JPH01239064A - Production of carbon material and carbon/carbon composite material - Google Patents

Production of carbon material and carbon/carbon composite material

Info

Publication number
JPH01239064A
JPH01239064A JP63063172A JP6317288A JPH01239064A JP H01239064 A JPH01239064 A JP H01239064A JP 63063172 A JP63063172 A JP 63063172A JP 6317288 A JP6317288 A JP 6317288A JP H01239064 A JPH01239064 A JP H01239064A
Authority
JP
Japan
Prior art keywords
carbon
iron
pitch
pressure
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63063172A
Other languages
Japanese (ja)
Other versions
JPH075367B2 (en
Inventor
Toshinori Nakamura
中村 敏則
Takeshi Suemitsu
末光 毅
Yoshiho Hayata
早田 喜穂
Taiji Ido
井土 泰二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Eneos Corp
Original Assignee
Kawasaki Heavy Industries Ltd
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Nippon Oil Corp filed Critical Kawasaki Heavy Industries Ltd
Priority to JP63063172A priority Critical patent/JPH075367B2/en
Priority to EP88312352A priority patent/EP0323750B1/en
Priority to DE3855100T priority patent/DE3855100T2/en
Priority to US07/291,007 priority patent/US5114635A/en
Publication of JPH01239064A publication Critical patent/JPH01239064A/en
Publication of JPH075367B2 publication Critical patent/JPH075367B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a carbon material and a carbon/carbon composite material simply and efficiently, by heat-treating carbonaceous pitch put in an open container in the presence of one or more of refractory fibers, iron and iron alloy under pressure of hot hydrostatic pressure. CONSTITUTION:Carbonaceous pitch is put in an open container consisting of a metal such as Al or soft steel, glass or graphite and heat-treated in the presence of one or more of refractory fibers, iron and iron alloy under pressure of hot hydrostatic pressure. Or the heat-treated material, if necessary, is further carbonized or graphitized to give the aimed carbon material. The carbonaceous pitch is pitch of coal or petroleum base having preferably 150-350 deg.C softening point. Iron having >=99% purity is used as the iron. Alloy containing <=10% based on iron of one or more metals such as Ni or Cr is preferably used as the iron alloy.

Description

【発明の詳細な説明】 本発明は、炭素材料および炭素/炭素複合材料の製造法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing carbon materials and carbon/carbon composite materials.

炭素質ピッチは、その炭化収率が高いことから高密度炭
素材料の原料として利用されている。しかしながら、炭
化時にガス発生による気泡や亀裂などを生成するという
問題があり、これを解決する方法としてピッチを高圧下
で炭化する方法、Hot  l5ostatic Pr
essing (熱間静水圧加圧、HIP)が用いられ
ている。この場合、炭化時に発生するガスがヒーターや
断熱材などの炉内部材を汚染し、場合によっては装置破
損をきたす恐れがある。このため、炭素材料の製造を目
的としたHIPでは、原料をガラスあるいはステンレス
など密閉型の容器(コンテナ)に入れる、いわゆるキャ
ニングが行われる。またこのコンテナは、熱処理中に被
処理物の形状を維持するという目的も兼ねている。一方
、炭素/炭素複合材料は、1000℃以上の高温におい
ても高強度、高弾性率を維持し、かつ熱膨張率カレトさ
い等の特異な性質を有する材料であり、航空宇宙機器の
部品、ブレーキ、炉材等への利用が期待されている。炭
素質ピッチは、前記の特性から、炭素/炭素複合材料の
マトリックス用プリカーサとしても使用されているが、
この炭化過程においてもHIi:用いられており、この
場合にも原料をガラスあるいはステンレス製のコンテナ
に入れる、いわゆるキャニングが行われる。
Carbonaceous pitch is used as a raw material for high-density carbon materials because of its high carbonization yield. However, there is a problem that bubbles and cracks are generated due to gas generation during carbonization.To solve this problem, a method of carbonizing pitch under high pressure, Hot l5ostatic Pr.
essing (hot isostatic pressing, HIP) is used. In this case, the gas generated during carbonization may contaminate internal materials such as the heater and heat insulating material, possibly causing damage to the equipment. For this reason, in HIP for the purpose of manufacturing carbon materials, so-called canning is performed in which raw materials are placed in a closed container such as glass or stainless steel. This container also serves the purpose of maintaining the shape of the object to be processed during heat treatment. On the other hand, carbon/carbon composite materials maintain high strength and high elastic modulus even at high temperatures of 1000°C or higher, and have unique properties such as a low coefficient of thermal expansion. It is expected to be used in furnace materials, etc. Due to the above characteristics, carbonaceous pitch is also used as a matrix precursor for carbon/carbon composite materials.
HIi: is also used in this carbonization process, and in this case as well, so-called canning, in which the raw materials are placed in a glass or stainless steel container, is performed.

しかしながら、密閉型の容器(コンテナ)を用いる場合
には、シール機能を付与するために、真空封入などのキ
ャニング工程が必要となり、さらに緻密化のための再含
浸時にはコンテナ削除と再キャニングが必要となる。こ
のため製造プロセスが煩雑になるという問題があり、さ
らに発生ガスの内圧により、処理物にクラックが入った
り、コンテナの圧力により炭素繊維の織物が変形するこ
とがある。
However, when using a sealed container, a canning process such as vacuum sealing is required to provide a sealing function, and when re-impregnating for densification, the container must be removed and re-canned. Become. This poses the problem of complicating the manufacturing process, and furthermore, the internal pressure of the generated gas may cause cracks in the processed material, and the pressure of the container may deform the carbon fiber fabric.

本発明者らは、前記問題点を解決し、簡便かつ高性能な
炭素材料および炭素/炭素複合材料の製造プロセスを確
立すべく研究した結果、本発明の完成に至った。
The present inventors conducted research to solve the above-mentioned problems and establish a simple and high-performance manufacturing process for carbon materials and carbon/carbon composite materials, and as a result, the present invention was completed.

本願発明者らの検討結果によれば、前記炭素質ピッチを
熱間静水圧加圧によυ熱処理する場合には、密閉型容器
を使用せずとも、被処理物の形状が維持でき、しかも開
放型容器を使用する場合には、発生ガスの内圧により、
処理物にクラックが入るのを防止できることがわかった
(特願昭62−330018号)。
According to the study results of the present inventors, when heat-treating the carbonaceous pitch by hot isostatic pressing, the shape of the object to be treated can be maintained without using a closed container. When using an open container, due to the internal pressure of the generated gas,
It has been found that cracks can be prevented from forming in the treated product (Japanese Patent Application No. 330018/1982).

開放型容器とは、シール機能のない容器である。材質と
しては、アルミニウム、軟鋼、ステンレスなどの金属、
ガラス、黒鉛あるいはセラミックスなどが使用温度ある
いは使用目的などによって適宜選択できる。容器の形状
は特に限定されないが、蓋付き、蓋なしのいずれでも良
く、金属フォイルで被処理物を包むだけでも良い。
An open container is a container without a sealing function. Materials include metals such as aluminum, mild steel, and stainless steel.
Glass, graphite, ceramics, etc. can be selected as appropriate depending on the operating temperature or purpose of use. The shape of the container is not particularly limited, but it may be with or without a lid, and the object to be processed may be simply wrapped in metal foil.

本発明者らはさらに検討を重ねた結果、炭化時に生成す
る分解ガス、特に炭化水素ガスの捕獲に耐火物繊維、鉄
および鉄系合金よりなる群より選ばれる少なくとも一種
の物質がきわめて有効であることを見いだした。本発明
はこれらの物質(捕獲材)を被処理物と共存させること
によシ達成される。
As a result of further studies, the present inventors have found that at least one substance selected from the group consisting of refractory fibers, iron, and iron-based alloys is extremely effective in capturing decomposed gases generated during carbonization, especially hydrocarbon gases. I found out. The present invention is achieved by allowing these substances (capturing materials) to coexist with the object to be treated.

すなわち、本発明は、(1)炭素質ピッチを開放型容器
に入れ、耐火物繊維、鉄および鉄系合金よりなる群よシ
選ばれる少なくとも一種の物質の共存下において熱間静
水圧加圧下で熱処理し、必要に応じてさらに炭化あるい
は黒鉛化することを特徴とする炭素材料の製造法、およ
び(2)炭素繊維のトウに炭素質ピンチを含浸し、との
含浸物を開放型容器に入れ、耐火物繊維、鉄および鉄系
合金よりなる群より選ばれる少なくとも一種の物質の共
存下において熱間静水圧加圧下で熱処理し、必要に応じ
てさらに炭化あるいけ黒鉛化することを特徴とする炭素
/炭素複合材料の製造法に関する。
That is, the present invention provides (1) carbonaceous pitch placed in an open container and heated under hot isostatic pressure in the coexistence of at least one substance selected from the group consisting of refractory fibers, iron, and iron-based alloys. A method for producing a carbon material characterized by heat treatment and further carbonization or graphitization as necessary, and (2) impregnating a carbon fiber tow with a carbonaceous pinch and placing the impregnated material in an open container. , heat-treated under hot isostatic pressure in the coexistence of at least one substance selected from the group consisting of refractory fibers, iron, and iron-based alloys, and further carbonized or graphitized as necessary. This invention relates to a method for producing carbon/carbon composite materials.

以下、本発明による炭素材料および炭素/炭素複合材料
の製造法について詳述する。
Hereinafter, the method for producing carbon materials and carbon/carbon composite materials according to the present invention will be described in detail.

本発明で用いる炭素質ピッチとは、軟化点100〜40
0℃、好ましくは150〜350℃を有する石炭系ある
いは石油系のピッチである。炭素質ピッチは、光学的に
等方性のピッチあるいは異方性のピッチのいずれも使用
できるが、光学的異方性相の含量が60〜100 vo
t%、好ましくは80〜100 vat%の光学的異方
性ピッチが特に好ましく用いられる。
The carbonaceous pitch used in the present invention has a softening point of 100 to 40.
It is a coal-based or petroleum-based pitch having a temperature of 0°C, preferably 150 to 350°C. As the carbonaceous pitch, either an optically isotropic pitch or an anisotropic pitch can be used.
An optically anisotropic pitch of t%, preferably 80 to 100 vat% is particularly preferably used.

本発明で用いる炭素繊維としては、ピッチ系、ポリアク
リロニトリル系あるいはレーヨン系のいずれも使用でき
るが、ピッチ系炭素繊維が好ましい。また炭素繊維のト
ウとは、直径5〜100μmの炭素繊維の500〜]、
 0QOOO本の繊維束を一方向積層物、2次元織物あ
るいはその積層物、3次元織物、マット状成形物、フェ
ルト状成形物など2次元あるいは3次元に成型したもの
をいう。
The carbon fibers used in the present invention may be pitch-based, polyacrylonitrile-based, or rayon-based carbon fibers, but pitch-based carbon fibers are preferred. Furthermore, carbon fiber tow refers to carbon fiber tow with a diameter of 5 to 100 μm.
It refers to a two-dimensional or three-dimensional product formed from 0QOOO fiber bundles, such as a unidirectional laminate, a two-dimensional fabric or its laminate, a three-dimensional fabric, a mat-like molded product, or a felt-like molded product.

ここでいうピッチ系炭素繊維とは、炭素質ピッチを溶融
紡糸し、これを不融化、炭化および必要に応じて黒鉛化
することにより得られる繊維である。
The pitch-based carbon fibers referred to herein are fibers obtained by melt-spinning carbonaceous pitch, making it infusible, carbonizing it, and graphitizing it if necessary.

炭素繊維のトウに炭素質ピッチを含浸する方法は、例え
ば炭素質ピッチを真空下および/または加圧下で加熱、
溶融して炭素繊維トウに含浸する方法が用いられるが、
含浸時の粘度を下げるために、溶剤でカット・ノくツク
することもできる。溶剤としては、芳香族炭化水素、ピ
リジン、キノリンなどが使用できる。また緻密化のため
、含浸と後記HIP処理とのサイクルを必要回数行うこ
とができる。
A method for impregnating carbon fiber tow with carbonaceous pitch is, for example, heating carbonaceous pitch under vacuum and/or pressure.
A method of melting and impregnating carbon fiber tow is used,
To reduce the viscosity during impregnation, it can also be cut and punched with a solvent. As the solvent, aromatic hydrocarbons, pyridine, quinoline, etc. can be used. Further, for densification, a cycle of impregnation and HIP treatment described below can be performed as many times as necessary.

本発明においては炭素質ピッチまたは炭素繊維のトウに
炭素質ピッチを含浸して得られる含浸物の被処理物を開
放型容器に入れ、耐火物繊維、鉄および鉄系合金よりな
る群よシ選ばれる少なくとも一種の物質を共存させる。
In the present invention, the impregnated material obtained by impregnating carbonaceous pitch or carbon fiber tow with carbonaceous pitch is placed in an open container, and a material selected from the group consisting of refractory fibers, iron, and iron-based alloys is prepared. coexist with at least one kind of substance.

耐火物繊維としては、例えばカーボン、酸化物系セラミ
ックス、非酸化物系セラミックス等の長繊維、短繊維あ
るいはフェルトなどを使用することができる。具体的に
はカーボン、シリカ、アルミナあるいはこれらの混合物
の短繊維が好ましい。
As the refractory fibers, for example, long fibers or short fibers of carbon, oxide ceramics, non-oxide ceramics, or felt can be used. Specifically, short fibers of carbon, silica, alumina, or a mixture thereof are preferred.

鉄としては純度99%以上のものが用いられ、鉄系合金
としては鉄に対してニッケル、クロム、モリブデン、バ
ナジウム、タングステン、シリカおよびマンガンから選
ばれる1種又は2種の金属を10%以下含有するものが
用いられる。
The iron used is one with a purity of 99% or more, and the iron-based alloy contains 10% or less of one or two metals selected from nickel, chromium, molybdenum, vanadium, tungsten, silica, and manganese. The one that does is used.

鉄および鉄系合金は、粉状、細線、メツシュあるいは多
孔質成形体などのかたちで使用することができる。
Iron and iron-based alloys can be used in the form of powder, fine wire, mesh, or porous compacts.

捕獲材を共存させる態様は特に限定されないが、例えば
被処理物を開放型容器に入れその上部に捕獲材を充填す
る方法、被処理物を金属フォイルで包み、さらにその外
側を捕獲材のフェルトで包む方法、被処理物を捕獲材と
共に金属フォイルで包む方法等が例示できる。また捕獲
材が被処理物中に混入するのを防止するため金属フォイ
ルなどを両者の間に設置することもできる。
The manner in which the capture material is coexisting is not particularly limited, but examples include a method in which the object to be treated is placed in an open container and the upper part is filled with the capture material, a method in which the object to be treated is wrapped in metal foil, and the outside is further covered with felt of the capture material. Examples include a method of wrapping, a method of wrapping the object to be treated together with a capture material in metal foil, and the like. Furthermore, a metal foil or the like may be placed between the two to prevent the capture material from being mixed into the object to be processed.

耐火物繊維、鉄および鉄系合金の2種以上を併用する場
合には、これらを混合、積層などすれば良い。耐火物繊
維、鉄および鉄系合金よりなる群より選ばれる少なくと
も一種の物質の使用量は処理条件によって任意に決定さ
れる力ζ通常は被処理物100!量部に対して、耐火物
繊維は10〜1000重量部、好ましくは50〜500
重1部、鉄および鉄系合金は10〜5000重量部、好
ましくは500〜1000重量部である。なお、水素の
捕獲材、例えばチタン、ジルコニウム、マグネシウム等
を共存させることもできる。
When two or more of refractory fibers, iron, and iron-based alloys are used together, they may be mixed or laminated. The amount of at least one substance selected from the group consisting of refractory fibers, iron, and iron-based alloys is arbitrarily determined depending on the processing conditions. The amount of refractory fiber is 10 to 1000 parts by weight, preferably 50 to 500 parts by weight.
The amount of iron and iron-based alloys is 10 to 5000 parts by weight, preferably 500 to 1000 parts by weight. Note that a hydrogen trapping material such as titanium, zirconium, magnesium, etc. may also be present.

被処理物は熱間静水圧加圧下で熱処理し、必要に応じて
さらに炭化あるいは黒鉛化を行うことにより炭素材料あ
るいは炭素/炭素複合材料を製造する。
The object to be treated is heat treated under hot isostatic pressure, and if necessary, further carbonized or graphitized to produce a carbon material or a carbon/carbon composite material.

熱間静水圧加圧下での熱処理の条件は、不活性ガスによ
り50〜10000にν12、好ましくは200〜20
00ky/cm2に加圧し、100−3000℃、好ま
しくは、400〜2000℃において実施することがで
きる。圧媒ガスとしては、アルゴン、窒素、ヘリウムな
どの不活性ガスが使用できる。
The conditions for heat treatment under hot isostatic pressure are ν12 of 50 to 10,000 with inert gas, preferably 200 to 20.
It can be carried out at a temperature of 100-3000°C, preferably 400-2000°C, under a pressure of 00ky/cm2. As the pressure medium gas, inert gas such as argon, nitrogen, helium, etc. can be used.

本発明において、開放型容器を用いることにより、その
目的は十分達成できるが、必要に応じ、例えば多量の被
処理物を熱処理する場合には、排気機構付HIP装置を
好ましく用いることができる。排気機構付HIPとは、
高圧を維持したままHIP中に被処理物から発生するガ
ス成分を連続制御して排出できる機構を有する装置であ
り、具体的には、発生するガスをその生成量および/ま
たは拡散速度応じて除去量を調節できる排出機構をそな
えた装置である。
In the present invention, the purpose can be sufficiently achieved by using an open type container, but if necessary, for example, when heat treating a large amount of objects to be treated, a HIP apparatus with an exhaust mechanism can be preferably used. What is HIP with exhaust mechanism?
It is a device that has a mechanism that can continuously control and discharge gas components generated from the processed material during HIP while maintaining high pressure. Specifically, the generated gas is removed according to the amount of generation and/or diffusion rate. This device is equipped with a discharge mechanism that allows the amount to be adjusted.

このガス排出機構は、炉内圧媒ガスとの熱交換器および
炉外での冷却器、減圧装置、流量調節弁などよりなる。
This gas discharge mechanism includes a heat exchanger with the pressure medium gas inside the furnace, a cooler outside the furnace, a pressure reducing device, a flow rate control valve, and the like.

この排気機構付HIP装置の詳細は本願出願人の一名が
すでに出願した特願昭62−253171に記載されて
いる。排気機構付HIP装置における加圧熱処理の条件
も前記のHIP条件に準する。
Details of this HIP device with an exhaust mechanism are described in Japanese Patent Application No. 62-253171 filed by one of the applicants of the present application. The conditions for the pressurized heat treatment in the HIP device with an exhaust mechanism also conform to the above-mentioned HIP conditions.

HI P処理後の処理物は、必要に応じ、常圧下、不活
性ガス雰囲気中、400〜2000℃において炭化おる
いは2000〜3000℃において黒鉛化処理すること
ができる。
The treated product after the HIP treatment can be carbonized at 400 to 2000°C or graphitized at 2000 to 3000°C under normal pressure in an inert gas atmosphere, if necessary.

複合材料における炭素繊維の体積含有率(Vf)は、目
的によって任意に決定されるが、通常は5〜70%であ
る。
The volume content (Vf) of carbon fibers in the composite material is arbitrarily determined depending on the purpose, but is usually 5 to 70%.

実施例 以下に実施例をあげ、本発明を具体的に説明するが、本
発明はこれらに限定されるものではない。
EXAMPLES The present invention will be specifically explained with reference to Examples below, but the present invention is not limited thereto.

(実施例1) 軟化点280℃の光学的異方性相100 vot%の石
油系ピッチを石英製開放型容器に入れ、その上部にアル
ミナ50重量%、シリカ50重8%よりなるセラミック
の短繊維をピッチ100重量部にたいして100重量部
充填して、HIP装置においてアルゴンガスによ’) 
1000 k?/crn2に加圧し、800℃において
加圧炭化処理した。得られた炭化物は、密閉型容器中で
HIF処理したものと比ぺなんら遜色なかった。また炉
内の汚れは非常圧軽微であった。
(Example 1) Petroleum-based pitch with a softening point of 280° C. and an optically anisotropic phase of 100 vot% is placed in an open quartz container, and a ceramic strip made of 50 wt. % alumina and 50 wt. % silica is placed on top of the container. Fill 100 parts by weight of fibers into 100 parts by weight of pitch, and heat with argon gas in a HIP machine.
1000k? /crn2 and subjected to pressure carbonization treatment at 800°C. The obtained carbide was comparable to that obtained by HIF treatment in a closed container. Also, there was very little dirt inside the furnace.

(実施例2) 実施例1で用いた石油系ピッチをステンレス製フォイル
で包含し、さらにその外側にピッチ100重量部にたい
して1000!量部の純度99%、粒径5μの鉄粉を充
填し、アルゴンガスによす1000 ky/iy2に加
圧し、800℃において加圧炭化処理した。得られた炭
化物は、亀裂が非常に少なかった。また炉内の汚れは非
常に軽微であった。
(Example 2) The petroleum-based pitch used in Example 1 was wrapped in a stainless steel foil, and 1000! It was filled with iron powder having a purity of 99% and a particle size of 5 μm, and was pressurized to 1000 ky/iy2 using argon gas, and subjected to pressure carbonization at 800°C. The resulting carbide had very few cracks. Also, there was very little dirt inside the furnace.

(比較例1) 実施例1で用いた石油系ピッチをステンレス製コンテナ
に真空封入し、HIP装置において、アルゴンガスによ
り1000 ’tyl(7)2に加圧し、1000℃に
おいて加圧炭化処理したところ、炉内の汚れは軽微であ
ったが、得られた炭化物には亀裂が多く見られた。
(Comparative Example 1) The petroleum pitch used in Example 1 was vacuum sealed in a stainless steel container, pressurized to 1000'tyl(7)2 with argon gas in a HIP device, and subjected to pressure carbonization at 1000°C. Although there was only slight contamination inside the furnace, many cracks were observed in the obtained carbide.

(比較例2) 実施例1で用いた石油系ピッチを開放型ステンレス製コ
ンテナに入れ、HIP装置において、アルゴンガスによ
り1000 ky/cnt”に加圧し、1000℃にお
いて加圧炭化処理したところ、得られた炭化物には亀裂
が少なかったが、炉内の汚れがみられた。
(Comparative Example 2) The petroleum pitch used in Example 1 was placed in an open stainless steel container, pressurized to 1000 ky/cnt'' with argon gas in a HIP device, and subjected to pressure carbonization treatment at 1000°C. There were few cracks in the carbide, but dirt inside the furnace was visible.

(実施例3) 軟化点280℃の光学的異方性相90 vot%の石油
系ピッチをアルミニウム製フォイルで包含し、さらにそ
の外側にアルミナ50重量%、シリカ50重量%よりな
るセラミックファイバーのフェルトを、ピッチ100重
を部にたいして20000重量填し、アルゴンガスによ
!11000にν論2に加圧し、550℃において加圧
炭化処理した。
(Example 3) A petroleum pitch containing 90 vot% of an optically anisotropic phase with a softening point of 280° C. is enclosed in an aluminum foil, and a ceramic fiber felt made of 50 wt. % alumina and 50 wt. % silica is further placed on the outside of the aluminum foil. Fill 20,000 weights of 100 weights of pitch into each section and use argon gas! The material was pressurized to 11,000 kW theory 2 and subjected to pressure carbonization treatment at 550°C.

得られた炭化物は、亀裂が非常に少なかった。また炉内
の汚れは非常に軽微であった。
The resulting carbide had very few cracks. Also, there was very little dirt inside the furnace.

(実施例4) 実施例1で用いた石油系ピッチをアルミナ容器に入れ、
その上部にアルミナ50重量%、シリカ50重量%上り
なるセラミックファイバーのフェルト、低炭素鋼のスチ
ールウール、さらに前記セラミックファイバーのフェル
トをそれぞれピッチ100M量部にたいして100重量
部、300重量部および25重量部ずつ3層に充填し、
排気機構付HIP装置においてアルゴンガスにより10
00 ky/crn”に加圧し、800℃において加圧
炭化処理した。得られた炭化物は、亀裂が非常に少なか
った。また炉内の汚れは非常に軽微であった。
(Example 4) The petroleum pitch used in Example 1 was placed in an alumina container,
On top of that, ceramic fiber felt containing 50% by weight of alumina and 50% by weight of silica, steel wool made of low carbon steel, and 100 parts by weight, 300 parts by weight, and 25 parts by weight of the ceramic fiber felt, respectively, based on 100 M parts of pitch. Fill each layer in 3 layers,
10 minutes using argon gas in a HIP device with an exhaust mechanism.
00 ky/crn'' and pressure carbonization treatment at 800°C.The obtained carbide had very few cracks.Furthermore, there was very little contamination in the furnace.

(実施例5) 直径10μ(ミクロン)のピッチ系炭素繊維の3000
本束の2次元織物(平織)を積層し、これに実施例1で
用いたピッチを含浸した。含浸物をアルミニウム製フォ
イルで包含し、さらにその外側にアルミナ50重量%、
シリカ50重景チよりなるセラミックファイノく−のフ
ェルトをピッチ100重量部にたいして10000重量
填し、H工P装置において窒素ガスにより1000 k
y/cm”に加圧し、2層m’/hrで排気しながら、
550℃において加圧炭化処理した。加圧炭化に続き、
常圧下、不活性ガス雰囲気下で2500℃において黒鉛
化処理した。得られた炭素/炭素複合材料を走査型電子
顕微鏡、および偏光顕微鏡で観察したところ、繊維束内
および繊維束間にもマトリックスがよく充填されており
、炭素繊維の織物の変形も見られなかった。また炉内の
汚れは非常に軽微であった。
(Example 5) 3000 pitch-based carbon fibers with a diameter of 10μ (microns)
This bundle of two-dimensional fabrics (plain weave) was laminated and impregnated with the pitch used in Example 1. The impregnated material is wrapped in an aluminum foil, and 50% by weight of alumina is added to the outside of the aluminum foil.
10,000 weight parts of ceramic fin felt made of silica 50 heavy weight was added to 100 parts by weight of pitch, and heated to 1000 kg using nitrogen gas in a H-P apparatus.
While pressurizing to y/cm" and exhausting at two layers m'/hr,
Pressure carbonization treatment was performed at 550°C. Following pressure carbonization,
Graphitization treatment was performed at 2500° C. under normal pressure and an inert gas atmosphere. When the obtained carbon/carbon composite material was observed using a scanning electron microscope and a polarizing microscope, it was found that the matrix was well filled within and between the fiber bundles, and no deformation of the carbon fiber fabric was observed. . Also, there was very little dirt inside the furnace.

(比較例3) 実施例5と同じ含浸物をステンレス製コンテナに真空封
入し、HIP装置において実施例5と同じ条件で処理し
た。
(Comparative Example 3) The same impregnated material as in Example 5 was vacuum sealed in a stainless steel container and treated in a HIP apparatus under the same conditions as in Example 5.

得られたものは、コンテナの圧力により炭素繊維の織物
が変形していた。
The resulting carbon fiber fabric was deformed by the pressure of the container.

(実施例6) 直径10μ(ミクロン)のピッチ系炭素繊維の3000
本束の3次元直交織物に実施例1で用いた石油系ピッチ
を含浸した。含浸物をステンレス製フォイルで包含し、
その上部にアルミナ50重i%、シリカ50重量%より
なるセラミックファイバーのフェルトをピッチ100重
量部にたいして300重量部充填して、排気機構付HI
P装置において窒素ガスによ、り 1000 ky/c
rn”に加圧し、800℃において加圧炭化処理した。
(Example 6) 3000 pitch-based carbon fibers with a diameter of 10μ (microns)
The three-dimensional orthogonal fabric of this bundle was impregnated with the petroleum pitch used in Example 1. enclosing the impregnated material in stainless steel foil;
The upper part is filled with 300 parts by weight of ceramic fiber felt made of 50% by weight alumina and 50% by weight silica for a pitch of 100 parts by weight.
1000 ky/c by nitrogen gas in P equipment
rn'' and subjected to pressure carbonization treatment at 800°C.

加圧炭化に続き、常圧下、不活性ガス雰囲気下で250
0℃において黒鉛化処理した。
Following pressure carbonization, 250°C under normal pressure and inert gas atmosphere.
Graphitization treatment was carried out at 0°C.

得られた炭素/炭素複合材料を走査型電子顕微鏡、およ
び偏光顕微鏡で観察したところ、繊維束内および繊維束
間にもマトリックスがよく充填されており、炭素繊維の
織物の変形も見られなかった。また炉内の汚れは非常に
軽微であった。
When the obtained carbon/carbon composite material was observed using a scanning electron microscope and a polarizing microscope, it was found that the matrix was well filled within and between the fiber bundles, and no deformation of the carbon fiber fabric was observed. . Also, there was very little dirt inside the furnace.

(比較例4) 実施例6と同じ含浸物をステンレス製コンテナに真空封
入し、HIP装置において実施例6と同じ条件で処理し
た。
(Comparative Example 4) The same impregnated material as in Example 6 was vacuum sealed in a stainless steel container and treated in a HIP apparatus under the same conditions as in Example 6.

得られたものは、コンテナの圧力により炭素繊維の織物
が変形していた。
The resulting carbon fiber fabric was deformed by the pressure of the container.

(実施例7) 直径10μ(ミクロン)のピッチ系炭素繊維の2000
本束の3次元織物に実施例1で用いた石油系ピッチを含
浸した。含浸物の外側に純度99%、粒径5μの鉄粉を
充填し、排気機構付HIP装置において窒素ガスにより
1000ky/cm2に加圧し、1000℃において加
圧炭化処理した。
(Example 7) 2000 pitch-based carbon fibers with a diameter of 10μ (microns)
The three-dimensional fabric of this bundle was impregnated with the petroleum pitch used in Example 1. The outside of the impregnated product was filled with iron powder having a purity of 99% and a particle size of 5 μm, and was pressurized to 1000 ky/cm 2 with nitrogen gas in a HIP device equipped with an exhaust mechanism, and subjected to pressure carbonization treatment at 1000°C.

加圧炭化に続き、常圧下、不活性ガス雰囲気下で170
0℃において炭化処理した。これに再び軟化点280℃
の光学的異方性ピッチを含浸し、排気機構付HIP装置
において前記条件で加圧炭化処理した。このサイクルを
5回くりかえした。得られた炭素/炭素複合材料は、が
さ密度174、曲げ強度は35 k、/朋2であった。
Following pressure carbonization, 170% carbonization under normal pressure and inert gas atmosphere
Carbonization treatment was carried out at 0°C. This again has a softening point of 280°C.
was impregnated with optically anisotropic pitch, and subjected to pressure carbonization treatment under the above conditions in a HIP device with an exhaust mechanism. This cycle was repeated five times. The obtained carbon/carbon composite material had a bulk density of 174 and a bending strength of 35 K/2.

Claims (2)

【特許請求の範囲】[Claims]  (1)炭素質ピツチを開放型容器に入れ、耐火物繊維
、鉄および鉄系合金よりなる群より選ばれる少なくとも
一種の物質の共存下において熱間静水圧加圧下で熱処理
し、必要に応じてさらに炭化あるいは黒鉛化することを
特徴とする炭素材料の製造法。
(1) Carbonaceous pitch is placed in an open container and heat-treated under hot isostatic pressure in the coexistence of at least one substance selected from the group consisting of refractory fibers, iron, and iron-based alloys. A method for producing a carbon material characterized by further carbonization or graphitization.
 (2)炭素繊維のトウに炭素質ピッチを含浸し、この
含浸物を開放型容器に入れ、耐火物繊維、鉄および鉄系
合金よりなる群より選ばれる少なくとも一種の物質の共
存下において熱間静水圧加圧下で熱処理し、必要に応じ
てさらに炭化あるいは黒鉛化することを特徴とする炭素
/炭素複合材料の製造法。
(2) Carbon fiber tow is impregnated with carbonaceous pitch, this impregnated material is placed in an open container, and heated in the coexistence of at least one substance selected from the group consisting of refractory fibers, iron, and iron-based alloys. A method for producing a carbon/carbon composite material, which is characterized by heat treatment under isostatic pressure and further carbonization or graphitization as necessary.
JP63063172A 1987-12-28 1988-03-18 Method for producing carbon material and carbon / carbon composite material Expired - Lifetime JPH075367B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63063172A JPH075367B2 (en) 1988-03-18 1988-03-18 Method for producing carbon material and carbon / carbon composite material
EP88312352A EP0323750B1 (en) 1987-12-28 1988-12-28 Process for producing carbon material and carbon/carbon composites
DE3855100T DE3855100T2 (en) 1987-12-28 1988-12-28 Process for the production of carbon material and carbon-carbon composites
US07/291,007 US5114635A (en) 1987-12-28 1988-12-28 Process for producing carbon material and carbon/carbon composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63063172A JPH075367B2 (en) 1988-03-18 1988-03-18 Method for producing carbon material and carbon / carbon composite material

Publications (2)

Publication Number Publication Date
JPH01239064A true JPH01239064A (en) 1989-09-25
JPH075367B2 JPH075367B2 (en) 1995-01-25

Family

ID=13221575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63063172A Expired - Lifetime JPH075367B2 (en) 1987-12-28 1988-03-18 Method for producing carbon material and carbon / carbon composite material

Country Status (1)

Country Link
JP (1) JPH075367B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013086999A (en) * 2011-10-14 2013-05-13 Ihi Aerospace Co Ltd Method for densifying porous structure and densifying apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01264966A (en) * 1987-12-28 1989-10-23 Kawasaki Heavy Ind Ltd Production of carbon material and carbon/carbon composite material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01264966A (en) * 1987-12-28 1989-10-23 Kawasaki Heavy Ind Ltd Production of carbon material and carbon/carbon composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013086999A (en) * 2011-10-14 2013-05-13 Ihi Aerospace Co Ltd Method for densifying porous structure and densifying apparatus

Also Published As

Publication number Publication date
JPH075367B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
US5114635A (en) Process for producing carbon material and carbon/carbon composites
US5217657A (en) Method of making carbon-carbon composites
US4226900A (en) Manufacture of high density, high strength isotropic graphite
US8454867B2 (en) CVI followed by coal tar pitch densification by VPI
US3269802A (en) Preparation of carbide structures
JPH01252577A (en) Production of carbon/carbon composite material
CN111848196B (en) Preparation method of in-situ silicon carbide nanowire toughened silicon carbide ceramic
JP3151580B2 (en) Manufacturing method of carbon material
US20090230582A1 (en) Densification of carbon fiber preforms with pitches for aircraft brakes
Dačić et al. Kinetics of air oxidation of unidirectional carbon fibres/CVD carbon composites
JP3327637B2 (en) Functionally graded composite material of copper and carbon and method for producing the same
JPH01264964A (en) Carbon fiber-reinforced composite material having excellent thermal impact resistance and its production
JP2591967B2 (en) Processed carbonaceous felt product and method for producing the same
JPH01239064A (en) Production of carbon material and carbon/carbon composite material
US4776995A (en) Method of making a structure
US4776994A (en) Method of making a structure from carbonaceous fibers
US4777093A (en) High carbon composite
JPH054945B2 (en)
JPH0513904B2 (en)
JP2541852B2 (en) Manufacturing method of fiber-reinforced ceramic composite materials
JPS63295476A (en) Production of carbon fiber reinforced carbonaceous material
JPS6259509A (en) Production of high-density carbon material
JP3138937B2 (en) Manufacturing method of carbon / carbon composite material
WO1991004954A1 (en) Carbon fiber-reinforced composite carbon material having excellent thermal shock resistance and production thereof
JPH0519507B2 (en)