JPH01252520A - Fiber consisting of boron, carbon and nitrogen and production thereof - Google Patents

Fiber consisting of boron, carbon and nitrogen and production thereof

Info

Publication number
JPH01252520A
JPH01252520A JP63079090A JP7909088A JPH01252520A JP H01252520 A JPH01252520 A JP H01252520A JP 63079090 A JP63079090 A JP 63079090A JP 7909088 A JP7909088 A JP 7909088A JP H01252520 A JPH01252520 A JP H01252520A
Authority
JP
Japan
Prior art keywords
carbon
boron
nitrogen
fiber
source gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63079090A
Other languages
Japanese (ja)
Other versions
JPH0699145B2 (en
Inventor
Masayuki Kawaguchi
雅之 川口
Yasushi Kida
喜田 康
Kayoko Yamamoto
山本 香代子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP63079090A priority Critical patent/JPH0699145B2/en
Publication of JPH01252520A publication Critical patent/JPH01252520A/en
Publication of JPH0699145B2 publication Critical patent/JPH0699145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a fiber substantially consisting of boron, carbon and nitrogen, exhibiting a specific diffraction peak in X ray diffraction by CuKalpha ray, having excellent heat resistance, chemical stability and thermal shock resistance and high conductivity and useful as high-temperature and corrosion-resistant material, conductive and corrosion-resistant material, etc. CONSTITUTION:In the aimed fiber substantially consists of boron, carbon and nitrogen, 2theta by X ray diffraction measurement by CuKalpha ray has diffraction peak in the range of 23-27 deg. and the aspect ration is >=10. The fiber is obtained by introducing a mixed gas consisting of boron source gas (e.g., BCl3), carbon source gas (e.g., hydrocarbon) and nitrogen source gas (e.g., NH3) into a reactor retaining a metal substrate and subjecting the mixed gas to chemical vapor phase deposition at <=500mmHg pressure. Transition metal, especially nickel, iron and these alloy are preferably used as metals for substrate. The reaction is preferably carried out in the range of 600-1200 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はホウ素、炭素、窒素からなる繊維およびその製
造法に関し、耐熱性、化学的安定性、耐熱衝撃性等に優
れた窒化ホウ素の物性とグラファイトの耐薬品性、高導
電性等の物性を併わせ持つ繊維に関するものであり、高
温耐食材料、導電性耐食材料等の各種複合材料用として
有用なものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to fibers made of boron, carbon, and nitrogen and a method for producing the same, and the physical properties of boron nitride, which is excellent in heat resistance, chemical stability, thermal shock resistance, etc. It relates to fibers that have physical properties such as chemical resistance and high conductivity of graphite, and are useful for various composite materials such as high-temperature corrosion-resistant materials and conductive corrosion-resistant materials.

[従来技術] 従来より各種基材マトリクスと繊維材料を混合して強化
、あるいは複合機能を付与した材料は種々知られており
、この繊維材料として、ガラス繊維、炭素繊維、各種セ
ラミクス繊維等がある。このうちセラミクス繊維として
は、炭化ケイ素、窒化ケイ素等が知られているが、ホウ
素、炭素、窒素からなる繊維を得た例はない、ホウ素、
炭素、窒素からなる材料については、A、R,Badz
inら(Proc、Int、conf、cl+em、 
Vap、Dep、3rd、1972.747−753)
がBCl3、CCl3 、N2 、H2を用い、化学気
相析出法(以下CVD法という)により得ているが、生
成物は粉状で得られる。
[Prior Art] Various materials have been known that are reinforced or have composite functions by mixing various base matrices and fiber materials, and these fiber materials include glass fiber, carbon fiber, various ceramic fibers, etc. . Among these, silicon carbide, silicon nitride, etc. are known as ceramic fibers, but there is no example of obtaining fibers made of boron, carbon, or nitrogen.
For materials consisting of carbon and nitrogen, A, R, Badz
in et al. (Proc, Int, conf, cl+em,
Vap, Dep, 3rd, 1972.747-753)
is obtained by a chemical vapor deposition method (hereinafter referred to as CVD method) using BCl3, CCl3, N2, and H2, but the product is obtained in powder form.

[問題点を解決するための手段] 本発明者らは、かかる従来の問題点に鑑み、鋭意検討の
結果、CVD法において、基体として特定の材料を選び
、反応を減圧下でおこなうことにより、本質的にホウ素
、炭素、窒素からなる繊維を得ることに成功し、本発明
に至ったものである。
[Means for Solving the Problems] In view of these conventional problems, the inventors of the present invention have made extensive studies and found that in the CVD method, by selecting a specific material as a substrate and carrying out the reaction under reduced pressure, They succeeded in obtaining fibers consisting essentially of boron, carbon, and nitrogen, leading to the present invention.

本質的にホウ素、炭素、窒素からなり、CuKa線によ
るX線回折測定による2θが23〜27゜の範囲に回折
ピークを有し、アスペクト比が10以上であることを特
徴とする繊維であり、製造法はホウ素源ガス、炭素源ガ
スおよび窒素源ガスからなる混合ガスを金属基体を保持
した反応容器内に導入し、500m5+Hg以下の圧力
で化学気相析出法により該基体上に本質的にホウ素、炭
素、窒素からなり、CuKa線によるX線回折測定によ
る2θが23〜27°の範囲に回折ピークを有し、アス
ペクト比が10以上である繊維を形成することを特徴と
する繊維の製造法である。
A fiber that essentially consists of boron, carbon, and nitrogen, has a diffraction peak in the range of 2θ of 23 to 27 degrees as measured by X-ray diffraction using CuKa rays, and has an aspect ratio of 10 or more, The production method involves introducing a mixed gas consisting of a boron source gas, a carbon source gas, and a nitrogen source gas into a reaction vessel holding a metal substrate, and essentially depositing boron on the substrate by chemical vapor deposition at a pressure of 500 m5 + Hg or less. , carbon, and nitrogen, has a diffraction peak in the range of 2θ of 23 to 27° as measured by X-ray diffraction using CuKa rays, and has an aspect ratio of 10 or more. It is.

本発明の繊維は窒化ホウ素と炭素の固溶体であるのか、
窒化ホウ素マトリックス中に炭素が均一に分散した連続
相からなるものかは定かでないところであるが、いずれ
にしても連続相からなるものであるのが特徴である0本
発明の繊維は本質的にホウ素、炭素、窒素からなるもの
であるが、原料ガスに由来する水素が含まれるものであ
る。
Is the fiber of the present invention a solid solution of boron nitride and carbon?
It is unclear whether the fibers of the present invention consist of a continuous phase in which carbon is uniformly dispersed in a boron nitride matrix, but in any case, the fibers of the present invention are characterized by being composed of a continuous phase. , carbon, and nitrogen, but it also contains hydrogen derived from the raw material gas.

ホウ素、炭素、窒素の比は原子比でホウ素、窒素はほぼ
1;1であり、残部が炭素である。炭素量は80重量%
以上となる。
The atomic ratio of boron, carbon, and nitrogen is approximately 1:1 for boron and nitrogen, with the remainder being carbon. Carbon content is 80% by weight
That's all.

かかる本発明の繊維はCVD法において特定の基体を選
び、500maHg以下の減圧下にすることによりはじ
めて得られるものであり、基体としては金属、特に遷移
金属が好ましく、ニッケル、鉄等およびこれらの合金が
挙げられる。
Such fibers of the present invention can only be obtained by selecting a specific substrate in the CVD method and subjecting it to a reduced pressure of 500 maHg or less, and the substrate is preferably a metal, particularly a transition metal, such as nickel, iron, etc., or an alloy thereof. can be mentioned.

本発明によれば、直径1μm以下、アスペクト比10以
上の繊維状物が容易に得られるものである。金属、特に
ニッケルあるいは鉄系の材料が本発明において特異的に
優れている理由は必ずしも定かではないが、これらの材
料が触媒的な作用をし、繊維化が進行するものと考えら
れる6本発明においては500+amHg以下の減圧下
での反応が好ましく、これ以上では繊維状とはならず、
膜あるいは粉として得られる。また、10tsHg以下
では繊維径、長さのバラツキが大きくなり、好ましくな
い。
According to the present invention, a fibrous material having a diameter of 1 μm or less and an aspect ratio of 10 or more can be easily obtained. The reason why metals, especially nickel or iron-based materials, are uniquely superior in the present invention is not necessarily clear, but it is thought that these materials act as a catalyst and fiberization progresses. In this case, the reaction is preferably carried out under reduced pressure of 500+amHg or less; above this, it will not become fibrous;
Obtained as a film or powder. Moreover, if it is less than 10 tsHg, the variation in fiber diameter and length becomes large, which is not preferable.

また、圧力を低くするほど他の条件が同一であれば繊維
中の炭素量は小さくなる。
Further, as the pressure is lowered, the amount of carbon in the fiber becomes smaller if other conditions are the same.

本発明で用いる原料ガスとしては、特に限定されないが
、ホウ素源としてBC13等のハロゲン化ホウ素、窒素
源としてはNH3等の反応性の高いガスが好ましく、炭
素源としては、炭化水素、特に不飽和結合を有するガス
が好ましく、反応性等からアセチレンが最も好ましい、
また、これら原料ガスの量的関係については特に制限さ
れないがホウ素源ガスと窒素源ガスは少なくとも原子比
で、1:2以上が好ましい、炭素源ガスに対してホウ素
源ガスと窒素源ガスを増加すれば繊維中のBN含有量は
20重量%までは増加するが、これ以上ガス比を増大さ
せてもBN含有量は増加せず、BN粉末あるいは膜とし
て分離してしまう。
The raw material gas used in the present invention is not particularly limited, but the boron source is preferably a boron halide such as BC13, the nitrogen source is preferably a highly reactive gas such as NH3, and the carbon source is preferably a hydrocarbon, especially an unsaturated A gas having a bond is preferable, and acetylene is most preferable from the viewpoint of reactivity etc.
In addition, there is no particular restriction on the quantitative relationship between these raw material gases, but the atomic ratio of boron source gas and nitrogen source gas is preferably at least 1:2 or more, and the boron source gas and nitrogen source gas are increased relative to the carbon source gas. If this is done, the BN content in the fiber will increase up to 20% by weight, but even if the gas ratio is increased beyond this, the BN content will not increase and will be separated as BN powder or film.

反応温度は特に限定的ではないが、600℃以上が好ま
しい、これ以下では反応速度が極端に小さくなる0反応
速度の面からは反応温度は高い方が好ましいが、本発明
においては、基体として金属を用いており、この金属の
耐熱温度に依存し、1200℃程度以下での反応が推奨
される。また、温度を高くすると他の条件が同一の場合
、得られる繊維中の炭素量は小さくなる傾向がある。
The reaction temperature is not particularly limited, but is preferably 600°C or higher; below this temperature, the reaction rate is extremely low.From the viewpoint of the reaction rate, a higher reaction temperature is preferred; however, in the present invention, metal Depending on the heat resistance temperature of the metal, it is recommended that the reaction be carried out at a temperature of about 1200°C or lower. In addition, when the temperature is increased, the amount of carbon in the resulting fiber tends to decrease when other conditions are the same.

以下、実施例により本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

実施rIA1 内径40mm長さ1000mmの石英管からなる熱CV
D装置の中央に500mm X 20mmX 3mmの
ニッケル基板を設置し、BC13、C2H2およびNH
Iを原料とし、反応管中央を800℃に加熱した炉内に
導入した。それぞれのガス流量は次のとおりである。
Implementation rIA1 Thermal CV consisting of a quartz tube with an inner diameter of 40 mm and a length of 1000 mm
A 500 mm x 20 mm x 3 mm nickel substrate was installed in the center of device D, and BC13, C2H2 and NH
I was used as a raw material, and the center of the reaction tube was introduced into a furnace heated to 800°C. The respective gas flow rates are as follows.

B Cl 3  15cc/ l1inN H230c
c/ win C2H28cc/ win 炉内圧力は20mmHgに保持した。
B Cl 3 15cc/ l1inN H230c
c/win C2H28cc/win The pressure inside the furnace was maintained at 20 mmHg.

以上の条件で6時間反応をおこなったのち、ガス導入と
基板加熱をやめ、炉内を真空排気、冷却した、基板上に
は黒色で長さ1〜5mm、径50〜500μmの針状物
質が2.8g生成した。これは炭素基準で約80%の収
率である。このものは直径0.1〜0゜3μm、長さ1
〜lOの繊維から構成されていた。このSEM写真を第
1図に示した。この繊維(生成繊維)の元素分析の結果
を第1表に示した。
After the reaction was carried out for 6 hours under the above conditions, gas introduction and substrate heating were stopped, and the furnace was evacuated and cooled.A black needle-like substance with a length of 1 to 5 mm and a diameter of 50 to 500 μm was deposited on the substrate. 2.8g was produced. This is a yield of about 80% on a carbon basis. This item has a diameter of 0.1 to 0°3 μm and a length of 1
It was composed of ~1O fibers. This SEM photograph is shown in FIG. The results of elemental analysis of this fiber (produced fiber) are shown in Table 1.

また、この生成繊維を窒素ガス中2000℃で、1時間
熱処理しく焼成繊維)なところ形状の変化はなかった。
Further, when the resulting fibers were heat treated in nitrogen gas at 2000° C. for 1 hour (sintered fibers), there was no change in shape.

また、元素分析をおこない結果を第1表に示した。生成
繊維と焼成繊維とをCuKa線によるX線回折測定をお
こない、この解析パターンを第3図(生成繊維)、第4
図(焼成繊維)に示した。第3図において、2θが20
〜30°においてブロードなピークを有し、無定形BN
と無定形Cの002の回折ピークが重なりあったもので
ある。この生成繊維は、結晶化度が低く、ブロードなパ
ターンとなることが特徴である。生成繊維を焼成して得
た繊維はこの熱処理により水素は除去され、X線回折線
はよりシャープになり、結晶性が向上したが、第4図に
示したとおり、2θが26°においてBNとCの002
の回折ピークが重なりあったピークとなるが、これはh
−BN、h−Cの002の回折ピーク(2θが26,5
°)よりも低角度であることが特徴であり、焼成によっ
ても回折ピークが顕著には鋭くならないものである。
In addition, elemental analysis was performed and the results are shown in Table 1. The produced fibers and fired fibers were subjected to X-ray diffraction measurements using CuKa rays, and the analysis patterns are shown in Figures 3 (produced fibers) and 4.
Shown in the figure (fired fiber). In Figure 3, 2θ is 20
Amorphous BN with a broad peak at ~30°
The diffraction peaks of 002 and amorphous C overlap. This produced fiber is characterized by a low degree of crystallinity and a broad pattern. In the fiber obtained by firing the produced fiber, hydrogen was removed by this heat treatment, the X-ray diffraction line became sharper, and the crystallinity improved, but as shown in Fig. C's 002
The diffraction peaks of h
-BN, h-C 002 diffraction peak (2θ is 26,5
The diffraction peak is characterized by a lower angle than that of (°), and the diffraction peak does not sharpen significantly even after firing.

なお、元素分析において、C,H,Nは燃焼法により、
Bはアルカリ分解させたのちICPにより定量分析をお
こなった。
In addition, in the elemental analysis, C, H, and N were determined by the combustion method.
B was subjected to alkali decomposition and then quantitatively analyzed by ICP.

実施例2 炉内圧力を30 mm11gとする以外は実施例1と同
様にして、反応をおこなった。この結果径0.1〜1μ
mで10μm以下の種々の形状の繊維が0゜3g得られ
た。繊維の収率は約10%であった。
Example 2 A reaction was carried out in the same manner as in Example 1 except that the furnace pressure was 30 mm and 11 g. As a result, the diameter is 0.1~1μ
0.3 g of fibers of various shapes with a diameter of 10 μm or less were obtained. The fiber yield was approximately 10%.

実施PA1と同様にして生成繊維、焼成繊維の元素分析
をおこなった。この結果を第1表に示した。
Elemental analysis of the produced fibers and fired fibers was conducted in the same manner as in Example PA1. The results are shown in Table 1.

実施例3 炉内圧力を400 +u+IIgとする以外は実施例1
と同様にして、反応をおこなった。この結果、径0.0
5〜0.3μm、長さ1〜10μmの繊維が1.1g、
収率約30%であった0元素分析の結果を第1表に示し
た。また、SEM写真を第2図に示した。
Example 3 Example 1 except that the furnace pressure was set to 400 +u + IIg.
The reaction was carried out in the same manner. As a result, the diameter is 0.0
1.1 g of fibers with a length of 5 to 0.3 μm and a length of 1 to 10 μm;
Table 1 shows the results of zero elemental analysis, which gave a yield of about 30%. Moreover, a SEM photograph is shown in FIG.

比較例1 炉内圧力を7005m1−1gに保持した以外は実施例
1と同じ条件で反応を行ったが繊維は得られず、ホウ素
、炭素、窒素から成る膜、および粉、炭素粉、BN粉し
か得られなかった。
Comparative Example 1 A reaction was carried out under the same conditions as in Example 1 except that the furnace pressure was maintained at 7005 m1-1 g, but no fibers were obtained, and a film consisting of boron, carbon, and nitrogen, and powder, carbon powder, and BN powder were obtained. I could only get it.

第1表 (以下余白) [発明の効果] 本発明の繊維は、耐熱性、化学的安定性、耐熱衝撃性等
に優れた窒化ホウ素の物性とグラファイトの耐薬品性、
高導電性等の物性を併わせ持つものであり各種の材料と
複合させ、高温耐食材料、導電性耐食材料等あるいはf
、tilt波シールド材等として各種用途に供すことの
できるものであり、CVD法により容易に得ることがで
きるものである。
Table 1 (blank below) [Effects of the invention] The fiber of the present invention has the physical properties of boron nitride, which has excellent heat resistance, chemical stability, and thermal shock resistance, and the chemical resistance of graphite.
It has physical properties such as high conductivity, and can be combined with various materials such as high temperature corrosion resistant materials, conductive corrosion resistant materials, etc.
It can be used for various purposes as a tilt wave shielding material, etc., and can be easily obtained by the CVD method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図および第4図は、それぞれ実施
例1、実施例3の繊維構造のSEM写真実施例1の生成
繊維、焼成繊維のX線回折パターンを示すものである。 手続補正書(方式) 昭和63年7月S日 特許庁長官 吉 1)文 毅 殿 1、 事件の表示 昭和63年特許願第79090号 2、発明の名称 ホウ素、炭素、窒素からなる繊維およびその製造法3、
補正をする者 事件との関係 特許出願人 代表者 和 1)角 平 4、代理人 住所 東京都千代田区神田錦町三丁目7番地1(興和−
橋ビル) 5、補正命令の日付 昭和63年6月8日 (発送口;昭和63年6月28日) 6、補正の対象 明細書の「図面の簡単な説明」の欄 7、補正の内容 明細書の第10頁第1O行〜第13行の「第1図、−−
一−−−示すものである。」なる記載を[第1図は実施
例1の繊維の形状の32M写真、第2図は実施例3の繊
維の形状の32M写真、第3図は実施例1の生成繊維の
X線回折パターン、第4図は実施例1の焼成繊維のX線
回折パターンを示すものである。]と補正する。
Figures 1, 2, 3, and 4 are SEM photographs of the fiber structures of Example 1 and Example 3, respectively, showing the X-ray diffraction patterns of the produced fiber and fired fiber of Example 1. . Procedural amendment (method) July S, 1985 Director General of the Patent Office Yoshi 1) Moon Takeshi 1, Indication of the case Patent Application No. 79090 of 1988 2, Name of the invention Fibers made of boron, carbon, and nitrogen and their Manufacturing method 3,
Relationship with the person making the amendment Patent applicant representative Kazu 1) Kado Hei 4 Address of agent 3-7-1 Kanda Nishiki-cho, Chiyoda-ku, Tokyo (Kowa-
(Hashi Building) 5. Date of amendment order: June 8, 1988 (Shipping port: June 28, 1988) 6. "Brief explanation of drawings" column 7 of the specification subject to amendment: Contents of the amendment "Fig. 1, --
1. [Figure 1 is a 32M photograph of the shape of the fiber of Example 1, Figure 2 is a 32M photograph of the shape of the fiber of Example 3, and Figure 3 is the X-ray diffraction pattern of the produced fiber of Example 1. , FIG. 4 shows the X-ray diffraction pattern of the fired fiber of Example 1. ] and correct it.

Claims (2)

【特許請求の範囲】[Claims] (1)本質的にホウ素、炭素、窒素からなり、CuKα
線によるX線回折測定による2θが23〜27°の範囲
に回折ピークを有し、アスペクト比が10以上であるこ
とを特徴とする繊維。
(1) Consisting essentially of boron, carbon, and nitrogen, CuKα
A fiber characterized by having a diffraction peak in the range of 2θ of 23° to 27° as measured by X-ray diffraction, and having an aspect ratio of 10 or more.
(2)ホウ素源ガス、炭素源ガスおよび窒素源ガスから
なる混合ガスを金属基体を保持した反応容器内に導入し
、500mmHg以下の圧力で化学気相析出法により該
基体上に本質的にホウ素、炭素、窒素からなり、CuK
α線によるX線回折測定による2θが23〜27°の範
囲に回折ピークを有し、アスペクト比が10以上である
繊維を形成することを特徴とする繊維の製造法。
(2) A mixed gas consisting of a boron source gas, a carbon source gas, and a nitrogen source gas is introduced into a reaction vessel holding a metal substrate, and essentially boron is deposited on the substrate by chemical vapor deposition at a pressure of 500 mmHg or less. , carbon and nitrogen, CuK
A method for producing fibers, which comprises forming fibers having a diffraction peak in the range of 2θ of 23 to 27 degrees as measured by X-ray diffraction using alpha rays, and having an aspect ratio of 10 or more.
JP63079090A 1988-03-31 1988-03-31 Fibers made of boron, carbon, and nitrogen and methods for producing the same Expired - Fee Related JPH0699145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63079090A JPH0699145B2 (en) 1988-03-31 1988-03-31 Fibers made of boron, carbon, and nitrogen and methods for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63079090A JPH0699145B2 (en) 1988-03-31 1988-03-31 Fibers made of boron, carbon, and nitrogen and methods for producing the same

Publications (2)

Publication Number Publication Date
JPH01252520A true JPH01252520A (en) 1989-10-09
JPH0699145B2 JPH0699145B2 (en) 1994-12-07

Family

ID=13680185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63079090A Expired - Fee Related JPH0699145B2 (en) 1988-03-31 1988-03-31 Fibers made of boron, carbon, and nitrogen and methods for producing the same

Country Status (1)

Country Link
JP (1) JPH0699145B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5866059A (en) * 1992-11-06 1999-02-02 Central Glass Company, Limited Polycrystalline BCN substance and method of producing same
CN110589832A (en) * 2019-09-24 2019-12-20 中国科学院深圳先进技术研究院 SiC nanowire and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5866059A (en) * 1992-11-06 1999-02-02 Central Glass Company, Limited Polycrystalline BCN substance and method of producing same
CN110589832A (en) * 2019-09-24 2019-12-20 中国科学院深圳先进技术研究院 SiC nanowire and preparation method and application thereof

Also Published As

Publication number Publication date
JPH0699145B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
Goto et al. Chemically vapor deposited Ti3SiC2
US3726643A (en) Method of producing refractory carbides,borides,silicides,sulfides,and nitrides of metals of groups iv,v,and vi of the periodic system
US3900540A (en) Method for making a film of refractory material having bi-directional reinforcing properties
US5417952A (en) Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride
JPS6047202B2 (en) Super hard high purity oriented polycrystalline silicon nitride
JP2000297370A (en) Surface functionalized diamond crystal and production thereof
JPS61223183A (en) Production of rhombohedral system boron nitride
Takahashi et al. Chemical vapor deposition of titanium diboride
CA1309903C (en) Deposition of titanium aluminides
US3334967A (en) Process of preparing boron carbide from boron halide and a hydrocarbon
EP0723600A1 (en) Process for the preparation of silicon carbide films using single organosilicon compounds
JPH01252520A (en) Fiber consisting of boron, carbon and nitrogen and production thereof
Cochran et al. Boron and boron carbide coatings by vapor deposition
EP0117542B1 (en) Chemical vapor deposition of metal compound coatings utilizing metal sub-halides
JPH0333005A (en) Pyrolytic boron nitride of columnar crystal form
Bouix et al. Reactive chemical vapor deposition (RCVD) as a method for coating carbon fibre with carbides
JPH01252519A (en) Bulk body consisting of boron, carbon and nitrogen and production thereof
JPH025712B2 (en)
Takahashi et al. Chemical vapor deposition of tungsten carbide dendrites
JPS62119B2 (en)
CA1224091A (en) Chemical vapor deposition of metal compound coatings utilizing metal sub-halide
JPH0375209A (en) Method of manufacturing raw material of ceramics
JPS6250466A (en) Production of article having silicon nitride film
Donaldson et al. Boron and boron carbide by vapor deposition
JPH06115913A (en) Synthesis of boron carbonitride

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees