JPH01236274A - Composite material of particle dispersion type - Google Patents

Composite material of particle dispersion type

Info

Publication number
JPH01236274A
JPH01236274A JP6252688A JP6252688A JPH01236274A JP H01236274 A JPH01236274 A JP H01236274A JP 6252688 A JP6252688 A JP 6252688A JP 6252688 A JP6252688 A JP 6252688A JP H01236274 A JPH01236274 A JP H01236274A
Authority
JP
Japan
Prior art keywords
water
dispersed particles
soluble polymer
particles
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6252688A
Other languages
Japanese (ja)
Inventor
Etsuro Sakai
悦郎 坂井
Keiichi Ono
小野 啓一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP6252688A priority Critical patent/JPH01236274A/en
Publication of JPH01236274A publication Critical patent/JPH01236274A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To make it possible to mold a profile molding of a high strength without requiring treatments such as firing, by compositing specified dispersed particles with a water-soluble polymer. CONSTITUTION:100pts.wt. dispersed particles which can take a substantially close-packed structure and selected from among oxide ceramics such as Al2O3 and SiO2, nonoxide ceramics such as BN, Si3N4 and AlN, blast furnace slag, fly ash and metals such as iron or stainless steel or dispersed particles of a mean particle diameter <=30mum, obtained by combining such particles with a hydraulic material such as alumina cement or portland cement is kneaded with at least 0.5pt.wt. binder based on a nonionic water-soluble polymer such as PVA, a cellulose derivative such as methylcellulose or an anionic water-soluble polymer such as polyacrylic acid in the presence of water in an amount necessary to fill the voids of the dispersed particles with a twin roll or the like and molded, and the obtained molding is dried at 80-100 deg.C to obtain the title composite material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水浴性高分子の成形物の成形が可能な粒子分散
型複合材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a particle-dispersed composite material that can be molded into a water-bathable polymer molded article.

〔従来の技術及び発明が解決しようとする課題〕従来、
水浴性高分子はフィルム等として利用されているが、こ
れを成形物として成形し、例えばポリスチレン、ポリプ
ロピレンあるいはエポキシ樹脂などのように部品材料と
して利用する試みはなされていない。これは、水分の蒸
発によって形状を形成させるため成形物に2いては均一
に形状をつくることが難しいためである。一方、水浴性
高分子は、セラミックス等の形状を維持させるための前
処理工程においても利用されている、例えばバインダー
としてなどが、あくまで前処理であり焼成によって製品
を得ることが目的であるため焼成なしで充分な強度を得
ることは不可能であシ、焼成によって分解してしまうも
のであった。
[Problems to be solved by conventional techniques and inventions] Conventionally,
Although water-bathable polymers have been used as films and the like, no attempt has been made to mold them into molded articles and use them as parts materials, such as polystyrene, polypropylene, or epoxy resins. This is because it is difficult to form a uniform shape in a molded product because the shape is formed by evaporation of water. On the other hand, water-bathable polymers are also used in pre-treatment processes to maintain the shape of ceramics, etc. For example, as binders, water-bathable polymers are used only as a pre-treatment and the purpose is to obtain products by firing. It would be impossible to obtain sufficient strength without it, and it would decompose during firing.

本発明者らは水溶性高分子と分散粒子との複合によシ、
成形した成形物の高強度製品化が可能であり、焼成等の
処理をすることなく部品として利用可能な材料を提供で
きる知見を得て、本発明を完成するに到った。
The present inventors developed a composite of a water-soluble polymer and dispersed particles,
The present invention was completed based on the knowledge that it is possible to produce a molded product with high strength and to provide a material that can be used as a component without undergoing processing such as firing.

〔課題を解決するための手段〕[Means to solve the problem]

即ち、本発明は、ほぼ密な充てん構造をとる分散粒子と
、水浴性高分子を主成分とする結合材とが結合した粒子
分散型複合材料である。
That is, the present invention is a particle-dispersed composite material in which dispersed particles having a substantially densely packed structure are bonded to a binder whose main component is a water bathable polymer.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は常温で成形可能な製品を得るための複合材料の
提供にある。本発明を遂行するためには、分散粒子がほ
ぼ密な充てん構造をと9、それによって決定された9隙
に相当する水量を用いて水浴性高分子とともに練り混ぜ
、成形することにより複雑形状な製品を得ることが可能
とな9、更に、乾燥工程の組み合せによシ簡単に高強度
の製品を得ることができる。
The present invention is to provide a composite material for obtaining a product that can be molded at room temperature. In order to carry out the present invention, dispersed particles have a nearly densely packed structure9, and a complex shape is formed by mixing and molding the dispersed particles with a water bath polymer using an amount of water corresponding to the voids determined thereby. Furthermore, by combining the drying process, it is possible to easily obtain a product with high strength.

本発明における分散粒子としてはアルミナ、シリカ等の
酸化物セラミックス、BNや窒化けい素あるいはAtN
等の非酸化物系セラミックス、各種ガラスあるいは高炉
スラグやフライアッシュ等の産業副産物及び鉄、ステン
レス等の金属等が挙げられる。さらに、上記粒子に水硬
性材料であるアルミナセメントやCl2A7、C,AF
、  CA2などのカルシウムシリケ−ト化合物あるい
はポルトランドセメントやカルシウムシリケート化合物
などを上記粒子と組み合せることにより、乾燥後の強度
は著しく高い値を示す。なお、水硬性材料のみでは、高
温化さらされると爆裂現象を生じる。これら粒子の平均
粒径は60μm以下の方が好ましい。
The dispersed particles in the present invention include oxide ceramics such as alumina and silica, BN, silicon nitride, and AtN.
Examples include non-oxide ceramics such as various glasses, industrial by-products such as blast furnace slag and fly ash, and metals such as iron and stainless steel. Furthermore, the above particles include alumina cement, which is a hydraulic material, and Cl2A7, C, AF.
By combining calcium silicate compounds such as , CA2, Portland cement, calcium silicate compounds, etc. with the above particles, the strength after drying shows a significantly high value. It should be noted that if only a hydraulic material is used, an explosion phenomenon occurs when exposed to high temperatures. The average particle diameter of these particles is preferably 60 μm or less.

ここでは、さらに分散粒子の空隙を埋める水が必要であ
る。分散粒子は、ほぼ′IBな充てんが必要であり、こ
れ以外では高強度を得ることは難しい。
Here, water is also required to fill the voids in the dispersed particles. Dispersed particles need to be filled to approximately 'IB, otherwise it is difficult to obtain high strength.

分散粒子がほぼ密な充てん構造をとる方法としては特に
限定されるものではないが、例えば、低水比とし硬化後
空隙となる部分を減少させる方法、混練時にツインロー
ル等で高剪断混練して気孔を減少化させる方法などがあ
る。
There are no particular limitations on the method of obtaining a nearly densely packed structure in which the dispersed particles are formed, but examples include a method of using a low water ratio to reduce the portions that become voids after hardening, and a method of high-shear kneading using twin rolls or the like during kneading. There are methods to reduce pores.

分散粒子がとるほぼ密な充てん構造は次のように決定さ
れる。
The nearly dense packing structure of the dispersed particles is determined as follows.

JISZ 2504 r金属粉の見かけ密度試験方法」
に準じて、タッピング法によシ一定の値を示すまでタッ
ピングをくり返す(通常3,000回位)。
JISZ 2504 r Apparent Density Test Method for Metal Powders”
According to the tapping method, tapping is repeated until a certain value is obtained (usually about 3,000 times).

それにより充てん率を求めると植々のものにおいて、0
.6と云う数値が得られた。従って、これ以上の充てん
率を確保する必要がある。そのため、粒径の異なる粒子
を組み合せる。そして、その粒径比が大きくなるほど充
てん率は高い値を示す。
The filling rate is found to be 0 for plants.
.. A value of 6 was obtained. Therefore, it is necessary to secure a filling rate higher than this. Therefore, particles with different particle sizes are combined. The larger the particle size ratio is, the higher the filling rate becomes.

これを基準密度として水量を決定するのであるが、少な
くとも90%の確保は必要である。
The amount of water is determined using this standard density, and it is necessary to ensure at least 90%.

本発明における水溶性高分子とは、ポリビニルアルコー
ルやメチルセルロースナトのセルロース蒋導体の非イオ
ン系あるいはポリアクリル酸などの陰イオン系さらには
陽イオン系と水浴性高分子であれば特に制限を受けない
。水硬性材料を併用する場合には非イ・オン系のものが
好ましく、強度や成形性の面からはポリビニルアルコー
ルが好ましい。
The water-soluble polymer in the present invention is not particularly limited as long as it is a non-ionic polymer such as a cellulose conductor such as polyvinyl alcohol or methylcellulose, an anionic polymer such as polyacrylic acid, or a cationic polymer and a water-bathable polymer. . When hydraulic materials are used together, nonionic/ionic materials are preferred, and polyvinyl alcohol is preferred from the viewpoint of strength and moldability.

水溶性高分子の使用量は分散粒子又は分散粒子と水硬性
材料の合計量100重菫部に対し、o、5重量部以上が
好ましく、1〜1″5重量部がより好ましい。
The amount of the water-soluble polymer to be used is preferably 5 parts by weight or more, more preferably 5 parts by weight from 1 to 1" based on 100 parts by weight of the dispersed particles or the total amount of the dispersed particles and hydraulic material.

各材料の混合・混練方法は特に限定されるものではない
が、分散粒子がほぼ密な充てん構造をとるためには、例
えばツインロールやニーダ−などの剪断力がかかる混線
を行うことが好ましい。
The method of mixing and kneading each material is not particularly limited, but in order for the dispersed particles to have a nearly densely packed structure, it is preferable to use a twin roll or kneader to apply a shearing force.

成形方法としては、プレス成形や押し出し成形等いずれ
の方法でも可能である。
As the molding method, any method such as press molding or extrusion molding can be used.

さらに、各種繊維やウィスカーを組み合せることも可能
である。成形後、簡単な乾燥を実施することによυ、曲
げ強度35 MPa以上の製品が簡単に得られる。乾燥
条件は特に制限されるものではないが、80〜1oo=
c程度の条件が好ましい。
Furthermore, it is also possible to combine various fibers and whiskers. After molding, a product with a bending strength of 35 MPa or more can be easily obtained by simple drying. Drying conditions are not particularly limited, but 80 to 1oo=
Conditions of about c are preferable.

〔実施例〕〔Example〕

以下実施例によυ本発明を説明する。 The present invention will be explained below with reference to Examples.

実施例1 At203粉100粉量005重f%のポリビニールア
ルコール、12.5重1itssの水を用いてツイン*
 −# K テ、練Diぜ90℃30 kg / c!
n2で10分間ホットプレスの後、80℃で20日間放
置して曲げ強度を測定し40 MPaを得た。その際の
試料の大きさは厚さ2m、幅10m、長さ4onとしス
パン30mmにて加重速度1 tx/ minとした。
Example 1 Twin * using At203 powder 100 powder amount 005 weight f% polyvinyl alcohol and 12.5 weight 1 itss water
-# K Te, Kneading Dize 90℃ 30 kg/c!
After hot pressing at n2 for 10 minutes, it was left at 80°C for 20 days, and the bending strength was measured and found to be 40 MPa. The size of the sample at that time was 2 m thick, 10 m wide, and 4 on long, with a span of 30 mm and a loading rate of 1 tx/min.

使用材料: At203粉: r−AM−21J粉砕品
(住友化学製) ρ=6.5 ポリビニールアルコール(PVA) :「B−24」粉
砕品 (電気化学工業製) なお、上記水量はAt203容積に対してO,’30’
であり、充てん率は0.69’となる。
Materials used: At203 powder: r-AM-21J pulverized product (manufactured by Sumitomo Chemical) ρ = 6.5 Polyvinyl alcohol (PVA): "B-24" pulverized product (manufactured by Denki Kagaku Kogyo) The above water volume is At203 volume O,'30' for
Therefore, the filling rate is 0.69'.

実施例2 実施例1と同様の方法により、表に示すごとく分散粒子
と水硬性材料であるアルミナセメントを併用した。曲げ
強度は実施例1よシ高い値を示すが、これはセメントが
水との反応によって生成する化合物が水溶性高分子との
複合効果を示すためである。なお、水硬性材料のみの系
は製品を750℃電気炉中へ入れると爆裂を生じたが、
他は爆裂を生ずることがなかった。結果を表−1に示す
Example 2 In the same manner as in Example 1, dispersed particles and alumina cement, which is a hydraulic material, were used in combination as shown in the table. The bending strength shows a higher value than in Example 1, and this is because the compound produced by the reaction of cement with water exhibits a combined effect with the water-soluble polymer. In addition, when the product was placed in an electric furnace at 750°C, an explosion occurred in the system made only of hydraulic materials, but
Others did not cause explosions. The results are shown in Table-1.

使用材料:分散粒子A : AA203粉、rAM−2
1」粉砕品(住友化学製)ρ=6,5分散粒子B:パン
土けつ岩粉砕品 ρ=6.4 アルミナセメント:「アルミナセメ ント1号」(電気化学工業製) ρ=2.9 ポリビニールアルコール(PVA) :rB−24j粉
砕品 (電気化学工業) 表 −1 セメント+骨材 実施例6 表−2に示す配合に従い、ツインロールで混練機ガラス
板にはさみ90″Cで24h乾燥し、実施例1と同様に
曲げ強度を測定した。材料は下記のもの以外、実施例1
あるいは2と同じである。
Materials used: Dispersed particles A: AA203 powder, rAM-2
1" pulverized product (manufactured by Sumitomo Chemical) ρ = 6.5 Dispersed particle B: Pan shingle pulverized product ρ = 6.4 Alumina cement: "Alumina cement No. 1" (manufactured by Denki Kagaku Kogyo) ρ = 2.9 Poly Vinyl alcohol (PVA): rB-24j pulverized product (Denki Kagaku Kogyo) Table 1 Cement + Aggregate Example 6 According to the formulation shown in Table 2, it was sandwiched between glass plates of a kneader with twin rolls and dried at 90''C for 24 hours. , the bending strength was measured in the same manner as in Example 1.The materials used were as in Example 1 except for those shown below.
Or it is the same as 2.

使用材料二Fe粉:メタレット(<150Am):(日
本磁力速製) ρ;7.8 表−2 上記粒子分散m複合材料は押し出し成形可能であシ、パ
イプや波形板が製作できた。
Materials used: Two-Fe powder: Metalet (<150 Am): (manufactured by Nippon Magnetic Speed) ρ; 7.8 Table 2 The above particle-dispersed composite material could be extruded and made into pipes and corrugated plates.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明の粒子分散型複合材料を用いるこ
とによって、高強度な異形物の成形が可能となった。
As described above, by using the particle-dispersed composite material of the present invention, it has become possible to mold a high-strength, irregularly shaped object.

特許出願人 電気化学工業株式会社Patent applicant Denki Kagaku Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)ほぼ密な充てん構造をとる分散粒子と、水溶性高
分子を主成分とする結合材とが結合した粒子分散型複合
材料。
(1) A particle-dispersed composite material in which dispersed particles with an almost densely packed structure are bonded to a binder whose main component is a water-soluble polymer.
JP6252688A 1988-03-16 1988-03-16 Composite material of particle dispersion type Pending JPH01236274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6252688A JPH01236274A (en) 1988-03-16 1988-03-16 Composite material of particle dispersion type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6252688A JPH01236274A (en) 1988-03-16 1988-03-16 Composite material of particle dispersion type

Publications (1)

Publication Number Publication Date
JPH01236274A true JPH01236274A (en) 1989-09-21

Family

ID=13202718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6252688A Pending JPH01236274A (en) 1988-03-16 1988-03-16 Composite material of particle dispersion type

Country Status (1)

Country Link
JP (1) JPH01236274A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02307850A (en) * 1989-05-22 1990-12-21 Daido Concrete Kogyo Kk High-strength composite material and production thereof
US5336551A (en) * 1992-12-14 1994-08-09 Mizu Systems, Inc. Reinforced polyvinyl alcohol hydrogels containing uniformly dispersed crystalline fibrils and method for preparing same
WO2001002495A1 (en) * 1999-07-06 2001-01-11 Cera Chem Co., Ltd. Coating composition comprising redispersible polymer, and a method of coating using them

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53128624A (en) * 1977-04-16 1978-11-09 Idemitsu Kosan Co Gypsum compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53128624A (en) * 1977-04-16 1978-11-09 Idemitsu Kosan Co Gypsum compound

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02307850A (en) * 1989-05-22 1990-12-21 Daido Concrete Kogyo Kk High-strength composite material and production thereof
US5336551A (en) * 1992-12-14 1994-08-09 Mizu Systems, Inc. Reinforced polyvinyl alcohol hydrogels containing uniformly dispersed crystalline fibrils and method for preparing same
US5422050A (en) * 1992-12-14 1995-06-06 Mizu Systems Inc. Reinforced polyvinyl alcohol hydrogels containing uniformly dispersed crystalline fibrils and method for preparing same
WO2001002495A1 (en) * 1999-07-06 2001-01-11 Cera Chem Co., Ltd. Coating composition comprising redispersible polymer, and a method of coating using them

Similar Documents

Publication Publication Date Title
US3758317A (en) Monolithic inorganic structures
JPH0228546B2 (en)
JP2001174163A (en) Binder for forming granular material
JPS62265151A (en) Forming material
JPS60180957A (en) Manufacture of ceramic product
US3367871A (en) Molded precision-dimensioned high temperature insulation material
JPH01236274A (en) Composite material of particle dispersion type
JPS5850943B2 (en) All information required
JPH04321551A (en) Method of manufacturing refractory material and use thereof in casting of corrosive alloy
GB2093011A (en) Fibrous heat-resistant or refractory materials
FR2499972A1 (en) PROFILES HAVING HIGH MECHANICAL STABILITY AT HIGH TEMPERATURES, PROCESS FOR THEIR MANUFACTURE AND USE THEREOF
JPS629552B2 (en)
US4436680A (en) Process for producing granular, fire-resistant material
JPS5939393B2 (en) Manufacturing method of building materials
RU2101263C1 (en) Mullite material for fabrication of refractory products, method of manufacturing such mullite material, and refractory laminated article
JPS63162579A (en) Thermosettable monolithic refractories
CH650483A5 (en) Fire-resistant mortar
JPS60226438A (en) Forming refractory composition
JPH07126055A (en) Hydraulic composition, extrusion molded article and production thereof
JPS59232964A (en) Manufacture of mica composite ceramics
JPH0469116B2 (en)
JPH0274569A (en) Indeterminate refractory material
JPS6028784B2 (en) heat resistant material
JPS60260476A (en) Basic refractory cement composition
JPS62235278A (en) Manufacture of cement set body