JPH01246022A - Electric discharge machining method - Google Patents

Electric discharge machining method

Info

Publication number
JPH01246022A
JPH01246022A JP7151088A JP7151088A JPH01246022A JP H01246022 A JPH01246022 A JP H01246022A JP 7151088 A JP7151088 A JP 7151088A JP 7151088 A JP7151088 A JP 7151088A JP H01246022 A JPH01246022 A JP H01246022A
Authority
JP
Japan
Prior art keywords
machining
depth
workpiece
solution
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7151088A
Other languages
Japanese (ja)
Inventor
Masahiro Hirasawa
雅弘 平沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7151088A priority Critical patent/JPH01246022A/en
Publication of JPH01246022A publication Critical patent/JPH01246022A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To achieve a good sludge removal, and to prevent the reduction in a machining speed by detecting the depth of a machining part formed on a work-piece to be machined by electric discharge between a machining electrode and the workpiece, and in correspondence to this depth, by changing the injection pressure of a machining solution to be supplied to the machining gap. CONSTITUTION:A logic circuit 50 read out a NC program from a storage device 8 for analyzing it and in response to the electrical conditions thereof, applies a machining voltage between a machining electrode 1 and a workpiece 2 to be machined through a machining power supply 4, and stores the position Zs of the machining electrode 1 at the time of discharge start in a position storage device 40, and calculates a machining depth Zm from the above position Zs and the present position Zp. This valve Zm is compared with the machining depth Z1 inside the machining solution pressure control package of the NC program, and when Zm>Z1, the second stage injection pressure data of a machining solution 14 are output to a machining solution pressure control device 30, and the machining solution 14 corresponding to the pressure is injected into the machining gap. Thereafter, the value Zm is successively compared with the machining depth Z2...Z4 inside the machining solution pressure control package, and the pressure of the machining solution 14 is successively changed. Thus, a good sludge removal can be achieved.

Description

【発明の詳細な説明】 〔産業上の利用公費〕 この発明は、放電加工時に加工間隙に発生するスラッジ
を容易に排出させることができる放電加工方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Public Expenses for Industrial Use] The present invention relates to an electric discharge machining method that can easily discharge sludge generated in a machining gap during electric discharge machining.

〔従来の技術〕[Conventional technology]

第3図は例えば従来の放電加工装置を示す構成図であり
、図において、(1)は加工用[W、(21は加工対象
である被加工物、(3)は加工用!樺(1)を被加工物
(2)に対向する方向に上昇又は下降させる2軸用サー
ボモータ、(4)は加工用電1’i@ (1)と被加工
物(2)間に加工電圧を印加する加工用電源、(5)は
加工用電源(4)の電圧等を制御する論理回路、(6)
はZ軸層サーボモータ(3)を駆動するサーボモータ駆
動回路、(7)はサーボモータ駆動回路(6)に駆動信
号を出力するサーボモータ制御回路、(8)は論理回路
(5)の前段に設けられ、論理図#(5)へのテ゛−夕
を記憶しておく記憶装置、(9)は所望形状の被加工物
(2)を得る為の加ニブログラムを作成する加ニブログ
ラム作成装置、αQは被加工物(2)を所望の加工条件
で加工する為のデータを設定する加工条件設定装置、α
111.1加ニブログラム作成装置it (9)あるい
は加工条件設定装置叫に各種データを入力する為のキー
ボード、α2は図示しない紙テープあるいはカセットテ
ープ等のデータを読み込むテープリーダ、口は加工用電
11(1)と被加工物(2)とで形成される加工間隙に
加工液α4を供給するノズル、α荀はノズル口に加工液
α4を供給するポンプである。
FIG. 3 is a configuration diagram showing, for example, a conventional electrical discharge machining device. ) is a two-axis servo motor that raises or lowers the workpiece (2) in the direction opposite to the workpiece (2), and (4) is a machining electric voltage 1'i@ that applies a machining voltage between (1) and the workpiece (2). (5) is a logic circuit that controls the voltage of the processing power source (4), (6)
is a servo motor drive circuit that drives the Z-axis layer servo motor (3), (7) is a servo motor control circuit that outputs a drive signal to the servo motor drive circuit (6), and (8) is the front stage of the logic circuit (5). (9) is a storage device for storing data input to logic diagram #(5); (9) is a modification program creation device for creating a modification program to obtain a workpiece (2) having a desired shape; αQ is a machining condition setting device that sets data for machining the workpiece (2) under desired machining conditions, α
111.1 Keyboard for inputting various data into the Canadian program creation device (9) or the processing condition setting device, α2 is a tape reader for reading data from a paper tape or cassette tape (not shown), and the opening is the processing electronics 11 ( The nozzle α4 is a pump that supplies the machining liquid α4 to the nozzle opening.

次に動作について説明する。論理回路(5)は、作葉者
が例えばキーボード(6)を操作して、加工プロダラム
作成装置(9)により作成したNOプログうムを記憶し
ている記憶装置(8)から読み出して、順次その命令の
解析を実行する。一般的な放電加工のNCプログラムは
、第5図に示す様に、W気的諸条件設定、加工指令及び
移9指令の順でコーダイングされて成り立っている。こ
こで、゛薯気的諸条件設定は同図に示す様に、加工条件
バック点設定により行い、その指定された加工条件バッ
ク点には、同図に示す様に、例えば加工゛賓流、加工パ
ルス幅、休止幅等の電気条件が設定されている。
Next, the operation will be explained. The logic circuit (5) reads out the NO program created by the processing program creation device (9) from the storage device (8) by the leaf creator operating, for example, the keyboard (6), and sequentially reads the NO program created by the processing program creation device (9) from the storage device (8). Perform an analysis of that instruction. As shown in FIG. 5, a general NC program for electrical discharge machining is made up of a coded sequence of W-pressure various condition settings, machining commands, and movement commands in this order. Here, as shown in the same figure, the various atmospheric conditions are set by setting the machining condition back point, and at the specified machining condition back point, for example, the machining flow, Electrical conditions such as processing pulse width and pause width are set.

さて、上記論理回路(5)は、先ず加工用電源(4)に
対してNCプログラムで指令された電気的諸条件の信号
を出力する。この信号によって加工用電源(4)は上記
指令された電気的諸条件のセットを完了する。次に、上
記論理回路(5月よ、NCプログラムの指令に従うて、
加工指令を加工用!!(4)に出力する。この加工指令
によって、加工用電源(4)は、既に設定を完了してい
る電気的諸条件で、加工用電極(1)と被加工物(2)
間に加工櫂圧を印加する。続いて、上記論理回路(5)
はサーボ制(至)回路(7)に対して、NCプログラム
で指令された移動量データを出力する。この指令を受け
てサーボ制御回#i!?(7)は、+−ホモータ駆動回
路(6)を介してZ軸用サーボモータ(3)を駆動して
、加工用電極(1)を下降させろ。
First, the logic circuit (5) outputs signals of electrical conditions instructed by the NC program to the processing power source (4). In response to this signal, the machining power source (4) completes the setting of the electrical conditions instructed above. Next, the above logic circuit (May, according to the instructions of the NC program,
Processing commands for processing! ! (4) Output. With this machining command, the machining power source (4) is configured to operate the machining electrode (1) and workpiece (2) under the electrical conditions that have already been set.
Apply processing paddle pressure in between. Next, the above logic circuit (5)
outputs the movement amount data instructed by the NC program to the servo control circuit (7). After receiving this command, servo control time #i! ? (7) Drive the Z-axis servo motor (3) via the +-home motor drive circuit (6) to lower the processing electrode (1).

上記加工用電極(1)が下降して、被加工物(2)との
間、即ち加工間隙が一定距離に達すると放電が始まり、
上記加工用電極(1)はサーボ制御回路(7)に出力さ
れている移動量に達する迄、徐々に被加工物(2)を加
工していく。
When the machining electrode (1) is lowered and the machining gap between it and the workpiece (2) reaches a certain distance, electric discharge begins.
The processing electrode (1) gradually processes the workpiece (2) until it reaches the amount of movement output to the servo control circuit (7).

上記の様に加工を行う過程において、被加工物(2)と
加工用電極(1)間に形成される加工間隙には、第6図
に示す様に、放W、爆発によって加工用゛電極(1)及
び被加工物(2)から生成されるスラッジωが充満する
。このスラッジjは、加工間隙において加工用!電極(
1)と被加工物(2)間にアーク放電を引き起したり、
加工速度の低下を招く原因となる。従って、この原因と
なるスラッジ■を加工間隙から排除する為に、ポンプα
$によって加圧された加工液α4を、ノズルαJを介し
て上記加工間隙に噴射させて、上記スうツジ(1)を加
工間隙から排除している。
In the process of machining as described above, the machining gap formed between the workpiece (2) and the machining electrode (1) is filled with the machining electrode due to W discharge and explosion, as shown in Figure 6. It is filled with sludge ω generated from (1) and the workpiece (2). This sludge j is for processing in the processing gap! electrode(
1) and the workpiece (2), causing an arc discharge,
This causes a decrease in machining speed. Therefore, in order to eliminate the sludge ■ that causes this from the machining gap, pump α
The machining fluid α4 pressurized by $ is injected into the machining gap through the nozzle αJ to remove the thread (1) from the machining gap.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の放電加工方法は以上の様に行われているので、加
工用電11(1)が被加工物<2)の深部に下降する程
スラッジ翰の排除が困難になり、加工速度の低下あるい
はアーク放電の発生に繋がる為、加工深さの最も深い位
置でもスラッジ翰の排除が良くなる様に、加工液a4の
噴射子方を高く設定して加工を行った場合には加工用W
 @ (1)の消耗が増大し、又、加工用電極(1)の
形状あるいは材質等によっても最適な加工液(1,1)
の噴射圧力が異なる為、加工部の深さに応じてオペレー
タが上記噴射圧力を調整しなければならないといった問
題点があった。
Since the conventional electric discharge machining method is performed as described above, the deeper the machining electric discharge machine 11 (1) descends into the workpiece <2), the more difficult it becomes to remove the sludge, resulting in a decrease in machining speed or This can lead to the occurrence of arc discharge, so when machining is performed with the jetting direction of machining fluid A4 set high, the machining W
@ The optimum machining fluid (1, 1) may increase consumption of (1), and may also depend on the shape or material of the machining electrode (1).
Since the injection pressures differ, there is a problem in that the operator has to adjust the injection pressures according to the depth of the machined part.

この発明は上記の様な問題点を解消する為になされたも
ので、オペレータの手を介することなく自動的に加工深
さに対応した最適な加工液の噴射圧力制御を行うことが
できる放電加工方法を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and is an electric discharge machining machine that can automatically control the injection pressure of machining fluid to the optimum level according to the machining depth without operator intervention. The purpose is to obtain a method.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る放電加工方法は、加工用電極と被加工物
間の放電により該被加工物に形成されろ加工部の深度を
検出し、該検出した加工部の深度に対応して、上記加工
用電極と被加工物間に形状される加工間隙に供給する加
工液の噴射圧力を変化させるようにしたものである。
The electric discharge machining method according to the present invention detects the depth of a machining portion formed on the workpiece due to electric discharge between a machining electrode and the workpiece, and performs the machining according to the detected depth of the machining portion. The injection pressure of the machining fluid supplied to the machining gap formed between the working electrode and the workpiece is changed.

〔作 用〕[For production]

この発明においては、加工部の深度に対応させて加工間
隙に供給する加工液の噴射圧力を変化させ、上記加工間
隙に滞留するスラッジを排除する。
In this invention, the jetting pressure of the machining liquid supplied to the machining gap is changed in accordance with the depth of the machining part to eliminate the sludge that remains in the machining gap.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第1
図において、ωは加工用電極(1)と被加工の加工液圧
力制御装置、帥は放電加工を開始した位置を記憶する位
置メモリ、槌は加工用W源(4)のぎ圧等を制御すると
共に、上記加工液圧力制御装置田に、ノズルαJから噴
射する加工液G4の圧力を変更させる信号を出力する論
理回路である。なお、同図中、従来例を示す第4図と同
一の符号については、同−又は相当部分を示しているの
で、その説明は省略する。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, ω is a machining fluid pressure control device for the machining electrode (1) and the workpiece, the shank is a position memory that stores the starting position of electrical discharge machining, and the mallet is a machining W source (4) that controls the forging pressure, etc. At the same time, it is a logic circuit that outputs a signal to the machining fluid pressure control device to change the pressure of the machining fluid G4 injected from the nozzle αJ. In this figure, the same reference numerals as those in FIG. 4 showing the conventional example indicate the same or corresponding parts, so the explanation thereof will be omitted.

次に動作について説明する。放1加工を開始するに当た
って、論理回路ωが記憶装置(8)に記憶されているN
Cプログラムを読み出して、順次その命令の解析を冥行
する。この放置加工の〜Cプログラムは、第2図に示す
様に、電気的諸条件設定。
Next, the operation will be explained. When starting processing, the logic circuit ω is stored in the storage device (8).
Read a C program and analyze its instructions one by one. The ~C program for this idle machining sets electrical conditions as shown in Figure 2.

加工指令及び移動指令の1頃でコーチ°イングされてい
る。ここで、電気的諸条件設定は加工条件パック点設定
により行い、その指定された加工条件パック点には、例
えば加工す流、加工パルス幅、休止幅等の゛ギ気条件が
設芝されると共に、加工深さによって加工液α4の噴射
時の圧力を変化させる為の、加工液圧力制御設定テ゛−
夕が記憶されている。
Coaching is done around 1 of the processing command and movement command. Here, the electrical conditions are set by setting a machining condition pack point, and at the specified machining condition pack point, key conditions such as machining flow, machining pulse width, pause width, etc. are set. In addition, a machining fluid pressure control setting table is provided to change the pressure at the time of jetting machining fluid α4 depending on the machining depth.
The evening is remembered.

そして、上記加工液圧力制御設定は、加工液圧力制御パ
ッケージム設定により行い、その指定されたパッケージ
厖は、加工深さに対する加工液Iの噴射圧力で設定され
ている。
The machining fluid pressure control setting is performed by machining fluid pressure control package setting, and the specified package is set by the injection pressure of machining fluid I with respect to the machining depth.

さて、論理回路ωで解析されたNCプログラムの指令に
従って、先ず加工用電源(4)に対してば気的諸条件の
信号を出力する。この信号lこよって加工用1j源(4
)は、上記指令されたw、完的諸条件のセットを完了す
る。次に、上記論理回路−は上記電気的諸条件に設定さ
れている加工液圧力制御パッケージ轟を参照し・、核パ
ブケージ内の勇工深さと加工液α瘤の噴射圧力の一連の
データを記憶装置t(8)内に記憶し、先ず華初に加工
液圧力制御設定艶に対して、第1段のデータであるとこ
ろの、加工深さZl に対する加工液04の噴射圧力(
C1)のデータを出力する。核データを受けて加工液圧
力制御装置(至)は、加工液圧を01に設定して噴射す
る。
Now, according to the commands of the NC program analyzed by the logic circuit ω, first, signals of mechanical conditions are outputted to the machining power source (4). This signal l is used as a machining source 1j (4
) completes the set of commanded w, complete conditions above. Next, the logic circuit refers to the machining fluid pressure control package set to the electrical conditions described above, and stores a series of data on the depth of the machining fluid in the core pub cage and the injection pressure of the machining fluid α-bulk. It is stored in the device t(8), and first, the injection pressure of the machining fluid 04 for the machining depth Zl, which is the first stage data, is determined for the machining fluid pressure control setting gloss (
Output the data of C1). In response to the nuclear data, the machining fluid pressure control device (to) sets the machining fluid pressure to 01 and injects the machining fluid pressure.

その後、上記論理回路ωはNCプログラムの指令に従っ
て加工指令を加工用電源(4)に出力する。この加工指
令によって加工用電源(4)は、既に設定完了している
電気的諸条件で、加工用W極(11と被加工物(2)間
に加工電圧を印加する。この加工電圧の印加により放電
が開始された時点で、第8図に示す様に、加工用1r極
(1)の位1!1(Z8)を位!メモリーに記憶する。
Thereafter, the logic circuit ω outputs a machining command to the machining power source (4) according to the commands of the NC program. Based on this machining command, the machining power source (4) applies a machining voltage between the machining W pole (11) and the workpiece (2) under the electrical conditions that have already been set. When the discharge is started, the digit 1!1 (Z8) of the machining 1r pole (1) is stored in the digit !memory as shown in FIG.

続いて、ト記啼理回路ωはサーボ制御回路(7)に対し
て、NCプログラムで指令された微少移atデータを出
力する。この指令を受けてサーボ制御回路(7)は、サ
ーボモータ駆動回路(6)を介してZ軸用サーボモータ
(3)を駆動して、加工用′N極(1)を下降させる。
Subsequently, the register circuit ω outputs minute shift data commanded by the NC program to the servo control circuit (7). In response to this command, the servo control circuit (7) drives the Z-axis servo motor (3) via the servo motor drive circuit (6) to lower the machining north pole (1).

加工用電1!(1)が下降したことを確認後、加工用電
極(1)の現在位置(Zp)と先に記憶された加工用W
極(1)の位置(ZS)から、その差分である実際の加
工深さ(Zm)を算出し、このiI(Zm)と加工液圧
力制御パフケージ内の加工深さ(Zl)とを比較し、上
記実際の加工深さ(Zm)が、上記加工深さ(Zl)を
越えた時点で、第2段の加工液α4の噴射圧力(Cりの
データを、加工液圧力制御装置■に出力する。該データ
を受けて加工液圧力制御装置(至)は、加工液a4の噴
射圧力を(C2)に設定して加工間隙に噴射する。以上
説明した様に、以後、実際の加工深さ(Zm)と加工液
圧力制御パフケージ内の加工深さ(Z2)〜(Z4)を
順次比較することにより、加工液α滲の噴射圧力を(N
3)〜(N4)と順次変化させて行き、加工間隙に滞留
するスラッジのを、加工用1r極(1)により被加工物
(2)に形成される加工部の深度に関係なく、効率的に
排除させることができろ。
Processing electricity 1! After confirming that (1) has descended, the current position (Zp) of the processing electrode (1) and the previously memorized processing W
Calculate the actual machining depth (Zm), which is the difference, from the position (ZS) of the pole (1), and compare this iI (Zm) with the machining depth (Zl) in the machining fluid pressure control puff cage. , When the actual machining depth (Zm) exceeds the machining depth (Zl), the data on the injection pressure (C) of the second stage machining fluid α4 is output to the machining fluid pressure control device ■. In response to this data, the machining fluid pressure control device (to) sets the injection pressure of machining fluid a4 to (C2) and injects it into the machining gap.As explained above, from now on, the actual machining depth (Zm) and the machining depths (Z2) to (Z4) in the machining fluid pressure control puff cage, the injection pressure of machining fluid α can be adjusted to (N
3) to (N4) in order to efficiently remove the sludge that accumulates in the machining gap regardless of the depth of the machining part formed on the workpiece (2) by the machining 1r pole (1). You can have them excluded.

なお、上記実施例においては、加工深さ及び加工fi(
14の噴射圧力を、それぞれ(Zl )〜(Z4)。
In addition, in the above embodiment, the machining depth and machining fi (
14 injection pressures, respectively (Zl) to (Z4).

(C1)〜(C4)の4段階で制御したが、これは何段
階であっても、上記実施例と同様の効果を奏する。
Although the control is performed in four stages (C1) to (C4), the same effects as in the above embodiment can be achieved regardless of the number of stages.

〔発明の効果〕〔Effect of the invention〕

以上の様に、この発明によれば加工部の深度に対応して
加工間隙に供給する加工液の噴射圧力を変化させる様に
したので、人手を介することなく加工液の噴射圧力を調
整でき、加工速度の低下あるいはアーク放電の発生しな
いものが得られるという効果がある。
As described above, according to the present invention, since the injection pressure of the machining liquid supplied to the machining gap is changed in accordance with the depth of the machining part, the injection pressure of the machining liquid can be adjusted without manual intervention. This has the effect of reducing machining speed and producing a product that does not generate arc discharge.

【図面の簡単な説明】[Brief explanation of the drawing]

第11gはこの発明の一実施例による放電加工装@を示
す構成図、第2図はこの発明の一実施例によるt1Cプ
ログラムを示す図、第8図はこの発明の一実施例による
加工部の深度に対応して加工液の噴射圧力を変化させる
様子を示す図、第4図は従来の放電加工製雪を示す構成
図、第5図は従来のNCプログラムを示す図、第6図は
従来の放電加工の様子を示す図である。 因において、(至)は加工液圧力制御装置、14Dけ位
置メモリ、ωは論理回路である。 なお、図中同一符号は同−又は相当部分を示す。
Fig. 11g is a block diagram showing an electrical discharge machining device @ according to an embodiment of the present invention, Fig. 2 is a diagram showing a t1C program according to an embodiment of the present invention, and Fig. 8 is a diagram showing a machining section according to an embodiment of the present invention. A diagram showing how the injection pressure of machining fluid is changed depending on the depth, Figure 4 is a configuration diagram showing conventional electrical discharge machining snow making, Figure 5 is a diagram showing a conventional NC program, and Figure 6 is a conventional FIG. In the above, (to) is a machining fluid pressure control device, a 14D position memory, and ω is a logic circuit. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 加工用電極と被加工物間の放電により該被加工物に形成
される加工部の深度を検出し、該検出した加工部の深度
に対応して、上記加工用電極と被加工物間に形成される
加工間隙に供給する加工液の噴射圧力を変化させること
を特徴とする放電加工方法。
The depth of the machining part formed on the workpiece due to electric discharge between the machining electrode and the workpiece is detected, and the depth of the machining part formed between the machining electrode and the workpiece is formed in accordance with the detected depth of the machining part. An electric discharge machining method characterized by changing the injection pressure of machining fluid supplied to a machining gap.
JP7151088A 1988-03-25 1988-03-25 Electric discharge machining method Pending JPH01246022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7151088A JPH01246022A (en) 1988-03-25 1988-03-25 Electric discharge machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7151088A JPH01246022A (en) 1988-03-25 1988-03-25 Electric discharge machining method

Publications (1)

Publication Number Publication Date
JPH01246022A true JPH01246022A (en) 1989-10-02

Family

ID=13462768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7151088A Pending JPH01246022A (en) 1988-03-25 1988-03-25 Electric discharge machining method

Country Status (1)

Country Link
JP (1) JPH01246022A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140001159A1 (en) * 2011-01-12 2014-01-02 Perfect Point Edm Corporation Adaptive flushing for workpiece erosion
US20160361770A1 (en) * 2011-01-12 2016-12-15 Perfect Point Edm Corporation Dynamic adaptive flushing for workpiece erosion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140001159A1 (en) * 2011-01-12 2014-01-02 Perfect Point Edm Corporation Adaptive flushing for workpiece erosion
US9393632B2 (en) * 2011-01-12 2016-07-19 Perfect Point Edm Corporation Adaptive flushing for workpiece erosion
US20160361770A1 (en) * 2011-01-12 2016-12-15 Perfect Point Edm Corporation Dynamic adaptive flushing for workpiece erosion

Similar Documents

Publication Publication Date Title
JP3231521B2 (en) Apparatus and method for determining machining setting data of electric discharge machining
JP2002132349A (en) Acceleration and deceleration control method
EP0592682A4 (en) Machining condition generation method for numerically controlled machine tool
CN106406243B (en) Have the function of eliminating the sync control device of the synchronous vibration for starting block
JP2682310B2 (en) Wire electric discharge machining method and apparatus
JPH01246022A (en) Electric discharge machining method
CN208067513U (en) Process the EDM shaping machine intelligent depth control system of PCD composite sheets
US4453071A (en) Electric discharge machine including rocking motion fine machining and controls therefore
CN108340033A (en) Process the EDM shaping machine intelligent depth control system and method for PCD composite sheets
US4644124A (en) Wire electrode type electrical discharge machining method
EP0413889B1 (en) Wire-type electrical discharge machining method and apparatus
JPH0253526A (en) Wire cut electric discharge machine
US4370537A (en) Electric discharge machine
JPS59169717A (en) Electric discharge machining device
JP2686117B2 (en) Numerical control method
JPH01228723A (en) Electric discharge method
JPH078456B2 (en) Electric discharge machine
JPS6214371B2 (en)
JPS61288927A (en) Automatic wire passing method in wire-cut electric discharge machine
JPH0493114A (en) Tapping machine
JP2697972B2 (en) Electric discharge machining method and apparatus
JPS6119373B2 (en)
JPH079302A (en) Single item machining method of machining center or the like
JPH02190219A (en) Electric discharge machine
SCHUMACHER Future prospects of the use of spark erosion