JPH01246146A - Production of molybdenum trioxide active substance for lithium cell and anode plate using same - Google Patents

Production of molybdenum trioxide active substance for lithium cell and anode plate using same

Info

Publication number
JPH01246146A
JPH01246146A JP63073647A JP7364788A JPH01246146A JP H01246146 A JPH01246146 A JP H01246146A JP 63073647 A JP63073647 A JP 63073647A JP 7364788 A JP7364788 A JP 7364788A JP H01246146 A JPH01246146 A JP H01246146A
Authority
JP
Japan
Prior art keywords
peroxide
molybdenum trioxide
molybdenum
porous
active substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63073647A
Other languages
Japanese (ja)
Inventor
Mutsuo Sugawara
菅原 陸朗
Kenzo Matsuki
松木 健三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP63073647A priority Critical patent/JPH01246146A/en
Publication of JPH01246146A publication Critical patent/JPH01246146A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain molybdenum trioxide (MoO3) active substance capable of giving lithium cells great in both charge and discharge capacities with improved charge characteristics by converting a Mo-based raw material into a peroxide followed by deoxygenation treatment to make said peroxide porous. CONSTITUTION:Firstly, a Mo-based raw material (e.g., (NH4)2MoO4) is made to react with a peroxide (pref. H2O2) to from a peroxide MoO3(OH)2.H2O. This peroxide is heated to <=200 deg.C (e.g., 170 deg.C) to cause deoxygenation and partial dehydration to produce a porous MoO3 active substance. This substance is then applied on a net substrate made of Ni to make the objective anode plate for Li cell. In case said peroxide is heated to >=200 deg.C (e.g., 400 deg.C), further dehydration is caused, producing a porous MoO3 active substance with little OH group left. The charge characteristics of a cell using this substance is such that in the ending time of the charge, voltage becomes constant, therefore, this cell is useful as a secondary battery.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リチウム電池用三酸化モリブデン活物質の製
造法益にリチウム電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a molybdenum trioxide active material for lithium batteries, and to lithium batteries.

〔従来の技術〕[Conventional technology]

従来公知のリチウム電池用三酸化モリブデンは、モリブ
デン酸アンモニウムを300℃以上に加熱することによ
り製造されて居り、この得られた二酸化モリブデンHo
Os粉末を導電性粉末とバインダーを混合して多孔基板
に塗着して正極板としてリチウム電池の正極板用に供さ
れている。
Conventionally known molybdenum trioxide for lithium batteries is produced by heating ammonium molybdate to 300°C or higher, and the resulting molybdenum dioxide Ho
Os powder is mixed with conductive powder and a binder and applied to a porous substrate to form a positive electrode plate for use in a lithium battery.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の製法により得られる三酸化モリブデンは、比
較的エネルギー密度が高い点で好ましいが、これをリチ
ウム電池用活物質として使用した場合、従来の電池に比
し、充電容量並に放電容量が大きい電池や充電特性か改
善され、電池を提供できる三酸化モリブデン活物質を製
造できることが望まれる。
Molybdenum trioxide obtained by the above conventional manufacturing method is preferable because it has a relatively high energy density, but when it is used as an active material for lithium batteries, it has a large charge capacity and discharge capacity compared to conventional batteries. It would be desirable to be able to produce a molybdenum trioxide active material that can provide batteries with improved battery and charging characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記の要望を満足したリチウム電池用三酸化
モリブデン活物質の製造法を提供するもので、金属モリ
ブデン、各種の酸化モリブデン、モリブデン酸塩などの
任意のモリブデン系原料を一部モリブデン過酸化物とし
、次でこれを脱酸素処理して多孔性の三酸1ヒモリブデ
ンとすることを特徴とする。
The present invention provides a method for producing a molybdenum trioxide active material for lithium batteries that satisfies the above-mentioned needs. It is characterized in that it is made into an oxide and then subjected to deoxidation treatment to form porous monohymolybdenum trioxide.

〔作 用〕[For production]

本発明の三酸1ヒモリブデン活物質は、前記の製造過程
において、モリブデン過酸化物より加熱により酸素か放
出され、その跡に無数の脱気孔が形成されているので、
それだけ、リチウムの収り込みが向上し、電池の放電容
量が大きくなる。この場合、過酸化物として過酸化水素
を使用した場合は、過モリブデン酸が生成し、これを1
00℃以上に加熱することにより、脱酸素と脱水が行わ
れるので、従来の三酸化モリブデン活物質に比し、多孔
性の大きい活物質が得られ、それだけリチウムを取り込
み放電並に充電容量の大きい電池が得られる。この場合
、特に200’C度以上の加熱により、充電特性が充電
末期で一定する電池が提供でき、特に二次電池用として
使用し有利である。
In the monohypolybdenum triacid active material of the present invention, oxygen is released from the molybdenum peroxide by heating during the above manufacturing process, and countless degassing holes are formed in the traces.
This increases the amount of lithium that can be accommodated, increasing the battery's discharge capacity. In this case, when hydrogen peroxide is used as the peroxide, permolybdic acid is produced, which is
Deoxidation and dehydration are performed by heating to 00°C or higher, resulting in an active material with greater porosity than conventional molybdenum trioxide active materials, which takes in lithium and has a greater discharge and charge capacity. A battery is obtained. In this case, heating to a temperature of 200'C or higher can provide a battery whose charging characteristics are constant at the end of charging, which is particularly advantageous for use as a secondary battery.

〔実施例〕〔Example〕

従来の三酸化モリブデン活物質の製造法は、出発原料或
は中間原料としての金属モリブデン粉末、酸化モリブデ
ンHoQ 2、モリブデン酸塩などの任意のモリブデン
系原料、例えば、モリブデン酸アンモニウム(NH4)
6HO70□、を原ず1とし、これを300℃に加熱し
て得られ、この三酸化モリブテンHo0i(Vl)をリ
チウム・電池の正極活物質として使用しているのが従来
である。本発明によれば、このようにして得な三酸化モ
リブデン活物質を更に次のように処理する。
The conventional method for producing molybdenum trioxide active material uses any molybdenum-based raw materials such as metallic molybdenum powder, molybdenum oxide HoQ2, molybdate salt, etc. as a starting material or intermediate raw material, such as ammonium molybdate (NH4).
6HO70□ is used as the original 1 and is obtained by heating it to 300° C., and this molybdenum trioxide Ho0i (Vl) is conventionally used as a positive electrode active material of lithium batteries. According to the invention, the molybdenum trioxide active material thus obtained is further processed as follows.

例えば、これを更に酸化せしめる。換言すれば、これを
所望の酸化剤、例えば過酸化物質、好ましくは過酸化水
素と反応させる過酸化物とする。
For example, it is further oxidized. In other words, it is a peroxide which is reacted with the desired oxidizing agent, such as a peroxide substance, preferably hydrogen peroxide.

かくして、過モリブデン酸HOO= (OH)2.1’
+20とも言うべき三酸化モリブデンの過酸化物が生成
する。次でこれを加熱することにより、酸素を放出せし
めて、その酸素の放出された跡に無数の緻細空孔をもつ
本発明の多孔性の三酸化モリブデンを得る。これをリチ
ウム−次電池又は二次電池の正極用活物質として利用す
ることにより、1f来の前記二酸化モリブデン活物質に
よるよりも大きい放電容量の電池、或いは、充電容量が
向上し且つ又充電特性の改善された電池か得られること
が認められた。
Thus, permolybdic acid HOO= (OH)2.1'
A peroxide of molybdenum trioxide, which can be called +20, is produced. Next, by heating this, oxygen is released, and the porous molybdenum trioxide of the present invention having countless fine pores at the site where the oxygen was released is obtained. By using this as a positive electrode active material of a lithium secondary battery or a secondary battery, a battery with a larger discharge capacity than that of the 1F molybdenum dioxide active material, or a battery with an improved charging capacity and charging characteristics. It was recognized that an improved battery could be obtained.

更に、詳細には、前記の加熱を200℃以下の温度で、
例えば、170℃で過モリブデン酸を加熱することによ
り、8003 (OH2・11□0より脱酸素と一部の
脱水が行われて多孔性の大きい三酸化モリブデンが得ら
れる。このようにして得られた二酸化モリブデンを、常
法により、例えば、アセチレンブラックとバインダーと
してテフロン分散液と混練し、これをニッケル網基板に
塗布して直径13關、厚さ0.3+w+の円形正極板を
製造した。これを直径1311tI、厚さ0.75au
nの円形リチウム板と組み合わせて、電解液としてIH
LiCIO,+プロピレンカーボネートを使用して、該
正負極板間に10wの空間を存して対向させ、その層間
空間に該電解液を充填しテフロン容器内に気密に収容し
、端子としては金メツキを施した真鍮を用いた。このよ
うにして得たリチウム電池について、充放電特性を試験
しな。更に、本発明の製造法において、該過モリブデン
酸の加熱を200℃以上、例えば400℃に加熱した場
合は、更に脱水が行われ、生成する二酸化モリブデン中
にほとんど(OH)基が残らない多孔性の三酸化モリブ
デン活物質を作成し、これを使用して、前記と同様にし
て円形正極板を製造し、この正極板を使用し、前記と同
様にして前記の負極板と組み同様にリチウム電池を作成
し、充放電特性を試験した。
Furthermore, in detail, the heating is performed at a temperature of 200°C or less,
For example, by heating permolybdic acid at 170°C, deoxygenation and partial dehydration are performed from 8003 (OH2.11□0) to obtain highly porous molybdenum trioxide. Molybdenum dioxide was kneaded with, for example, acetylene black and a Teflon dispersion as a binder by a conventional method, and this was applied to a nickel mesh substrate to produce a circular positive electrode plate with a diameter of 13 mm and a thickness of 0.3 + W +. Diameter 1311tI, thickness 0.75au
In combination with n circular lithium plate, IH as electrolyte
Using LiCIO, + propylene carbonate, the positive and negative electrode plates were placed facing each other with a space of 10 W between them, and the interlayer space was filled with the electrolytic solution and housed airtight in a Teflon container, and the terminals were gold-plated. Made of polished brass. The charge/discharge characteristics of the lithium battery thus obtained shall be tested. Furthermore, in the production method of the present invention, when the permolybdic acid is heated to 200°C or higher, for example, 400°C, dehydration is further performed, resulting in a porous structure in which almost no (OH) groups remain in the generated molybdenum dioxide. Create a molybdenum trioxide active material, use this to manufacture a circular positive electrode plate in the same manner as above, use this positive electrode plate, combine it with the negative electrode plate in the same manner as above, and use lithium as well. A battery was created and its charge/discharge characteristics were tested.

比較のため、従来の、即ち、未処理の二酸化モリブデン
活物質を使用し、前記と同様に正極板を製造し、この正
極板を使用し前記と同様にして従来のリチウム電池を組
み立て、これにつき、同様の充放電試験を行った。
For comparison, a conventional, i.e., untreated molybdenum dioxide active material was used, a positive electrode plate was manufactured in the same manner as described above, and a conventional lithium battery was assembled using this positive electrode plate in the same manner as described above. , a similar charge-discharge test was conducted.

その結果を第1図及び第2図に示す。第1図において、
aは、170℃加熱処理の本発明の多孔性三酸化モリブ
デン活物質を使用した電池の充電特性、bは、400℃
加熱処理の本発明の多孔性三酸化モリブデン活物質を使
用した電池の充電特性、Cは、従来の二酸化モリブデン
活物質を使用した電池の充電特性を示す。この図から明
らかなように、本発明で加熱処理して得な三酸化モリブ
デン活物質を使用した電池は、従来の未処理二酸化モリ
ブデン活物質を使用した電池に比し大きい充電容量が得
られる。又、意外なことに、理由は明らかでないが、4
00℃加熱処理の活物質を使用したリチウム電池では、
従来一般に、充電末期とされている対し i/181 
+電位4V程度となると、その電圧が上昇せず、一定の
値に保たれる事実が明らかとなった。このことは、電池
の充電作業において、その電圧の上昇が一定の値となる
ので、充電末期であることを知ることができると同時に
、それ以上の過充電となることやこれに11−なう電解
液の異常な分解を防止することができ、二次電池用の活
物質として極めて有用である。多くの実験研究の結果、
200℃以上の加熱により得た多孔性で且つ(叶)2の
除かれた二酸化モリブデンは、上記の特性があることが
認められた。
The results are shown in FIGS. 1 and 2. In Figure 1,
a is the charging characteristic of a battery using the porous molybdenum trioxide active material of the present invention heat-treated at 170°C, b is the charging characteristic at 400°C
Charging characteristics of a battery using the porous molybdenum trioxide active material of the present invention after heat treatment, C indicates the charging characteristics of a battery using a conventional molybdenum dioxide active material. As is clear from this figure, the battery using the heat-treated molybdenum trioxide active material of the present invention has a larger charging capacity than the battery using the conventional untreated molybdenum dioxide active material. Also, surprisingly, although the reason is not clear, 4
In lithium batteries that use active materials heat-treated at 00°C,
Conventionally, i/181 is generally considered to be in the final stage of charging.
It has become clear that when the +potential reaches about 4 V, the voltage does not increase and is kept at a constant value. This means that when charging a battery, the voltage rises to a constant value, so you can know when it is at the end of charging, and at the same time, you can prevent further overcharging and 11- It can prevent abnormal decomposition of the electrolyte and is extremely useful as an active material for secondary batteries. As a result of many experimental studies,
It was found that the porous molybdenum dioxide obtained by heating at 200° C. or higher and from which the (leaf) 2 was removed had the above-mentioned characteristics.

第2図は、前記三者の夫々の放電特性a’ 、 b′。FIG. 2 shows the discharge characteristics a' and b' of each of the three above.

a′を示し、本発明の170℃及び400℃に夫々加熱
処理した三酸化モリブデンを使用したリチウム電池の放
電容量は、従来の未処理の三酸化モリブデン活物質を使
用したリチウム電池に比し、放電容量の増大が認められ
た。多くの試験研究の結果、100℃以上の加熱により
、上記の効果が認められることが分っな。
a′, and the discharge capacity of a lithium battery using molybdenum trioxide heat-treated to 170°C and 400°C, respectively, of the present invention is compared to a lithium battery using a conventional untreated molybdenum trioxide active material. An increase in discharge capacity was observed. As a result of many tests and studies, it has been found that heating above 100°C produces the above effects.

〔発明の効果〕〔Effect of the invention〕

このように本発明によるときは、モリブデン系原料より
一部モリブデン過酸化物をつくり、次でこれを脱酸素処
理して多孔性の二酸化モリブデンとしなので、これをリ
チウム電池の正極活物質として使用するときは、従来の
未処理の二酸化モリブデン活物質に比し大きい充電容量
と放電容量が得られ、特に、モリブデン過酸化物が過モ
リブデン酸であるときは、200℃以下の加熱において
、上記の目的とする多孔性の三酸化モリブデンが得られ
、特4こ200℃以上に加熱して得られる三酸化モリブ
デンを使用した電池の充電特性は、その充電末期におい
て一定の電圧となるので、充電作業が容易円滑に行われ
る等の効果を有する。
In this way, according to the present invention, molybdenum peroxide is partially produced from molybdenum-based raw materials, and then deoxidized to form porous molybdenum dioxide, which is used as a positive electrode active material for lithium batteries. When the molybdenum peroxide is permolybdic acid, larger charge capacity and discharge capacity can be obtained compared to conventional untreated molybdenum dioxide active materials. Porous molybdenum trioxide is obtained, and in particular, the charging characteristics of batteries using molybdenum trioxide obtained by heating above 200°C are a constant voltage at the end of charging, so charging work is easy. It has the effect of being easily and smoothly carried out.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の三酸化モリブデン活物質を使用した
リチウム電池と従来の三酸化モリブデン活物質を使用し
たリチウム電池の充電特性の比較図、第2図は、これら
の放電特性の比較図を示す。 a・・・本発明の200℃以下の加熱処理で得た多孔性
の三酸化モリブデン使用の電池の充 電特性 a′・・・同充電特性 b・・・本発明の200℃以上の加熱処理で得な更に多
孔性の三酸化モリブデン使用の電池 の充電特性 b′・・・同充電特性 C・・・従来の二酸化モリブデン使用の電池の充電特性 a′・・・同放電特性
Figure 1 is a comparison diagram of the charging characteristics of a lithium battery using the molybdenum trioxide active material of the present invention and a lithium battery using a conventional molybdenum trioxide active material, and Figure 2 is a comparison diagram of their discharge characteristics. shows. a... Charging characteristics of a battery using porous molybdenum trioxide obtained by heat treatment at 200°C or lower according to the present invention a'... Charging characteristics b... Charging characteristics of a battery using porous molybdenum trioxide b'...Same charging characteristics C...Charging characteristics of a battery using conventional molybdenum dioxide a'...Same discharge characteristics

Claims (1)

【特許請求の範囲】 1、モリブデン系原料を、一旦モリブデン過酸化物とし
、次でこれを脱酸素処理して多孔性の二酸化モリブデン
とすることを特徴とするリチウム電池用三酸化モリブデ
ン活物質の製造法。 2、三酸化モリブデンを過酸化水素により過モリブデン
酸とし、次でこれを脱酸素と脱水処理して多孔性の三酸
化モリブデンとすることを特徴とする請求項1記載の製
造法。 3、該過モリブデン酸を200℃以下の温度で加熱する
ことを特徴とする請求項2記載の製造法。 4、該過モリブデン酸を200℃以上の温度で加熱する
ことを特徴とする請求項2記載の製造法。 5、請求項1又は2記載の製造法により得た多孔性の三
酸化モリブデン活物質を多孔基板に充填し常法により製
造して成るリチウム電池用正極板。
[Claims] 1. A molybdenum trioxide active material for lithium batteries, which is characterized in that a molybdenum-based raw material is first converted into molybdenum peroxide, and then deoxidized to form porous molybdenum dioxide. Manufacturing method. 2. The manufacturing method according to claim 1, characterized in that molybdenum trioxide is converted into permolybdic acid using hydrogen peroxide, and then this is subjected to deoxidation and dehydration treatment to form porous molybdenum trioxide. 3. The production method according to claim 2, characterized in that the permolybdic acid is heated at a temperature of 200° C. or lower. 4. The production method according to claim 2, characterized in that the permolybdic acid is heated at a temperature of 200° C. or higher. 5. A positive electrode plate for a lithium battery, which is produced by filling a porous substrate with a porous molybdenum trioxide active material obtained by the production method according to claim 1 or 2, and producing it by a conventional method.
JP63073647A 1988-03-28 1988-03-28 Production of molybdenum trioxide active substance for lithium cell and anode plate using same Pending JPH01246146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63073647A JPH01246146A (en) 1988-03-28 1988-03-28 Production of molybdenum trioxide active substance for lithium cell and anode plate using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63073647A JPH01246146A (en) 1988-03-28 1988-03-28 Production of molybdenum trioxide active substance for lithium cell and anode plate using same

Publications (1)

Publication Number Publication Date
JPH01246146A true JPH01246146A (en) 1989-10-02

Family

ID=13524290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63073647A Pending JPH01246146A (en) 1988-03-28 1988-03-28 Production of molybdenum trioxide active substance for lithium cell and anode plate using same

Country Status (1)

Country Link
JP (1) JPH01246146A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015775A (en) * 2000-06-29 2002-01-18 Toshiba Battery Co Ltd Nonaqueous solvent secondary cell and positive active material for the same
JP2010114086A (en) * 2008-11-10 2010-05-20 Samsung Electronics Co Ltd Anode active material, anode containing this, lithium battery that adopts this, and its manufacturing method
JP2011183268A (en) * 2010-03-05 2011-09-22 Mitsubishi Rayon Co Ltd Method for producing catalyst for methacrylic acid production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015775A (en) * 2000-06-29 2002-01-18 Toshiba Battery Co Ltd Nonaqueous solvent secondary cell and positive active material for the same
JP2010114086A (en) * 2008-11-10 2010-05-20 Samsung Electronics Co Ltd Anode active material, anode containing this, lithium battery that adopts this, and its manufacturing method
JP2011183268A (en) * 2010-03-05 2011-09-22 Mitsubishi Rayon Co Ltd Method for producing catalyst for methacrylic acid production

Similar Documents

Publication Publication Date Title
KR101379716B1 (en) lithium-sulfur secondary battery having electrode which is constructed with graphene composite including sulfur and a forming method thereof
JPS63187569A (en) Nonaqueous secondary battery
JPS61295238A (en) Non-aquatic secondary electric cell
JPH09320588A (en) Manufacture of lithium battery positive electrode active material, and lithium battery
KR20180102505A (en) Zn ion secondary battery having VO2(B) particles as electrode active material
JPH09259863A (en) Nonaqueous electrolyte secondary battery and its manufacture
KR101908101B1 (en) Graphene-vanadium oxide nanowire, method for preparation thereof, positive active material comprising the same and lithium battery comprising the positive active material
JPH0324023B2 (en)
JPH01246146A (en) Production of molybdenum trioxide active substance for lithium cell and anode plate using same
JPH10172564A (en) Active material, its manufacture, and lithium ion secondary battery using active material
JPH10321228A (en) Positive electrode active material for lithium battery, its manufacture, and lithium battery using it
JPH0620690A (en) Electrode material and secondary battery using thereof
CN108963198A (en) Anode, cathode, preparation method and the lithium ion battery including it
Sugawara et al. Molybdic oxides as cathode active materials in secondary lithium batteries
KR20140048010A (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery including the same
JP2001068113A (en) Positive electrode active material for lithium battery, its manufacturing method, and lithium battery
JPH03110765A (en) Organic electrolyte battery
JPH01235158A (en) Nonaqueous secondary battery
JPH06295724A (en) Manufacture of lithium manganate for lithium secondary battery
JPH0287462A (en) Nonaqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor
JPH04162356A (en) Positive electrode activated material and manufacture thereof for lithium secondary battery
JP3319005B2 (en) Method for producing lithium battery positive electrode active material
JPH10106560A (en) Positive electrode active material, manufacture thereof, and battery using this positive electrode active material
Rosenberg et al. A significant alternative: Microwave-assisted preparation path of room temperature operated Na/S batteries
JPH04206276A (en) Nonaqueous electrolyte secondary battery