが、一方その高活性の故に反応のコント
ロールに難があり異常に高分子化してしまうこと
がある。そこで、次に更に続けて、フエノールを
少量添加し、反応せしめて高活性なジグリシジル
エーテル残基をブロツクし、難燃効果を最も高く
発揮する分子量のものを得る事ができるようにし
た。 本発明におけるハロゲン化ジヒドロキシ化合物
1モルに対するハロゲン化モノグリシジルエーテ
ルの反応仕込割合は2〜2.5モルが好ましいが、
実用的には1〜3モルの割合で仕込み反応したも
のでも従来公知の難燃剤に比較しかなり優れたも
のであつた。1モルより少ないと熱安定性が悪
く、悪臭・変色があり、3モルより多いと耐燃性
が低下した。またこれに更に反応せしめるジグリ
シジルエーテルの反応仕込割合は0.3〜0.7モルが
好ましいが、実用的には0.1〜1.0モルでも良い。
0.1モルより少ないとOH基を処理するに必要な量
が不足し、1.0モルより多いとゲル化の恐れがあ
る。またこれに更に続けて反応せしめるフエノー
ルの反応仕込割合は0.01〜0.30モルが好ましい。
0.01モルより少ないとジグリシジルエーテル基を
ブロツクするのに必要な量が不足し、0.30モルよ
り多いと積層板の諸特性が低下する。 本発明におけるジヒドロキシ化合物とグリシジ
ルエーテルとを反応させる方法としては、特公昭
48−6639号公報にも記載があるが、この方法は低
分子量のジグリシジルエーテルをジヒドロキシ化
合物1モルに2モル反応させて高分子量のジグリ
シジルエーテルを作るというものであり、生成物
は更に反応できる反応活性基を有している。本発
明における方法は、ジグリシジルエーテルではな
く、モノグリシジルエーテルをジヒドロキシ化合
物1モルに2モル反応させた低分子量化合物であ
り、この化合物は反応活性基をもはや有していな
い。勿論特公昭48−6639号公報の発明の詳細な説
明の中で、グリシジルエーテルとしてモノグリシ
ジルエーテルを使用してもよいとされているが、
その目的は反応停止剤又は反応調整剤としての副
原料としてであり、実施例においてもその添加量
は全体のわずか5%以下でしかない。もしも多量
に使用すれば高分子量化の目的が達せられないか
らであり、本発明の様にモノグリシジルエーテル
のみでは特公昭48−6639号公報に記載のある発明
は成立しない。 本発明におけるジヒドロキシ化合物とモノグリ
シジルエーテルとジグリシジルエーテル化合物と
を反応させる方法としては、特開昭53−42298号
公報にも記載があるが、この方法は二官能性フエ
ノール類と一官能性エポキシ樹脂と二官能性エポ
キシ樹脂を一括混合反応し難燃性樹脂組成物を作
るというものである。該公知文献には、各仕込成
分の役割効果の説明はないが、合成例に於いて一
官能性エポキシ樹脂の添加量が多い場合は生成物
の軟化点が低く、少ない場合は軟化点が高いこと
より、一官能性エポキシ樹脂は反応調整剤又は反
応停止剤として使用されているものと考えられ、
この意味では特公昭48−6639号公報とよく似たも
のである。また該公知文献では各仕込成分を一括
混合反応しているが、この方法による生成物は二
官能性フエノール類に対し一官能性と二官能性の
エポキシ樹脂がランダムに反応し、結合二官能性
エポキシ樹脂による高分子量化、二官能性フエノ
ール類の未反応OH基の残留などの危険性が非常
に大きなものができる。 本発明におけるジヒドロキシ化合物とモノグリ
シジルエーテルとジグリシジルエーテル化合物と
フエノールとを反応させる方法は、先ずジヒドロ
キシ化合物とモノグリシジルエーテルとの低分子
量化合物を作る第1ステツプ、次にジグリシジル
エーテル化合物により該低分子量化合物中に残留
するジヒドロキシ化合物の未反応OH基を、本発
明になる難燃剤の熱安定性を更に向上せしめ、悪
臭・変色を防止する為に処理し完全に零にする第
2ステツプ、更にフエノールにより該ジグリシジ
ルエーテル化合物の未反応で残留しているジグリ
シジルエーテル基を、本発明になる難燃剤が異常
に高分子量化してしまわないようにブロツクする
第3ステツプよりなり、この反応の順序が重要な
ポイントの1つである。 また本発明におけるモノグリシジルエーテルは
主原料の1つであり、むしろジグリシジルエーテ
ル化合物の方が副原料となつている。 本発明における一般式 で表わされるハロゲン化ジヒドロキシ化合物の例
としては、たとえばビス(4−ヒドロキシ−2−
ブロムフエニル)メタン、ビス(4−ヒドロキシ
−3−ブロムフエニル)メタン、ビス(4−ヒド
ロキシ−3−クロロフエニル)メタン、ビス(4
−ヒドロキシ−3,5−ジブロムフエニル)メタ
ン、ビス(4−ヒドロキシ−3,5−ジクロロフ
エニル)メタン、1,1−ビス(4−ヒドロキシ
−3−クロロフエニル)エタン、1,1−ビス
(4−ヒドロキシ−3−ブロムフエニル)エタン、
1,1−ビス(4−ヒドロキシ−3,5−ジクロ
ロフエニル)エタン、1,1−ビス(4−ヒドロ
キシ−3,5−ジブロムフエニル)エタン、1,
2−ビス(4−ヒドロキシ−3−クロロフエニ
ル)エタン、1,2−ビス(4−ヒドロキシ−3
−ブロムフエニル)エタン、1,2−ビス(4−
ヒドロキシ−3,5−ジクロロフエニル)エタ
ン、1,2−ビス(4−ヒドロキシ−3,5−ジ
ブロムフエニル)エタン、2,2−ビス(4−ヒ
ドロキシ−2−ブロムフエニル)プロパン、2,
2−ビス(4−ヒドロキシ−3−クロロフエニ
ル)プロパン、2,2−ビス(4−ヒドロキシ−
3−ブロムフエニル)プロパン、2,2−ビス
(4−ヒドロキシ−3,5−ジクロロフエニル)
プロパン、2,2−ビス(4−ヒドロキシ−3,
5−ジブロムフエニル)プロパン、1,1−ビス
(4−ヒドロキシ−3−クロロフエニル)ブタン、
1,1−ビス(4−ヒドロキシ−3−ブロムフエ
ニル)ブタン、1,1−ビス(4−ヒドロキシ−
3,5−ジクロロフエニル)ブタン、1,1−ビ
ス(4−ヒドロキシ−3,5−ジブロムフエニ
ル)ブタンなどが挙げられる。 本発明における一般式 で表わされるハロゲン化モノグリシジルエーテル
例としては、たとえば モノ クロロフエニルモノグリシジルエーテ
ル、 ジ クロロフエニルモノグリシジルエーテル、 トリ クロロフエニルモノグリシジルエーテ
ル、 モノ ブロムフエニルモノグリシジルエーテ
ル、 ジ ブロムフエニルモノグリシジルエーテル、 トリ ブロムフエニルモノグリシジルエーテ
ル、 モノ クロロクレジルモノグリシジルエーテ
ル、 ジ クロロクレジルモノグリシジルエーテル、 モノ ブロムクレジルモノグリシジルエーテ
ル、 ジ ブロムクレジルモノグリシジルエーテル、 などが挙げられる。 本発明における一般式 で表わされるジグリシジルエーテル化合物の例と
しては、たとえばビスフエノールAジグリシジル
エーテルまたは分子量1000以下のビスフエノール
A型エポキシ樹脂、ビスフエノールFジグリシジ
ルエーテルまたは分子量1000以下のビスフエノー
ルF型エポキシ樹脂、ハロゲン化ビスフエノール
Aジグリシジルエーテルまたは分子量1500以下の
ハロゲン化ビスフエノールA型エポキシ樹脂、ハ
ロゲン化ビスフエノールFジグリシジルエーテル
または分子量1500以下のハロゲン化ビスフエノー
ルF型エポキシ樹脂などが挙げられる。本発明に
おけるフエノールの例としてはフエノール、クレ
ゾール、キシレノール、ブチルフエノール、オク
チルフエノール、ノニルフエノールなどが挙げら
れる。 本発明におけるハロゲン化ジヒドロキシ化合物
とハロゲン化モノグリシジルエーテルとジグリシ
ジルエーテル化合物とフエノールとの反応の方法
は、ハロゲン化ジヒドロキシ化合物とハロゲン化
モノグリシジルエーテルを反応器に仕込んだあと
触媒を添加し、40℃〜120℃の温度で1時間〜8
時間撹拌し反応させ、次にジグリシジルエーテル
化合物を添加し、同温度で更に1時間〜4時間撹
拌し反応させ次にフエノールを添加し同温度で更
に1時間〜2時間撹拌し反応させ製造する。 触媒としてはアミン系のもの、たとえばエチレ
ンアミン、ジメチルアミン、ジエチルアミン、ト
リメチルアミン、トリエチルアミン、トリエタノ
ールアミン、ジエチレントリアミン、トリエチレ
ンテトラミン、ジエチルアミノプロピルアミン、
ベンジルジメチルアミン、トリス(ジメチルアミ
ノメチル)フエノール、メタフエニレンジアミ
ン、ジアミノジフエニルメタン、ジアミノジフエ
ニルスルホン、ジシアンジアミド、三ふつ化ほう
素・モノエチルアミン、メンタンジアミン、キシ
レンジアミン、エチルメチルイミダゾール、1,
8−ジアザ−ビシクロ−(5,4,0)ウンデセ
ン−7などが挙げられる。 本発明における熱硬化性樹脂とは、フエノール
樹脂、エポキシ樹脂、メラミン樹脂、ユリヤ樹
脂、ポリエステル樹脂、ジアリルフタレート樹
脂、ポリブタンジエン樹脂、ポリウレタン樹脂、
アルキツド樹脂などの加熱により硬化する樹脂類
である。また本発明になる難燃剤を配合してなる
熱硬化性樹脂成物には、必要に応じて他の難燃
剤、可塑剤、硬化剤、硬化促進剤、表面処理剤、
界面活性剤、保護コロイド、熱安定剤、光安定
剤、着色剤、充填材、滑剤、溶剤、水等の添加物
を添加することができる。 本発明における積層板用基材とは、各種セルロ
ーズ系繊維よりなる紙や布、合成繊維、ガラス繊
維や鉱物繊維よりなる布、シート、マツト、不織
布などである。またこれらの基材を予め樹脂で処
理したものも用いることができる。 本発明によつて得られる新しい難燃剤を配合し
てなる熱硬化性樹脂組成物を積層板用基材に含浸
し、乾燥後加熱加圧することによつて得られる積
層板は、優れた耐燃性と耐熱性を有し、しかも機
械的特性、電気的特性、加工性も良好であり、変
色・異臭もない優れた積層板であつた。 以下実験例にて本発明を詳細に説明する。 実験例 1 2,2−ビス(4−ヒドロキシ−3,5−ジブ
ロムフエニル)プロパン1.0モルと触媒としての
1,8−ジアザ−ビシクロ−(5,4,0)ウン
デセン−75.44gを撹拌器、冷却管、温度計、滴
下漏斗をつけた3四つ口フラスコに入れ、これ
に200mlのトルエンを加えて撹拌し懸濁液を作つ
た。次にジブロムクレジルモノグリシジルエーテ
ル2.2モルを200mlのトルエンに溶解したものを、
滴下漏斗を用いて40℃で1時間を要して徐々に加
えた。滴下終了後100℃に達するまで1時間をか
けて徐々に温度を上昇しながら撹拌を続け、その
後更に100℃で2時間反応を行なつた。(中間生成
物の平均分子量は1100であつた。)次に100℃に保
つたままビスフエノールAジグリシジルエーテル
0.6モルを200mlのトルエンに溶解したものを、滴
下漏斗を用いて30分かけて徐々に加え、更に同温
度で3時間反応を行なつた。次に100℃に保つた
ままフエノール0.2モルを100mlのトルエンに溶解
したものを滴下漏斗を用いて10分かけて徐々に加
え、更に同温度で1時間反応を行なつた。反応終
了後700mlのトルエンで希釈し、粘度(20℃)1.8
ポイズ、最終生成物の平均分子量1250の褐色透明
難燃剤溶液2700gを得た。 本難燃剤及び第1表に示す様な公知の難燃剤
を、積層板用油変性フエノール樹脂100部(固形
分重量)に対しそれぞれ25部添加し、更にクレジ
ルジフエニルフオスフエート20部、メラミン樹脂
20部及び低分子量多メチロールフエノール樹脂10
部を混合して樹脂組成物を作つた。この組成物に
積層板用クラフト紙を浸漬して含浸せしめ、150
℃で乾燥してBステージの樹脂分52%、揮発分
1.5%のプリプレグを得た。このプリプレグを8
枚積層し、片面に35μ厚の着剤付き銅箔を重ねて
プレスにセツトし、170℃で90分間加熱加圧し、
1.6mm厚の銅張積層板を得た。この積層板の特性
を第1表に示した。
[Formula] (In the formula, X represents a halogen atom, l is an integer of 1 to 3, and R2 represents H or an alkyl group having 1 to 4 carbon atoms.) A halogenated monoglycidyl ether (B) represented by is reacted at a ratio of 1 to 3 moles of B to 1 mole of A to a product with a molecular weight of 700 to 1400, and the general formula (In the formula, X represents a halogen atom, o is 0 to 2,
p is an integer from 0 to 2. R 3 is an alkylidene group or alkylene group having 1 to 4 carbon atoms. Q indicates 0-4. ) Diglycidyl ether compound (C)
is further reacted at a ratio of 0.1 to 1.0 mole of C to 1 mole of A, and then a flame retardant for synthetic resins is further reacted at a ratio of 0.01 to 0.30 mole of phenol to 1 mole of A. The present invention relates to a method for manufacturing a laminate, which comprises impregnating a base material for a laminate with a thermosetting resin composition, drying, and then heating and pressing the composition. The flame retardant according to the present invention will be specifically shown in the experimental examples described below, but can be represented by the following general formula as a model. i.e. (In the formula, X represents a halogen atom, l is 1 to 3,
m is an integer of 1 to 2, and n is an integer of 1 to 2. R 1 is carbon number 1
~4 alkylidene group or alkylene group
R 2 represents H or an alkyl group having 1 to 4 carbon atoms. ) In the present invention, the ratio of reaction between the halogenated dihydroxy compound and the halogenated monoglycidyl ether is ideally 1 mol of the former to 2 mol of the latter, and in this case, the flame retardant effect is the greatest and the heat resistance is also high. It was. This is the molecular structure of the former OH
This is thought to be due to the complete processing of the groups and increased thermal stability. However, in reality, even if 2 moles or more than 2 moles of halogenated monoglycidyl ether are reacted with 1 mole of the halogenated dihydroxy compound, a considerable amount of a compound in which 1 mole of the latter is added to 1 mole of the former is produced. It was not possible to completely treat the former OH group.
Therefore, next, a small amount of diglycidyl ether compound was further added and reacted to completely treat the OH groups. Because diglycidyl ether compounds have high reaction activity, they can completely eliminate unreacted residual OH groups caused by halogenated dihydroxy compounds. However, due to their high activity, it is difficult to control the reaction, resulting in abnormally high It may become molecular. Therefore, we subsequently added a small amount of phenol and caused a reaction to block the highly active diglycidyl ether residues, thereby making it possible to obtain a product with a molecular weight that exhibits the highest flame retardant effect. In the present invention, the reaction charge ratio of halogenated monoglycidyl ether to 1 mol of halogenated dihydroxy compound is preferably 2 to 2.5 mol,
Practically speaking, even those prepared and reacted at a ratio of 1 to 3 moles were considerably superior to conventionally known flame retardants. When it was less than 1 mole, thermal stability was poor, causing bad odor and discoloration, and when it was more than 3 moles, flame resistance decreased. Further, the reaction charge ratio of diglycidyl ether to be further reacted with this is preferably 0.3 to 0.7 mol, but may be 0.1 to 1.0 mol for practical purposes.
If it is less than 0.1 mol, the amount necessary to treat OH groups will be insufficient, and if it is more than 1.0 mol, there is a risk of gelation. Further, the reaction charge ratio of phenol to be further reacted is preferably 0.01 to 0.30 mol.
If it is less than 0.01 mol, the amount necessary to block diglycidyl ether groups will be insufficient, and if it is more than 0.30 mol, the properties of the laminate will deteriorate. As a method for reacting a dihydroxy compound and glycidyl ether in the present invention,
48-6639, this method involves reacting 2 moles of low molecular weight diglycidyl ether with 1 mole of dihydroxy compound to produce high molecular weight diglycidyl ether, and the product is further reacted. It has a reactive group that can The method of the present invention is not a diglycidyl ether, but a low molecular weight compound obtained by reacting 2 moles of monoglycidyl ether with 1 mole of a dihydroxy compound, and this compound no longer has a reactive group. Of course, in the detailed description of the invention in Japanese Patent Publication No. 48-6639, it is stated that monoglycidyl ether may be used as the glycidyl ether, but
Its purpose is as an auxiliary raw material as a reaction terminator or reaction regulator, and the amount added in the examples is only 5% or less of the total. This is because if a large amount is used, the purpose of increasing the molecular weight cannot be achieved, and the invention described in Japanese Patent Publication No. 48-6639 cannot be achieved with monoglycidyl ether alone, as in the present invention. The method of reacting the dihydroxy compound, monoglycidyl ether, and diglycidyl ether compound in the present invention is also described in JP-A-53-42298, but this method A flame-retardant resin composition is created by simultaneously mixing and reacting a resin and a bifunctional epoxy resin. Although this known document does not explain the role and effect of each ingredient, in the synthesis example, if the amount of monofunctional epoxy resin added is large, the softening point of the product will be low, and if it is small, the softening point will be high. Therefore, it is thought that monofunctional epoxy resins are used as reaction regulators or reaction terminators.
In this sense, it is very similar to Japanese Patent Publication No. 48-6639. In addition, in this known document, each ingredient is mixed and reacted all at once, but the product produced by this method is a reaction in which monofunctional and difunctional epoxy resins randomly react with difunctional phenols, resulting in a combination of difunctional and difunctional epoxy resins. This creates a very dangerous product, such as high molecular weight due to epoxy resin and residual unreacted OH groups of difunctional phenols. The method of reacting a dihydroxy compound, monoglycidyl ether, diglycidyl ether compound, and phenol in the present invention involves the first step of preparing a low molecular weight compound of a dihydroxy compound and monoglycidyl ether, and then reacting the low molecular weight compound with a diglycidyl ether compound. A second step in which the unreacted OH groups of the dihydroxy compound remaining in the molecular weight compound are completely eliminated in order to further improve the thermal stability of the flame retardant of the present invention and prevent bad odor and discoloration; The third step consists of blocking the unreacted diglycidyl ether groups of the diglycidyl ether compound with phenol so that the flame retardant of the present invention does not have an abnormally high molecular weight. is one of the important points. Further, in the present invention, monoglycidyl ether is one of the main raw materials, and rather, the diglycidyl ether compound is an auxiliary raw material. General formula in the present invention Examples of halogenated dihydroxy compounds represented by include bis(4-hydroxy-2-
Bromphenyl)methane, bis(4-hydroxy-3-bromphenyl)methane, bis(4-hydroxy-3-chlorophenyl)methane, bis(4-hydroxy-3-chlorophenyl)methane,
-hydroxy-3,5-dibromphenyl)methane, bis(4-hydroxy-3,5-dichlorophenyl)methane, 1,1-bis(4-hydroxy-3-chlorophenyl)ethane, 1,1-bis(4-dichlorophenyl)methane, -hydroxy-3-bromphenyl)ethane,
1,1-bis(4-hydroxy-3,5-dichlorophenyl)ethane, 1,1-bis(4-hydroxy-3,5-dibromphenyl)ethane, 1,
2-bis(4-hydroxy-3-chlorophenyl)ethane, 1,2-bis(4-hydroxy-3
-bromphenyl)ethane, 1,2-bis(4-
Hydroxy-3,5-dichlorophenyl)ethane, 1,2-bis(4-hydroxy-3,5-dibromphenyl)ethane, 2,2-bis(4-hydroxy-2-bromphenyl)propane, 2,
2-bis(4-hydroxy-3-chlorophenyl)propane, 2,2-bis(4-hydroxy-
3-bromphenyl)propane, 2,2-bis(4-hydroxy-3,5-dichlorophenyl)
Propane, 2,2-bis(4-hydroxy-3,
5-dibromphenyl)propane, 1,1-bis(4-hydroxy-3-chlorophenyl)butane,
1,1-bis(4-hydroxy-3-bromphenyl)butane, 1,1-bis(4-hydroxy-
Examples include 3,5-dichlorophenyl)butane and 1,1-bis(4-hydroxy-3,5-dibromphenyl)butane. General formula in the present invention Examples of halogenated monoglycidyl ethers represented by are mono-chlorophenyl monoglycidyl ether, di-chlorophenyl monoglycidyl ether, tri-chlorophenyl monoglycidyl ether, mono-bromphenyl monoglycidyl ether, di-bromphenyl monoglycidyl ether, Tri-bromphenyl monoglycidyl ether, mono-chlorocresyl monoglycidyl ether, dichlorocresyl monoglycidyl ether, mono-bromocresyl monoglycidyl ether, di-bromocresyl monoglycidyl ether, and the like. General formula in the present invention Examples of diglycidyl ether compounds represented by include bisphenol A diglycidyl ether or bisphenol A type epoxy resin with a molecular weight of 1000 or less, bisphenol F diglycidyl ether or bisphenol F type epoxy resin with a molecular weight of 1000 or less, halogen Examples include halogenated bisphenol A diglycidyl ether or halogenated bisphenol A type epoxy resin with a molecular weight of 1500 or less, halogenated bisphenol F diglycidyl ether or halogenated bisphenol F type epoxy resin with a molecular weight of 1500 or less. Examples of the phenol in the present invention include phenol, cresol, xylenol, butylphenol, octylphenol, nonylphenol, and the like. The method of reacting a halogenated dihydroxy compound, a halogenated monoglycidyl ether, a diglycidyl ether compound, and a phenol in the present invention is to charge the halogenated dihydroxy compound and the halogenated monoglycidyl ether into a reactor, and then add a catalyst. 1 hour to 8 at a temperature of ℃ to 120℃
Stir for an hour to react, then add the diglycidyl ether compound, stir for another 1 to 4 hours at the same temperature to react, then add phenol and stir for another 1 to 2 hours at the same temperature to react. . As the catalyst, amine type catalysts such as ethyleneamine, dimethylamine, diethylamine, trimethylamine, triethylamine, triethanolamine, diethylenetriamine, triethylenetetramine, diethylaminopropylamine,
Benzyldimethylamine, tris(dimethylaminomethyl)phenol, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, dicyandiamide, boron trifluoride/monoethylamine, menthanediamine, xylenediamine, ethylmethylimidazole, 1,
Examples include 8-diaza-bicyclo-(5,4,0)undecene-7. Thermosetting resins in the present invention include phenolic resins, epoxy resins, melamine resins, urea resins, polyester resins, diallyl phthalate resins, polybutane diene resins, polyurethane resins,
These are resins that harden when heated, such as alkyd resins. In addition, the thermosetting resin composition containing the flame retardant of the present invention may contain other flame retardants, plasticizers, curing agents, curing accelerators, surface treatment agents,
Additives such as surfactants, protective colloids, heat stabilizers, light stabilizers, colorants, fillers, lubricants, solvents, water and the like can be added. The base material for the laminate in the present invention includes papers and cloths made of various cellulose fibers, synthetic fibers, cloths made of glass fibers and mineral fibers, sheets, mats, nonwoven fabrics, and the like. Moreover, those base materials that have been previously treated with a resin can also be used. The laminate obtained by impregnating a thermosetting resin composition containing the new flame retardant obtained by the present invention into a laminate base material, and heating and pressurizing it after drying has excellent flame resistance. It was an excellent laminate with high heat resistance, good mechanical properties, good electrical properties, and workability, and no discoloration or strange odor. The present invention will be explained in detail using experimental examples below. Experimental Example 1 1.0 mol of 2,2-bis(4-hydroxy-3,5-dibromphenyl)propane and 75.44 g of 1,8-diaza-bicyclo-(5,4,0)undecene as a catalyst were stirred and cooled. The mixture was placed in a three-four neck flask equipped with a tube, a thermometer, and a dropping funnel, and 200 ml of toluene was added thereto and stirred to form a suspension. Next, 2.2 mol of dibromocresyl monoglycidyl ether was dissolved in 200 ml of toluene,
Addition was made slowly using a dropping funnel at 40° C. over a period of 1 hour. After the dropwise addition was completed, stirring was continued while gradually raising the temperature over 1 hour until the temperature reached 100°C, and then the reaction was further carried out at 100°C for 2 hours. (The average molecular weight of the intermediate product was 1100.) Next, while keeping the temperature at 100°C, bisphenol A diglycidyl ether was
A solution of 0.6 mol in 200 ml of toluene was gradually added using a dropping funnel over 30 minutes, and the reaction was further carried out at the same temperature for 3 hours. Next, while maintaining the temperature at 100°C, a solution of 0.2 mole of phenol dissolved in 100 ml of toluene was gradually added using a dropping funnel over 10 minutes, and the reaction was further carried out at the same temperature for 1 hour. After the reaction is complete, dilute with 700ml of toluene to obtain a solution with a viscosity (20℃) of 1.8.
2700 g of a brown transparent flame retardant solution with an average molecular weight of 1250 was obtained. This flame retardant and a known flame retardant as shown in Table 1 were added at 25 parts each to 100 parts (solid weight) of the oil-modified phenolic resin for laminates, and further 20 parts of cresyl diphenyl phosphate, melamine resin
20 parts and 10 parts of low molecular weight polymethylol phenolic resin
A resin composition was prepared by mixing the following parts. Kraft paper for laminates was soaked in this composition to impregnate it, and
Dry at ℃ and B stage resin content 52%, volatile content
A 1.5% prepreg was obtained. This prepreg is 8
The sheets were laminated, a 35μ thick copper foil with adhesive was layered on one side, set in a press, heated and pressed at 170℃ for 90 minutes,
A copper-clad laminate with a thickness of 1.6 mm was obtained. The properties of this laminate are shown in Table 1.

【表】 第1表に示す様に、本発明になる難燃剤を配合
した油変性フエノール樹脂で作成した積層板は、
UL−94・V−0に合格する優れた耐熱性積層板
であつた。しかも本発明品は半田耐熱性が高く、
絶縁抵抗が大きく、打抜加工性が良好であり、異
臭・変色もなかつた。これは本発明で使用した難
燃剤が樹脂及び基板とのなじみ性及び密着性がよ
い事と熱分解温度が高いためと考えられる。 これ対し難燃剤Aを配合して作成した積層板
は、耐熱性は良いもものの熱分解温度が低い為に
ガスを発生し、半田耐熱性をはじめ全ての性能が
不良であつた。また難燃剤B及びCを配合して作
成した積層板は、半田耐熱性等優れた点はある
が、最も重要な耐燃性が不良であつた。この様に
本発明になる難燃剤を配合して作成した積層板
は、耐燃性と半田耐熱性がいずれも優れた、他性
能のバランスもとれた優れた積層板であつた。 実験例 2 実験例1に於いて、ジブロムクレジルモノグリ
シジルエーテル2.2モルをジブロムフエニルモノ
グリシジルエーテル0.5〜3.5モルに変え、フエノ
ール0.2モルをパラクレゾール0.1モルに変え、油
変性フエノール樹脂をポリブタジエン樹脂に変え
た他は、配合も試験も全く同様に行ない、第2表
に示す結果を得た。
[Table] As shown in Table 1, the laminate made from the oil-modified phenolic resin containing the flame retardant according to the present invention is
It was an excellent heat-resistant laminate that passed UL-94/V-0. Moreover, the product of the present invention has high soldering heat resistance.
It had high insulation resistance, good punching workability, and no strange odor or discoloration. This is considered to be because the flame retardant used in the present invention has good compatibility and adhesion with the resin and substrate, and has a high thermal decomposition temperature. On the other hand, the laminate prepared by blending flame retardant A had good heat resistance, but due to the low thermal decomposition temperature, gas was generated and all performances including soldering heat resistance were poor. Furthermore, the laminates prepared by blending flame retardants B and C had excellent properties such as soldering heat resistance, but were poor in the most important flame resistance. As described above, the laminate produced by blending the flame retardant of the present invention was an excellent laminate with excellent flame resistance and soldering heat resistance, and a good balance of other properties. Experimental Example 2 In Experimental Example 1, 2.2 mol of dibromucresyl monoglycidyl ether was changed to 0.5 to 3.5 mol of dibromphenyl monoglycidyl ether, 0.2 mol of phenol was changed to 0.1 mol of p-cresol, and the oil-modified phenol resin was changed to polybutadiene. The formulations and tests were carried out in exactly the same manner except that the resin was changed, and the results shown in Table 2 were obtained.

【表】 第2表に示す様に、本発明における好ましい反
応仕込割合で合成した難燃剤を配合してなる積層
板(No.3,4,5,6)は耐燃性、半田耐熱性、
絶縁抵抗も優れ、打抜加工性も良好であり、異
臭・変色もなかつた。これに対し2,2−ビス
(4−ヒドロキシ−3,5−ジブロムフエニル)
プロパンに対するジブロムフエニルモノグリシジ
ルエーテルの反応仕込量が少ない難燃剤を配合し
た積層板(No.2)は、熱分解ガスが多い為に半田
耐熱性が悪く、異臭を発し、変色する。またガス
の為に剥離がおこり打抜加工性も良くない。 逆にジブロムフエニルモノグリシジルエーテル
の反応仕込量が多い難燃剤を配合して作成した積
層板(No.7)は、基材とのなじみ性が良くない為
に、基材に十分含浸せずUL−94・V−0の耐燃
性に合格できず、また基材との密着性が良くない
為にすぐはがれ打抜加工性が不良であつた。 実験例 3 実験例1に於いて、ビスフエノールAジグリシ
ジルエーテル0.6モルをビスフエノールFジグリ
シジルエーテル0.05〜2.0モル変え、フエノール
0.2モルをノニルフエノール0〜1モルに変え、
油変性フエノール樹脂をエポキシ樹脂に変えた他
は、配合も試験も全く同様に行ない第3表に示す
結果を得た。
[Table] As shown in Table 2, the laminates (Nos. 3, 4, 5, 6) made by blending the flame retardant synthesized at the preferred reaction charge ratio in the present invention have flame resistance, soldering heat resistance,
The insulation resistance was excellent, the punching workability was also good, and there was no strange odor or discoloration. On the other hand, 2,2-bis(4-hydroxy-3,5-dibromphenyl)
The laminate (No. 2) containing a flame retardant with a small amount of dibromophenyl monoglycidyl ether reacting with propane has poor soldering heat resistance due to a large amount of pyrolysis gas, emits a strange odor, and discolors. Also, the gas causes peeling and the punching processability is not good. On the other hand, the laminate (No. 7) made by blending a flame retardant with a large amount of dibromo phenyl monoglycidyl ether reacted with it did not have good compatibility with the base material, so it was necessary to fully impregnate the base material. However, it did not pass UL-94/V-0 flame resistance, and it peeled off easily due to poor adhesion to the base material, resulting in poor punching workability. Experimental Example 3 In Experimental Example 1, 0.6 mole of bisphenol A diglycidyl ether was changed from 0.05 to 2.0 mole of bisphenol F diglycidyl ether, and phenol
Change 0.2 mol to 0-1 mol of nonylphenol,
The formulations and tests were carried out in exactly the same manner except that the oil-modified phenolic resin was replaced with an epoxy resin, and the results shown in Table 3 were obtained.

【表】【table】

【表】 第3表に示す様に、本発明における好ましい反
応仕込割合で合成した難燃剤を配合してなる積層
板(No.2,3,5,6,7,9)は耐燃性、半田
耐熱性、絶縁抵抗も優れ、打抜加工性も良好であ
り、異臭、変色もなかつた。これに対し、2,2
−ビス(4−ヒドロキシ−3,5−ジブロムフエ
ニル)プロパンとジブロムクレジルモノグリシジ
ルエーテルとの反応生成物に対するビスフエノー
ルFジグリシジルエーテルの仕込量が少ない場
合、該反応生成物中に残存するOH基を皆無に処
理する事ができず、この難燃剤を配合した積層板
(No.1)は熱分解され易くて半田耐熱性が低かつ
た。 ビスフエノールFジグリシジルエーテルの仕込
量を増やして行けばOH基は無くなり、半田耐熱
性も良くなるが、過剰に増やす(No.10)とビスフ
エノールFジグリシジルエーテルの増加により全
生成物中のブロム含量の減少及び分子量増大によ
る基材への含浸性不良により、耐燃性が低下す
る。ビスフエノールFジグリシジルエーテルの仕
込量を更に増やして行けば(No.11)、分子量が異
常に増大し反応中にゲル化してしまう。本発明に
おける好ましい反応仕込割合は、2,2−ビス
(4−ヒドロキシ−3,5−ジブロムフエニル)
プロパン1モルに対し、ビスフエノールFジグリ
シジルエーテル0.1〜1.0モルである。2,2−ビ
ス(4−ヒドロキシ−3,5−ジブロムフエニ
ル)プロパンとジブロムクレジルモノグリシジル
エーテルとビスフエノールFジグリシジルエーテ
ルとの反応生成物に対するノニルフエノールの仕
込量が少ない場合、最終反応生成物中にビスフエ
ノールFジグリシジルエーテルに基因する未反応
のグリシジルエーテル基が残存し、かつ重合し、
分子量が著しく増大することとなり、この難燃剤
を配合した積層板(No.4)は基材への含浸性が不
良のため耐燃性や電気絶縁性などが低下した。逆
にノニルフエノールの仕込量が多い場合(No.8)
は、未反応のノニルフエノールが半田耐熱性、絶
縁抵抗、打抜加工性などに悪影響を及ぼす。本発
明における好ましい反応仕込割合は、2,2−ビ
ス(4−ヒドロキシ−3,5−ジブロムフエニ
ル)プロパン1モルに対し、ノニルフエノール
0.01〜0.30モルである。 以上の実験例で明らかな様に、本発明になる難
燃剤を配合してなる熱硬化性樹脂組成物で作成し
た積層板は、耐燃性が優れ、半田耐熱性も良く、
絶縁抵抗は高く、打抜加工性も良好で異臭も変色
もない優れた積層板であつた。
[Table] As shown in Table 3, the laminates (Nos. 2, 3, 5, 6, 7, 9) made with flame retardants synthesized at the preferred reaction charge ratio in the present invention are flame resistant and solder-resistant. It had excellent heat resistance and insulation resistance, good punching workability, and no strange odor or discoloration. On the other hand, 2,2
- When the amount of bisphenol F diglycidyl ether charged to the reaction product of bis(4-hydroxy-3,5-dibromophenyl)propane and dibromocresyl monoglycidyl ether is small, OH groups remaining in the reaction product The laminate containing this flame retardant (No. 1) was easily thermally decomposed and had low soldering heat resistance. If the amount of bisphenol F diglycidyl ether is increased, OH groups will be eliminated and the soldering heat resistance will be improved, but if it is increased excessively (No. 10), the amount of bisphenol F diglycidyl ether will increase and the amount of bisphenol F diglycidyl ether will increase. Flame resistance decreases due to poor impregnation into the substrate due to decreased bromine content and increased molecular weight. If the amount of bisphenol F diglycidyl ether charged was further increased (No. 11), the molecular weight would abnormally increase and gelation would occur during the reaction. A preferred reaction charge ratio in the present invention is 2,2-bis(4-hydroxy-3,5-dibromphenyl)
The amount of bisphenol F diglycidyl ether is 0.1 to 1.0 mol per mol of propane. When the amount of nonylphenol charged to the reaction product of 2,2-bis(4-hydroxy-3,5-dibromophenyl)propane, dibromocresyl monoglycidyl ether, and bisphenol F diglycidyl ether is small, the final reaction product Unreacted glycidyl ether groups based on bisphenol F diglycidyl ether remain and polymerize,
The molecular weight increased significantly, and the laminate containing this flame retardant (No. 4) had poor impregnation into the base material, resulting in a decrease in flame resistance, electrical insulation, etc. On the other hand, when the amount of nonylphenol charged is large (No. 8)
In this case, unreacted nonylphenol adversely affects soldering heat resistance, insulation resistance, punching workability, etc. A preferred reaction charge ratio in the present invention is nonylphenol to 1 mole of 2,2-bis(4-hydroxy-3,5-dibromphenyl)propane.
It is 0.01-0.30 mole. As is clear from the above experimental examples, the laminate made of the thermosetting resin composition containing the flame retardant of the present invention has excellent flame resistance, good soldering heat resistance,
It was an excellent laminate with high insulation resistance, good punching workability, and no strange odor or discoloration.

Claims (1)

【特許請求の範囲】 1 一般式 (式中Xはハロゲン原子を示し、mは1〜2、
nは1〜2の整数。R1は炭素数1〜4のアルキ
リデン基またはアルキレン基を示す。) であらわされるハロゲン化ジヒドロキシ化合物(A)
と 一般式 (式中Xはハロゲン原子を示し、lは1〜3の
整数。R2はHまたは炭素数1〜4のアルキル基
を示す。) であらわされるハロゲン化モノグリシジルエーテ
ル(B)とを、A1モルに対して、B1〜3モルの割合
で反応させた分子量700〜1400の生成物に、 一般式 (式中Xはハロゲン原子を示し、oは0〜2、
pは0〜2の整数。R3は炭素数1〜4のアルキ
リデン基またはアルキレン基。Qは0〜4を示
す。) であらわされるジグリシジルエーテル化合物(C)
を、A1モルに対して、C0.1〜1.0モルの割合で更
に反応させたあと、更に続けてA1モルに対して
フエノール0.01〜0.30モルの割合で反応させた合
成樹脂用難燃剤を配合してなる熱硬化性樹脂組成
物を積層板用基材に含浸し、乾燥後加熱加圧する
事を特徴とする積層板の製造方法。
[Claims] 1. General formula (In the formula, X represents a halogen atom, m is 1 to 2,
n is an integer of 1 to 2. R 1 represents an alkylidene group or an alkylene group having 1 to 4 carbon atoms. ) Halogenated dihydroxy compound (A)
and general formula (In the formula, X represents a halogen atom, l is an integer of 1 to 3, and R2 represents H or an alkyl group having 1 to 4 carbon atoms.) A halogenated monoglycidyl ether (B) represented by The general formula (In the formula, X represents a halogen atom, o is 0 to 2,
p is an integer from 0 to 2. R 3 is an alkylidene group or alkylene group having 1 to 4 carbon atoms. Q indicates 0-4. ) Diglycidyl ether compound (C)
is further reacted at a ratio of 0.1 to 1.0 mole of C to 1 mole of A, and then a flame retardant for synthetic resins is further reacted at a ratio of 0.01 to 0.30 mole of phenol to 1 mole of A. 1. A method for producing a laminate, which comprises impregnating a base material for a laminate with a thermosetting resin composition, drying, and then heating and pressing the composition.
JP4719683A 1983-03-23 1983-03-23 Production of laminated sheet Granted JPS59172525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4719683A JPS59172525A (en) 1983-03-23 1983-03-23 Production of laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4719683A JPS59172525A (en) 1983-03-23 1983-03-23 Production of laminated sheet

Publications (2)

Publication Number Publication Date
JPS59172525A JPS59172525A (en) 1984-09-29
JPH0125494B2 true JPH0125494B2 (en) 1989-05-18

Family

ID=12768366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4719683A Granted JPS59172525A (en) 1983-03-23 1983-03-23 Production of laminated sheet

Country Status (1)

Country Link
JP (1) JPS59172525A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819568B2 (en) * 1986-01-17 1996-02-28 日本エステル株式会社 Method for producing flame-retardant polyester fiber
JPH0819572B2 (en) * 1986-01-17 1996-02-28 日本エステル株式会社 Method for producing flame-retardant polyester composite fiber
US4929497A (en) * 1989-03-27 1990-05-29 Albany International Corp. Flame retardant rolling door

Also Published As

Publication number Publication date
JPS59172525A (en) 1984-09-29

Similar Documents

Publication Publication Date Title
JP3336437B2 (en) Flame retardant curable 1-oxa-3-azatetralin-derived resin composition
JP6506893B2 (en) Phosphonic acid oligomer and composition containing the same
EP1948735B1 (en) Flame retardant prepregs and laminates for printed circuit boards
US5443911A (en) Curable resins comprising halogenated epoxy resins and 1-oxa-3-aza tetraline compounds, method for preparing and use of resins
US3016362A (en) Blend of a halogenated aromatic polyglycidyl ether and an aliphatic polyglycidyl ether
KR101141305B1 (en) Phosphorus containing phenol novolac resin, hardener comprising the same and epoxy resin composition
Shieh et al. Synthesis and properties of novel phosphorus‐containing hardener for epoxy resins
KR20150031237A (en) Phosphorus-containing epoxy resin, composition containing phosphorus-containing epoxy resin as essential component, and cured product
EP0066171B1 (en) Fire retardant epoxy resins containing 3-hydroxypropyl-phosphine oxides
JPWO2020045150A1 (en) Phosphorus-containing epoxy resin, epoxy resin composition, prepreg, laminate, circuit board material and cured product
JPS6318968B2 (en)
JPH0125494B2 (en)
JP2021088656A (en) Epoxy resin composition, and laminate and printed circuit board that employ the same
US3452116A (en) Flame retardant polyglycidyl ethers of tetrakis(dihalohydroxyphenyl)ethane and propane
JPS6216207B2 (en)
JPH0125497B2 (en)
JPH0125495B2 (en)
JPH0125496B2 (en)
JPS6158306B2 (en)
JPH01223158A (en) Flame-retardant phenolic resin composition
US4380571A (en) Fire retardant epoxy resins containing 3-hydroxyalkylphosphine oxides
JPS6313448B2 (en)
TW201235401A (en) High thermal resistance epoxy resin composition, prepreg, metal-clad laminate, and printed circuit board
JP2003147170A (en) Resin composition, and prepreg and laminate made of it
JPS58194952A (en) Production of flame retarder