JPH01254254A - Preparation of catalyst carrier - Google Patents

Preparation of catalyst carrier

Info

Publication number
JPH01254254A
JPH01254254A JP63081346A JP8134688A JPH01254254A JP H01254254 A JPH01254254 A JP H01254254A JP 63081346 A JP63081346 A JP 63081346A JP 8134688 A JP8134688 A JP 8134688A JP H01254254 A JPH01254254 A JP H01254254A
Authority
JP
Japan
Prior art keywords
powder
acid
hydrate
water
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63081346A
Other languages
Japanese (ja)
Other versions
JP2556349B2 (en
Inventor
Yasuhiro Kubota
泰宏 久保田
Yasuyuki Ooishi
庸之 大石
Hiroshi Kato
浩 加藤
Akira Inoue
章 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KATSUSEIKA CENTER
Japan Petroleum Energy Center JPEC
Eneos Corp
Original Assignee
SEKIYU SANGYO KATSUSEIKA CENTER
Petroleum Energy Center PEC
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KATSUSEIKA CENTER, Petroleum Energy Center PEC, Nippon Oil Corp filed Critical SEKIYU SANGYO KATSUSEIKA CENTER
Priority to JP63081346A priority Critical patent/JP2556349B2/en
Publication of JPH01254254A publication Critical patent/JPH01254254A/en
Application granted granted Critical
Publication of JP2556349B2 publication Critical patent/JP2556349B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a bimodal type catalyst carrier having pore size distribution composed of small and large pores, by drying a hydrate of refractory inorg. oxide by spraying to prepare a powder and adding water or an acid to said powder and subsequently kneading, molding, drying and baking the resulting mixture. CONSTITUTION:When a hydrate of refractory inorg. oxide such as amorphous alumina hydrate is subjected to spray drying, a liquid droplet on the surface of the hydrate is dried to form a surface nucleus while the water in the hydrate becomes pressurized steam to form pores to the surface thereof and is evaporated and transpirated to form a powder. Water or an acid such as sulfuric acid is added to the powder to be kneaded therewith and the obtained mixture is molded into a cylindrical or spherical shape by a molding machine while the molded substance is dried and further baked in a baking oven. By this method, a bimodal type catalyst carrier respectively having peakes in a small pore having a radius of 100Angstrom or less and a large pore having a radius of 500Angstrom or more is obtained. This carrier becomes a catalyst showing long life in the hydrogenating treatment of the residual oil of hydrocarbon oil.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、触媒担体の製造方法に関する。さらに詳しく
は、細孔半径が100Å以下の小細孔と細孔半径が50
0Å以上の大細孔にそれぞれ1つのピークを有する細孔
分布を示すバイモーダル型触媒担体を製造する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a catalyst carrier. More specifically, small pores with a pore radius of 100 Å or less and pores with a pore radius of 50 Å
The present invention relates to a method for producing a bimodal catalyst carrier that exhibits a pore distribution in which large pores each having a diameter of 0 Å or more have one peak.

[従来技術および解決しようとする課題]原油を常圧蒸
留または減圧蒸留することにより得られる、常圧残油、
減圧軽油、減圧残油等の重質油中には通常アスファルテ
ンと呼ばれるペンタンまたはへブタンの如き軽質炭化水
素に不溶性の非蒸留性の高分子量のコーク前駆体、なら
びにニッケル、バナジウム等を含む可溶性金属や硫黄化
合物および窒素化合物等の好ましくない不純物が含まれ
ている。
[Prior art and problems to be solved] Atmospheric residual oil obtained by atmospheric distillation or vacuum distillation of crude oil,
Heavy oils such as vacuum gas oil and vacuum residue usually contain non-distillable high molecular weight coke precursors that are insoluble in light hydrocarbons such as pentane or hebutane, called asphaltenes, and soluble metals including nickel, vanadium, etc. Contains undesirable impurities such as carbon dioxide, sulfur compounds, and nitrogen compounds.

従来、重質油中に含まれている不純物を除去する方法と
して、アルミナ等の担体に周期律表第■B属金金属よび
第■属金属を担持した触媒の存在下で水素化処理してい
るが、重質油はニッケル、バナジウム等の重金属を多量
に含有しているばかりでなく、炭素質(コーク)を析出
しやすい性質があり、水素化処理触媒の細孔が重金属あ
るいは炭素質によって閉塞されてしまい、触媒活性の低
下が大きいため、触媒の改良について、特にアルミナ担
体の物性の改良について多くの検討が行われている。
Conventionally, as a method for removing impurities contained in heavy oil, hydrogenation treatment is carried out in the presence of a catalyst in which metals from Groups B and II of the periodic table are supported on a carrier such as alumina. However, heavy oil not only contains large amounts of heavy metals such as nickel and vanadium, but also tends to deposit carbonaceous substances (coke). Since the catalyst is blocked and the catalyst activity is greatly reduced, many studies have been conducted to improve the catalyst, particularly the physical properties of the alumina support.

例えば、細孔閉塞による活性低下を防ぐために考案され
た小細孔と大細孔の二つの細孔分布を持つバイモーダル
型触媒の製造方法に関しては、アルミナのヒドロゲルに
ポリエチレングリコールを吸収させ、押し出し成形後に
アルコール洗浄する方法(特開昭52−104498号
公報)、アルミナの粉末にカーボンブラックを添加する
方法(特開昭57−201532号公報)および耐火性
無機酸化物にペブタイザーと界面活性剤を添加する方法
(特公昭59−23859号公報)が提案されている。
For example, regarding a method for producing a bimodal catalyst with two pore distributions, small and large pores, which was devised to prevent activity reduction due to pore clogging, polyethylene glycol is absorbed into an alumina hydrogel and then extruded. A method of washing with alcohol after molding (JP-A-52-104498), a method of adding carbon black to alumina powder (JP-A-57-201532), and a method of adding a pebutizer and a surfactant to a refractory inorganic oxide. A method of adding the compound (Japanese Patent Publication No. 59-23859) has been proposed.

しかし、これらの方法では細孔半径100〜500人の
細孔は得られるが、大細孔を作るために多量の添加剤を
使用し、製造コストの面から好ましくないばかりでなく
、組成半径が500人より大きな大細孔は得られない。
However, although these methods can obtain pores with a pore radius of 100 to 500, large amounts of additives are used to create large pores, which is not only undesirable from the viewpoint of manufacturing cost, but also increases the composition radius. Large pores larger than 500 pores cannot be obtained.

本発明は、上記した課題を解決すべくなされたもので、
細孔半径が100Å以下の小細孔と細孔半径が500Å
以上の大細孔にそれぞれ1つのピークを有する細孔分布
を示す触媒担体の製造方法を提供することを目的とし、
ひいては触媒、特に水素化触媒の長寿命化を図ることを
最終的な目的とするものである。
The present invention was made to solve the above problems, and
Small pores with a pore radius of 100 Å or less and pore radius of 500 Å
The purpose is to provide a method for producing a catalyst carrier exhibiting a pore distribution with each of the large pores having one peak,
The ultimate objective is to extend the life of the catalyst, especially the hydrogenation catalyst.

[課題を解決するための手段] 本発明者らは触媒担体の製造方法について鋭意研究を重
ねた結果、特定の製造工程により、小細孔と大細孔の細
孔径分布を有するバイモーダル型触媒担体を製造する方
法を見い出した。
[Means for Solving the Problems] As a result of extensive research into the manufacturing method of catalyst carriers, the present inventors have developed a bimodal catalyst having a pore size distribution of small pores and large pores through a specific manufacturing process. We have discovered a method for manufacturing carriers.

すなわち、本発明は耐火性無機酸化物の水和物を噴霧乾
燥して粉末を得、該粉末に水もしくは酸を加え混練し、
その後成形、乾燥、焼成することにより細孔半径100
Å以下と細孔半径500Å以上にそれぞれ1つのピーク
を有する細孔分布を示す触媒担体を生成させることを特
徴とする触媒担体の製造法を提供するものである。
That is, the present invention spray-dries a hydrate of a refractory inorganic oxide to obtain a powder, adds water or an acid to the powder, and kneads it.
After that, by molding, drying and firing, the pore radius becomes 100.
The present invention provides a method for producing a catalyst carrier, which is characterized by producing a catalyst carrier exhibiting a pore distribution having one peak at pore radius of 500 Å or less and one peak at pore radius of 500 Å or more.

本発明で言う耐火性無機酸化物の水和物とは周期律表第
■、■、■、■族の中から選ばれる元素の少なくとも一
種、例えばアルミナ、シリカ、チタニア、ボリア、ジル
コニア等の単一元素、シリカ・アルミナ、シリカ・マグ
ネシア、アルミナ会マグネシア、アルミナ・チタニア、
シリカ・チタニア、アルミナΦボリア、アルミナ・ジル
コニア、シリカ拳ジルコニア、アルミナ・ホスファ等の
複合元素等の無機塩の水溶液、ゾル状またはゲル状を呈
する物質である。
The hydrate of a refractory inorganic oxide as used in the present invention refers to at least one element selected from groups ①, ②, ②, and ② of the periodic table, such as alumina, silica, titania, boria, zirconia, etc. Single element, silica/alumina, silica/magnesia, alumina magnesia, alumina/titania,
It is a substance that takes the form of an aqueous solution, sol, or gel of an inorganic salt such as a complex element such as silica/titania, alumina/boria, alumina/zirconia, silica/zirconia, or alumina/phospha.

前記の水溶液とは、例えばアルミナの場合、アルミナ水
酸化物合成時の出発物質を含む水溶液あるいはアルミナ
水酸化物希薄溶液等である。
For example, in the case of alumina, the aqueous solution is an aqueous solution containing a starting material for synthesizing alumina hydroxide or a dilute alumina hydroxide solution.

前記のゾル状またはゲル状物質とは、例えばアルミナの
場合、非晶質アルミナ水和物である。
For example, in the case of alumina, the above-mentioned sol-like or gel-like substance is an amorphous alumina hydrate.

この非晶質アルミナ水和物は、慣用の方法により得るこ
とが出来る。例えば、硫酸アルミニウム、硝酸アルミニ
ウム等のアルミニウム塩の加水分解あるいはアルミン酸
ナトリウム等アルミン酸アルカリの酸、アルミニウム塩
等による加水分解等で調製することができる。
This amorphous alumina hydrate can be obtained by a conventional method. For example, it can be prepared by hydrolysis of an aluminum salt such as aluminum sulfate or aluminum nitrate, or by hydrolysis with an alkali aluminate acid such as sodium aluminate, an aluminum salt, or the like.

本発明で言う酸としては、無機酸あるいは有機酸が挙げ
られる。無機酸としては、硝酸、塩酸、硫酸等の強酸が
好ましい。これらの強酸は、0.1〜5%、好ましくは
0.5〜2%に希釈したものを用いる。有機酸としては
、炭素数1〜3の有機酸であり、ギ酸、酢酸、プロピオ
ン酸等の弱酸が好ましい。
The acids referred to in the present invention include inorganic acids and organic acids. As the inorganic acid, strong acids such as nitric acid, hydrochloric acid, and sulfuric acid are preferred. These strong acids are used diluted to 0.1 to 5%, preferably 0.5 to 2%. The organic acid is an organic acid having 1 to 3 carbon atoms, and weak acids such as formic acid, acetic acid, and propionic acid are preferable.

本発明で言う水は、通常の水でよいが、イオン交換水が
好ましい。
The water referred to in the present invention may be ordinary water, but ion exchange water is preferable.

前記の水および酸は解膠剤として作用する。The water and acid mentioned above act as peptizers.

本発明の触媒担体の製造工程である耐火性無機酸化物の
水和物を、噴霧乾燥する工程は、通常の方法で行われる
。例えば、非晶質アルミナ水和物(アルミナとして1〜
10重量%の濃度)をディスク回転式のスプレードライ
ヤーを用い、噴霧温度200〜300℃、回転数500
0〜30000 rpm、出口温度50〜200℃の条
件で噴霧させ、噴霧になった液滴は表面が乾燥されて表
面積を生成し、球体内部の水は加圧蒸気となって表皮に
孔を作り、蒸発逸散し粉末となる。該粉末の粒度は0〜
200μmである。粉末の細孔容積は0.3〜1.5c
c/ g s平均細孔半径は15〜100人の範囲であ
る。
The step of spray-drying the hydrate of the refractory inorganic oxide, which is the manufacturing step of the catalyst carrier of the present invention, is carried out by a conventional method. For example, amorphous alumina hydrate (1 to 1 as alumina)
10% by weight) using a disc rotating spray dryer at a spray temperature of 200 to 300°C and a rotation speed of 500.
It is sprayed at a speed of 0 to 30,000 rpm and an outlet temperature of 50 to 200°C, and the surface of the sprayed droplets is dried to create a surface area, and the water inside the sphere becomes pressurized steam, creating pores in the epidermis. , evaporates and becomes powder. The particle size of the powder is 0~
It is 200 μm. The pore volume of the powder is 0.3-1.5c
c/gs average pore radius ranges from 15 to 100.

次に、前記粉末に水もしくは酸を加え混練する工程は例
えばバッチ式ニーダ−等で行われる。この際、水分調整
の目的で必要に応じて25〜90℃に加熱してもよい。
Next, the step of adding water or acid to the powder and kneading it is carried out using, for example, a batch kneader. At this time, it may be heated to 25 to 90°C as necessary for the purpose of moisture adjustment.

混線時間は1〜5時間が好ましい。混練する前に粉末と
水もしくは酸を前もって通常の撹拌機で混合しておいて
もよい。
The crosstalk time is preferably 1 to 5 hours. The powder and water or acid may be mixed in advance with a conventional stirrer before kneading.

水もしくは酸の添加量は該粉末重量の1〜4倍、好まし
くは1.5〜2.5倍であり、酸の濃度は0.1〜5%
、好ましくは0.5〜2%である。
The amount of water or acid added is 1 to 4 times, preferably 1.5 to 2.5 times, the weight of the powder, and the concentration of acid is 0.1 to 5%.
, preferably 0.5 to 2%.

次に、混練したものの成型工程は通常の押出し機等で0
.5〜10sφ、好ましくは0.8〜1.5am+φに
押出し成型する。粒子の形状は円筒状、球状、錠剤状等
のいかなる形でもよい。
Next, the kneaded product is molded using a normal extruder, etc.
.. Extrusion molding is performed to 5 to 10 sφ, preferably 0.8 to 1.5 am+φ. The shape of the particles may be any shape such as cylindrical, spherical, or tablet-like.

前記押出し成型工程における成型助剤として水溶性ポリ
マーを添加してもよい。水溶性ポリマーは予め前記粉末
に加えた後、水もしくは酸を加えてもよいし、水もしく
は酸を加えた後あるいは水溶性ポリマーの水溶液として
加えてもよい。水溶性ポリマーの添加量は該粉末の1〜
30%、好ましくは 1〜20%である。
A water-soluble polymer may be added as a molding aid in the extrusion molding step. The water-soluble polymer may be added to the powder in advance and then water or acid added thereto, or it may be added after adding water or acid or as an aqueous solution of the water-soluble polymer. The amount of water-soluble polymer added is 1 to 10% of the powder.
30%, preferably 1-20%.

水溶性ポリマーとしては天然系、合成系あるいは半合成
系水溶性ポリマーが挙げられる。天然系水溶性ポリマー
としては植物系あるいは動物系が挙げられる。植物系と
しては、寒天、アラビヤガム、ペクチン等が挙げられる
。動物系としては、でんぷん、ゼラチン、にかわ等が挙
げられる。合成系水溶性ポリマーとしては、ビニル系、
アクリル系等が挙げられる。ビニル系水溶性ポリマーと
しては、ポリビニルアルコール、ポリエチレングリコー
ル、ポリビニルメチルエーテル、ポリビニルスルフォン
酸等が挙げられる。アクリル系水溶性ポリマーとしては
ポリアクリル酸等が挙げられる。半合成系水溶性ポリマ
ーとしてはメチルセルロース等のセルロース誘導体が挙
げられる。
Examples of water-soluble polymers include natural, synthetic, and semi-synthetic water-soluble polymers. Examples of natural water-soluble polymers include plant-based and animal-based polymers. Examples of plant-based materials include agar, gum arabic, and pectin. Examples of animal-based materials include starch, gelatin, and glue. Synthetic water-soluble polymers include vinyl,
Examples include acrylic. Examples of vinyl water-soluble polymers include polyvinyl alcohol, polyethylene glycol, polyvinyl methyl ether, polyvinyl sulfonic acid, and the like. Examples of the acrylic water-soluble polymer include polyacrylic acid. Examples of semi-synthetic water-soluble polymers include cellulose derivatives such as methylcellulose.

次に、前記成型物の乾燥工程は通常の乾燥機で、該成型
物を100〜250℃、好ましくは100〜150℃で
乾燥する。
Next, in the step of drying the molded product, the molded product is dried at 100 to 250°C, preferably 100 to 150°C, using a normal dryer.

さらに、乾燥した成型物を焼成する工程は通常の焼成炉
を用いて、空気流通下で450〜600℃、好ましくは
500〜550℃の温度で、1〜10時間、好ましくは
1〜3時間で焼成する。
Furthermore, the step of firing the dried molded product is performed using a normal firing furnace at a temperature of 450 to 600°C, preferably 500 to 550°C, for 1 to 10 hours, preferably 1 to 3 hours under air circulation. Fire.

本発明の製造方法憾よって得られる触媒担体は、細孔半
径100Å以下、好ましくは15〜100人の小細孔と
細孔半径500Å以上、好ましくは500Å〜1μmの
大細孔とにそれぞれ1つのピークを有する細孔分布を持
つ極めて多孔質のバイモーダル型触媒担体である。
The catalyst carrier obtained by the production method of the present invention has one small pore with a pore radius of 100 Å or less, preferably 15 to 100 pores, and one large pore with a pore radius of 500 Å or more, preferably 500 Å to 1 μm. It is an extremely porous bimodal catalyst support with a peaked pore distribution.

この触媒担体の比表面積は150〜500m/g。The specific surface area of this catalyst carrier is 150 to 500 m/g.

好ましくは200〜350rIL/g、細孔容積は0,
3〜1.5cc/ g 、好ましくは0.4〜ice/
gの範囲が適当であり、細孔半径100Å以下の細孔容
積は0.2〜ice/ g s細孔半径500Å以上の
細孔容積は0.1〜0.8cc/gの範囲が好ましい。
Preferably 200 to 350 rIL/g, pore volume 0,
3-1.5cc/g, preferably 0.4-ice/
The range of g is suitable, and the pore volume with a pore radius of 100 Å or less is preferably in the range of 0.2 to ice/g s, and the pore volume with a pore radius of 500 Å or more is preferably in the range of 0.1 to 0.8 cc/g.

本発明の製造方法で得られた触媒担体は、原油の常圧あ
るいは減圧蒸留で得られる残渣油ある(1はタールサン
ドまたはオイルサンドから抽出した重質油あるいはこれ
らの混合物からなる重質油等の炭化水素油の水素化等の
処理触媒の担体に好ましく用いられる。
The catalyst carrier obtained by the production method of the present invention is a residual oil obtained by distillation of crude oil under normal pressure or reduced pressure (1 is heavy oil extracted from tar sands or oil sands, or heavy oil made of a mixture thereof, etc.). It is preferably used as a support for a treatment catalyst for hydrocarbon oil hydrogenation, etc.

[発明の効果] 本発明の製造方法により、半径100Å以下の小細孔と
500Å以上の大細孔にそれぞれ1つのピークを有する
細孔分布を持つバイモーダル型触媒担体を製造すること
ができる。
[Effects of the Invention] According to the production method of the present invention, it is possible to produce a bimodal catalyst carrier having a pore distribution having one peak in each of small pores with a radius of 100 Å or less and large pores with a radius of 500 Å or more.

また、この触媒担体を、特に炭化水素油の残渣油の水素
化処理触媒に用いた場合、寿命の長い触媒を得ることが
できる。
Further, when this catalyst carrier is used particularly as a catalyst for hydrotreating residual oil of hydrocarbon oil, a catalyst with a long life can be obtained.

[実施例コ 以下、実施例等に基づき本発明を具体的に説明する。[Example code] Hereinafter, the present invention will be specifically explained based on Examples and the like.

実施例1 イオン交換水798Jに、Na2Oを11.3%とAJ
203を22%含有するアルミン酸ナトリウム水溶液1
.932Kgを加え、60℃に加温した。この液に8.
4%硫酸アルミニウム水溶液をpH7,2になるまで撹
拌しながら添加した。その所要量は3.6に9であった
Example 1 Add 11.3% Na2O and AJ to 798J of ion-exchanged water.
Sodium aluminate aqueous solution containing 22% of 203 1
.. 932Kg was added and heated to 60°C. Add this liquid to 8.
A 4% aqueous aluminum sulfate solution was added with stirring until the pH reached 7.2. The required amount was 3.6 to 9.

中和後1時間放置してから、濾過機へ投入し、減圧濾過
し、0.2%アンモニア水で揚水洗浄した。
After neutralization, the mixture was allowed to stand for 1 hour, then put into a filter, filtered under reduced pressure, and washed with 0.2% ammonia water.

洗浄後、Na2OおよびSO4の大部分が除去されたア
ルミナケーキ(A)  1.215Ngを得た。
After washing, 1.215 Ng of alumina cake (A) from which most of Na2O and SO4 had been removed was obtained.

調製したアルミナケーキ(A)に等量のイオン交換水を
加え、アルミナゲルのスラリーを作り、二ロ社モービル
マイナー型スプレードライヤーを用いて噴霧温度250
〜270℃、回転数1200Orpm 。
Add an equal amount of ion-exchanged water to the prepared alumina cake (A) to make an alumina gel slurry, and spray at a temperature of 250 using a Niro Mobil Minor type spray dryer.
~270°C, rotation speed 1200 rpm.

出口温度100〜115℃で噴霧乾燥し、ベーマイト粉
末(B)を得た。この粉末(B)  200gにイオン
交換水4507を加え、バッチ式ニーダ−で80℃に加
熱しながら 3時間混練し、押出し機で直径1m1tt
に押出し成型した。成型物を一晩風乾後110℃で4時
間乾燥した後、空気流通下の焼成炉で550℃で3時間
焼成し担体(C)を調製した。担体(C)の物性を第1
表に示し、細孔分布を第1図に示す。
Spray drying was performed at an outlet temperature of 100 to 115°C to obtain boehmite powder (B). Add ion-exchanged water 4507 to 200 g of this powder (B), knead it for 3 hours while heating it to 80°C in a batch kneader, and mix it with an extruder in a diameter of 1 m 1 tt.
Extrusion molded. The molded product was air-dried overnight, then dried at 110° C. for 4 hours, and then fired at 550° C. for 3 hours in a kiln under air circulation to prepare a carrier (C). The physical properties of the carrier (C) are determined first.
The pore distribution is shown in the table and the pore distribution is shown in FIG.

実施例2 実施例1で粉末(B)にイオン交換水450dを加える
代わりに1%硝酸水溶液200dを加え30分混線後、
067%アンモニア水50m1を加えた他は実施例1と
同様にして担体(D)を調製した。担体(D)の物性を
第1表に示し、細孔分布を第1図に示す。
Example 2 Instead of adding 450 d of ion-exchanged water to the powder (B) in Example 1, 200 d of 1% nitric acid aqueous solution was added, and after mixing for 30 minutes,
A carrier (D) was prepared in the same manner as in Example 1 except that 50 ml of 067% ammonia water was added. The physical properties of carrier (D) are shown in Table 1, and the pore distribution is shown in FIG.

実施例3 実施例1で粉末(B)にイオン交換水450dを加える
代わりに平均分子量20000のポリエチレングリコー
ル40gをイオン交換水280Idに溶解した水溶液を
加え60℃に加熱しながら4時間混練した他は実施例1
と同様にして担体(E)を調製した。
Example 3 Instead of adding 450 d of ion-exchanged water to powder (B) in Example 1, an aqueous solution of 40 g of polyethylene glycol having an average molecular weight of 20,000 dissolved in 280 d of ion-exchanged water was added and kneaded for 4 hours while heating to 60° C. Example 1
Carrier (E) was prepared in the same manner as above.

担体(E)の物性を第1表に示し、細孔分布を第1図に
示す。
The physical properties of carrier (E) are shown in Table 1, and the pore distribution is shown in FIG.

実施例4 実施例1の粉末(B)に1.5%硝酸水溶液200−を
加え、バッチ式ニーダ−で30分間混線後、2.5%ア
ンモニア水50Idlを加え70’Cに加熱しながら 
1時間混練した。ここに5%ポリアクリル酸水溶液10
0dを加え、70”Cで更に3時間混練した。
Example 4 200ml of 1.5% nitric acid aqueous solution was added to the powder (B) of Example 1, mixed for 30 minutes in a batch kneader, then 50Idl of 2.5% ammonia water was added and heated to 70'C.
The mixture was kneaded for 1 hour. Here, 5% polyacrylic acid aqueous solution 10
0d was added and kneaded for an additional 3 hours at 70"C.

この後の操作は、実施例1と同様にして担体(F)を調
製した。担体(F)の物性を第1表に示し、細孔分布を
第1図に示す。
The subsequent operations were the same as in Example 1 to prepare carrier (F). The physical properties of the carrier (F) are shown in Table 1, and the pore distribution is shown in FIG.

比較例1 実施例1で調製したアルミナケーキ(A)にイオン交換
水IJとアンモニア水50aeを加えpHを11に調整
した。これをオートクレーブ中、130”Cで24時間
撹拌熟成した後、生成ゲルを減圧濾過しイオン交換水で
洗浄した。次にこのゲルをバッチ式ニーダ−1こ移し、
以後実施例1と同様の操作を行い担体G)を調製した。
Comparative Example 1 Ion-exchanged water IJ and 50 ae of ammonia water were added to the alumina cake (A) prepared in Example 1, and the pH was adjusted to 11. After stirring and aging this in an autoclave at 130"C for 24 hours, the resulting gel was filtered under reduced pressure and washed with ion-exchanged water. Next, this gel was transferred to a batch type kneader 1.
Thereafter, the same operations as in Example 1 were performed to prepare carrier G).

担体(G)の物性を第1表に示し、細孔分布を第2図に
示す。
The physical properties of carrier (G) are shown in Table 1, and the pore distribution is shown in FIG.

第1表および第1〜2図から明らかなように、実施例1
〜4で得られた触媒担体C−Fは、細孔半径が100Å
以下と細孔半径が500Å以上にそれぞれ1つのピーク
を有するが、比較例1で得られた触媒担体Gは、100
Å以下に1つのピークを有するのみで、100人を超え
るとほとんど細孔分布を有しない。
As is clear from Table 1 and Figures 1 and 2, Example 1
The catalyst support C-F obtained in ~4 has a pore radius of 100 Å.
The catalyst carrier G obtained in Comparative Example 1 has one peak at a pore radius of 500 Å or more and one peak at a pore radius of 500 Å or more.
It has only one peak at Å or less, and has almost no pore distribution when it exceeds 100 Å.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1〜4で得られた触媒担体C〜Fの細
孔分布を示すグラフ、および 第2図は、比較例1で得られた触媒担体Gの細孔分布を
示すグラフ。
FIG. 1 is a graph showing the pore distribution of catalyst carriers C to F obtained in Examples 1 to 4, and FIG. 2 is a graph showing the pore distribution of catalyst carrier G obtained in Comparative Example 1. .

Claims (1)

【特許請求の範囲】 1、耐火性無機酸化物の水和物を噴霧乾燥して粉末を得
、該粉末に水もしくは酸を加え混練し、その後成形、乾
燥、焼成することにより細孔半径100Å以下と細孔半
径500Å以上にそれぞれ1つのピークを有する細孔分
布を示す触媒担体を生成させることを特徴とする触媒担
体の製造方法。 2、前記酸が無機酸である特許請求の範囲第1項記載の
触媒担体の製造方法。 3、前記酸が有機酸である特許請求の範囲第1項記載の
触媒担体の製造方法。 4、生成する触媒担体が細孔半径15〜100Åと細孔
半径500Å〜1μmにそれぞれ1つのピークを有する
細孔分布を示すものである特許請求の範囲第1項記載の
触媒担体の製造方法。
[Claims] 1. A hydrated refractory inorganic oxide is spray-dried to obtain a powder, water or acid is added to the powder, kneaded, and then molded, dried, and fired to form a pore radius of 100 Å. 1. A method for producing a catalyst carrier, which comprises producing a catalyst carrier having a pore distribution having one peak at a pore radius of 500 Å or more and one peak at a pore radius of 500 Å or more. 2. The method for producing a catalyst carrier according to claim 1, wherein the acid is an inorganic acid. 3. The method for producing a catalyst carrier according to claim 1, wherein the acid is an organic acid. 4. The method for producing a catalyst carrier according to claim 1, wherein the catalyst carrier produced exhibits a pore distribution having one peak at a pore radius of 15 to 100 Å and one peak at a pore radius of 500 Å to 1 μm.
JP63081346A 1988-04-04 1988-04-04 Method for producing catalyst carrier Expired - Lifetime JP2556349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63081346A JP2556349B2 (en) 1988-04-04 1988-04-04 Method for producing catalyst carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63081346A JP2556349B2 (en) 1988-04-04 1988-04-04 Method for producing catalyst carrier

Publications (2)

Publication Number Publication Date
JPH01254254A true JPH01254254A (en) 1989-10-11
JP2556349B2 JP2556349B2 (en) 1996-11-20

Family

ID=13743805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63081346A Expired - Lifetime JP2556349B2 (en) 1988-04-04 1988-04-04 Method for producing catalyst carrier

Country Status (1)

Country Link
JP (1) JP2556349B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100507445B1 (en) * 1997-12-31 2005-12-08 주식회사 효성 Method for preparing a catalyst for dehydrogenation of low molecular weight hydrocarbons with macropores
JP2006181562A (en) * 2004-12-24 2006-07-13 Catalysts & Chem Ind Co Ltd Catalyst composition for hydrotreating heavy hydrocarbon oil
JP2006527065A (en) * 2003-06-13 2006-11-30 ヤラ・インターナショナル・アーエスアー Method for producing supported oxide catalyst
JP2007167842A (en) * 2004-03-12 2007-07-05 Saint-Gobain Ceramics & Plastics Inc Method of forming spray dried alumina catalyst carrier material
JP2010179268A (en) * 2009-02-07 2010-08-19 Kosei:Kk Plant for producing support
JP2016533891A (en) * 2013-09-06 2016-11-04 シェブロン フィリップス ケミカル カンパニー エルピー Selective hydrogenation catalyst and method for producing and using the same
US9636659B2 (en) 2012-03-07 2017-05-02 Chevron Phillips Chemical Company Lp Selective hydrogenation catalyst and methods of making and using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997526A (en) * 1982-11-22 1984-06-05 Chiyoda Chem Eng & Constr Co Ltd Manufacture of molded body of porous alumina
JPS6268546A (en) * 1985-09-19 1987-03-28 Nippon Oil Co Ltd Preparation of catalyst carrier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997526A (en) * 1982-11-22 1984-06-05 Chiyoda Chem Eng & Constr Co Ltd Manufacture of molded body of porous alumina
JPS6268546A (en) * 1985-09-19 1987-03-28 Nippon Oil Co Ltd Preparation of catalyst carrier

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100507445B1 (en) * 1997-12-31 2005-12-08 주식회사 효성 Method for preparing a catalyst for dehydrogenation of low molecular weight hydrocarbons with macropores
JP2006527065A (en) * 2003-06-13 2006-11-30 ヤラ・インターナショナル・アーエスアー Method for producing supported oxide catalyst
JP4641498B2 (en) * 2003-06-13 2011-03-02 ヤラ・インターナショナル・アーエスアー Method for producing catalyst-supported oxide
JP2007167842A (en) * 2004-03-12 2007-07-05 Saint-Gobain Ceramics & Plastics Inc Method of forming spray dried alumina catalyst carrier material
JP2006181562A (en) * 2004-12-24 2006-07-13 Catalysts & Chem Ind Co Ltd Catalyst composition for hydrotreating heavy hydrocarbon oil
JP2010179268A (en) * 2009-02-07 2010-08-19 Kosei:Kk Plant for producing support
US9636659B2 (en) 2012-03-07 2017-05-02 Chevron Phillips Chemical Company Lp Selective hydrogenation catalyst and methods of making and using same
JP2016533891A (en) * 2013-09-06 2016-11-04 シェブロン フィリップス ケミカル カンパニー エルピー Selective hydrogenation catalyst and method for producing and using the same

Also Published As

Publication number Publication date
JP2556349B2 (en) 1996-11-20

Similar Documents

Publication Publication Date Title
CN108855024B (en) Preparation method of alumina carrier with large aperture and high mechanical strength
CN102923744A (en) Preparation method for aluminum oxide by direct forming method
US4085068A (en) Hydrodenitrogenation and hydrocracking catalyst
JPH0580256B2 (en)
CN101664701B (en) Alumina carrier and preparation method thereof
JPH0575695B2 (en)
US4016108A (en) Preparation of catalysts of predetermined pore size distribution and pore volume
JPH01254254A (en) Preparation of catalyst carrier
US3923692A (en) Hydrotreating catalyst
WO2020135714A1 (en) Pseudoboehmite, and manufacturing method therefor and application thereof
JPS6212614A (en) Manufacture of alumina with macropores
CN103041870A (en) Alumina supporter, and preparation method and application thereof
CN101817545B (en) Preparation method of mesoporous alumina powder based on saccharides
US4145316A (en) Preparation of catalysts of predetermined pore size distribution and pore volume
JP2556341B2 (en) Process for producing hydrotreated catalyst made from hydrogel and produced catalyst
RU2623432C1 (en) Method of preparation of carrier for catalyst of hydraulic cleaning of oil faces
US4016107A (en) Preparation of catalysts of predetermined pore size distribution and pore volume
JPH0433493B2 (en)
RU2685263C1 (en) Aluminum oxide-based support for catalysts for processing hydrocarbon material and method of its preparation
JP2556340B2 (en) Process for producing hydrogenated catalyst prepared from hydrogel and produced catalyst
CN112973663B (en) Solid acid catalyst for catalyzing esterification reaction of pentaerythritol and stearic acid and preparation method thereof
US3923691A (en) Hydrotreating catalyst
JP4848500B2 (en) Porous photocatalyst
RU2329100C2 (en) Method of obtaining oxide catalysts on a substrate
JPH0938494A (en) Catalyst compacting method using alumina as binder

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12