JPH012343A - semiconductor equipment - Google Patents

semiconductor equipment

Info

Publication number
JPH012343A
JPH012343A JP62-158227A JP15822787A JPH012343A JP H012343 A JPH012343 A JP H012343A JP 15822787 A JP15822787 A JP 15822787A JP H012343 A JPH012343 A JP H012343A
Authority
JP
Japan
Prior art keywords
insulating substrate
semiconductor element
conductor wiring
semiconductor
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62-158227A
Other languages
Japanese (ja)
Other versions
JPS642343A (en
Inventor
岳雄 越智
博昭 藤本
畑田 賢造
Original Assignee
松下電器産業株式会社
Filing date
Publication date
Application filed by 松下電器産業株式会社 filed Critical 松下電器産業株式会社
Priority to JP15822787A priority Critical patent/JPS642343A/en
Priority claimed from JP15822787A external-priority patent/JPS642343A/en
Publication of JPH012343A publication Critical patent/JPH012343A/en
Publication of JPS642343A publication Critical patent/JPS642343A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置に関し、特にマルチチップモジュー
ルの高密度パッケージング構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to semiconductor devices, and more particularly to high-density packaging structures for multi-chip modules.

従来の技術 マルチチップモジュールに半導体素子を実装する従来法
としては、ワイヤボンディング、フィルムキャリア方式
やフィリップチップ方式が公知であるが、ワイヤボンデ
ィングやフィルムキャリア方式では、配線部の面積ロス
が大きい為、高密度に半導体素子を実装する場合には、
現在フィリップチップ方式が主に用いられている5、こ
の方式では第2図に示した様に半導体素子21の電!侃
パッド上に形成した突起電極22と、P、縁性」、(仮
23上の導体配線24とが位置合わせされた状態のま1
加圧されて半田づけされていることにより、半導体素子
22と導体配線24とが電気的に接続されている。この
ため、この方式ではワイヤを必要とせず、しかも接続が
一括して行えるといった長所を有する。
Conventional technology Wire bonding, film carrier method, and Philips chip method are known as conventional methods for mounting semiconductor elements on multi-chip modules. When mounting semiconductor elements at high density,
At present, the Philip chip method is mainly used.5 In this method, as shown in FIG. The protruding electrode 22 formed on the side pad and the conductor wiring 24 on the temporary 23 are aligned.
The semiconductor element 22 and the conductor wiring 24 are electrically connected by being pressurized and soldered. Therefore, this method has the advantage that it does not require wires and can be connected all at once.

発明が解決しようとする問題点 しかしながらフィリップチップ方式では以下に示す問題
点を有する。
Problems to be Solved by the Invention However, the Philips chip method has the following problems.

(1)熱拡散がバンプからの熱伝導のみであるので熱抵
抗は高く、チップ裏面に放熱板を取り付ける等の工夫を
してやらねばならない。
(1) Thermal resistance is high because heat is diffused only through heat conduction from the bumps, so it is necessary to take measures such as attaching a heat sink to the back of the chip.

(2)半導体素子の配線基板への固定が電極部のみで行
うため、外部からの熱や機械的歪により絶縁性基板が膨
張したりそったりした場合に、接続部での破壊が生じや
すい。
(2) Since the semiconductor element is fixed to the wiring board only by the electrode portion, if the insulating substrate expands or warps due to external heat or mechanical strain, the connection portion is likely to be damaged.

(3)半導体素子が外部にむき出しの構造を取るため、
コーティングやモールド等の保護処理を行わねばならな
い。
(3) Since the semiconductor element has a structure exposed to the outside,
Protective treatments such as coating and molding must be applied.

問題点を解決するための手段 本発明は前記問題点を解決するために、半導体素子を裏
面より絶縁性基板に固着し、これを2mくみ合わせ、半
導体素子の電極をそれと向かい合う反対側の基板の導体
配線と接触により電気的に接続させ、そのままの状態で
位置ずれせぬ様に固定するといった方法を用いるもので
ある。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention fixes a semiconductor element to an insulating substrate from the back side, joins them together by 2 m, and connects the electrodes of the semiconductor element to the opposite substrate. A method is used in which the wire is electrically connected by contact with the conductor wiring and fixed in that state so as not to shift.

作  用 本発明は前記構造を取ることにより半導体素子の絶縁性
基板への接続が半導体素子の裏面を一面に使って行われ
るため、半導体素子の内部で生じた熱が裏面より速やか
に放散され、しかも接続部では高い機械的強度が得られ
る。更に半導体素子及び導体配線を外側に配した構造で
あるため、半導体素子及び導体配線が保護される。
Function The present invention employs the above structure so that the semiconductor element is connected to the insulating substrate using the entire back surface of the semiconductor element, so that heat generated inside the semiconductor element is dissipated more quickly from the back surface. Moreover, high mechanical strength can be obtained at the connection portion. Furthermore, since the semiconductor element and the conductor wiring are arranged on the outside, the semiconductor element and the conductor wiring are protected.

実施例 本発明の実施例を第1図を用いてその工程とともに説明
する。まず第1図aに示した様に第1の半導体素子2を
第1の絶縁性基板4の所定の位置にダイボンディングに
より固着する。更に第2の絶縁性基板9にも同様の方法
で第2の半導体素子7を固着するうダイボンディングの
方法にはAu −S i用品接合やはんだ接合等の手法
を用いる。更に第1の絶縁性基板4の導体配線6と第2
絶縁性基板9の導体配線5をフレキシブル基板で接続し
た後、第1図すに示した様に第1の半導体素子2の電極
1を有する面から絶縁性基板4の導体配線6を有する面
にわたって絶縁性の接続樹脂11を塗布する。接続樹脂
11には熱硬化型、又は紫外線硬化型のエポキシ系、シ
リコン系、アクリル系等の樹脂を用いる。接続樹脂11
の塗布方法としてはデイスペンサー等を用いる。
EXAMPLE An example of the present invention will be described with reference to FIG. 1, together with its steps. First, as shown in FIG. 1a, the first semiconductor element 2 is fixed at a predetermined position on the first insulating substrate 4 by die bonding. Further, the second semiconductor element 7 is fixed to the second insulating substrate 9 in a similar manner using a die bonding method such as Au-Si component bonding or solder bonding. Furthermore, the conductor wiring 6 of the first insulating substrate 4 and the second
After connecting the conductor wiring 5 of the insulating substrate 9 with the flexible substrate, as shown in FIG. An insulating connection resin 11 is applied. For the connection resin 11, a thermosetting or ultraviolet curing resin such as epoxy, silicone, or acrylic resin is used. Connection resin 11
A dispenser or the like is used as the application method.

次にフレキシブル基板を折り曲げ第1図Cに示す様に第
1の半導体素子2の電極1を第2の絶縁性基板9の導体
配線1o第2の半導体素子7の電極6を第1の絶縁性基
板4の導体配線6にそれぞれ位置合わせ1−1位置ずれ
せぬ様加圧ツール12を用いて加圧する。この際、第1
の半導体素子2の電極1の上や、第2の半導体素子7の
電極e下に存在する接続樹脂11は加圧により周囲に押
し出され、第1の半導体素子2の電1と第2の絶縁性基
板9の導体配線10及び、第2の半導体素子7の電極6
と第1の絶縁性基板4の導体配線5とはそれぞれ接触に
より電気的に接続することとなる。この状態のまま接続
樹脂11を硬化させると、第1図dに示した様に加圧ツ
ール12による加圧を解除した後も各電極と導体配線と
の電気的接続が保持されることになる。接続樹脂11の
硬化は、接続樹脂11が熱硬化型である場合には加圧ツ
ール12に取り付けた加熱部により加熱して行い、樹脂
が紫外線硬化型である場合には側面の間隙より紫外線を
照射することにより行う。
Next, the flexible substrate is folded and as shown in FIG. Positioning 1-1 is applied to each of the conductor wirings 6 on the substrate 4 using a pressure tool 12 so as not to shift the position. At this time, the first
The connecting resin 11 existing on the electrode 1 of the semiconductor element 2 and under the electrode e of the second semiconductor element 7 is pushed out to the surroundings by pressure, and the electrode 1 of the first semiconductor element 2 and the second insulation conductor wiring 10 of the conductive substrate 9 and the electrode 6 of the second semiconductor element 7
and the conductor wiring 5 of the first insulating substrate 4 are electrically connected through contact with each other. If the connection resin 11 is cured in this state, the electrical connection between each electrode and the conductor wiring will be maintained even after the pressure applied by the pressure tool 12 is released, as shown in FIG. 1d. . When the connecting resin 11 is a thermosetting type, the connecting resin 11 is cured by heating with a heating section attached to the pressure tool 12, and when the connecting resin 11 is an ultraviolet curing type, ultraviolet rays are applied from the gap on the side. This is done by irradiation.

この際、いずれにおいても接続樹脂11の硬化温度は半
導体素子を絶縁性基板にダイボンドする温度よりずっと
低い温度であるので、半導体素子と絶縁性基板との接合
は損なわれない。
At this time, since the curing temperature of the connecting resin 11 is much lower than the temperature at which the semiconductor element is die-bonded to the insulating substrate, the bonding between the semiconductor element and the insulating substrate is not impaired.

ところで、マルチチップモジュールに半導体素子を搭載
する場合、轟然、各半導体素子間でその厚みに差異が存
在する場合が予期されるが、本発明ではそういった場合
でも半導体素子と絶縁性基板との間に台座を設けたり、
逆に凹部を設ける等の手法を用いることにより容易に対
応することができる。
By the way, when semiconductor elements are mounted on a multi-chip module, it is expected that there will be differences in the thickness between each semiconductor element, but in the present invention, even in such a case, there will be a difference in thickness between the semiconductor element and the insulating substrate. Set up a pedestal,
On the contrary, this can be easily dealt with by using a technique such as providing a recessed portion.

発明の効果 以上のように、本発明によれば次のような効果を得るこ
とができる。
Effects of the Invention As described above, according to the present invention, the following effects can be obtained.

(1)半導体素子の絶縁性基板への接合が半導体素子の
裏面を一向に使って行われるため、熱放散が容易であり
、しかも高い機械的強度が得られる。
(1) Since the semiconductor element is bonded to the insulating substrate using the entire back surface of the semiconductor element, heat dissipation is easy and high mechanical strength can be obtained.

(2)半導体素子及び導体配線を内側に、絶縁性基板を
外側に配した構造であるため、半導体素子及び導体配線
が保護され、高い信頼性が得られる。
(2) Since the structure is such that the semiconductor element and conductor wiring are placed inside and the insulating substrate is placed outside, the semiconductor element and conductor wiring are protected and high reliability can be obtained.

(3)第1の実施例においては半導体素子及び導体配線
が接続樹脂により密閉されるので、モールドやコーティ
ングの変わりとすることができる。
(3) In the first embodiment, the semiconductor element and the conductor wiring are sealed with the connecting resin, so it can be used instead of molding or coating.

(4)第1の絶縁性基板への半導体素子の固着と第2の
絶縁性基板への半導体素子の固着が同時に並行して進行
して進行でき、かつ絶縁性基板に固着した全ての半導体
の全電極と全導体配線との電気的接合が一括して行える
ので、従来法に比べ比躍的に効率的であり、実装コスト
を低減できる。
(4) The fixing of the semiconductor element to the first insulating substrate and the fixing of the semiconductor element to the second insulating substrate can proceed simultaneously and in parallel, and all the semiconductors fixed to the insulating substrate Since all electrodes and all conductor wiring can be electrically connected at once, this method is significantly more efficient than conventional methods and can reduce mounting costs.

(6)  電極と導体配線の接続を半田づけや合金を用
いて行わないので、余剰半田や合金等による電気的短絡
が生じない。
(6) Since the electrodes and conductor wiring are not connected using soldering or alloy, electrical short circuits due to excess solder, alloy, etc. do not occur.

以上の様に本発明の実用的効果は非常に多大なものがあ
る。
As described above, the practical effects of the present invention are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の半導体装置の組み立て工程
を示す断面図、第2図は従来法であるフィリップチップ
方式を示す断面図である。 1.6・・・・・・電極、5,10・・・・・・導体配
線、2・・・・・・第1の半導体素子、7・・・・・・
第2の半導体素子、4・・・・・・第1の絶縁性基板、
9・・・・・・第2の絶縁性基板、11・・・・・・接
続樹脂、12・・・・・・加圧ツーノペ13・・・・・
・フレキシブル基板。
FIG. 1 is a sectional view showing the assembly process of a semiconductor device according to an embodiment of the present invention, and FIG. 2 is a sectional view showing a conventional Philips chip method. 1.6...Electrode, 5,10...Conductor wiring, 2...First semiconductor element, 7...
second semiconductor element, 4...first insulating substrate,
9...Second insulating substrate, 11...Connecting resin, 12...Pressure tool 13...
・Flexible board.

Claims (3)

【特許請求の範囲】[Claims] (1)第1の絶縁性基板に第1の半導体素子が固着され
、第1の半導体素子の電極が向かい合う第2の絶縁性基
板の導体配線と接触により電気的に接続され、前記第2
の絶縁性基板に固着された前記第2の半導体素子の電極
が前記第1の絶縁性基板の導体配線と接触により電気的
に接続され、前記第1及び第2の半導体素子の電極と前
記第2及び第1の絶縁性基板の導体配線との接触による
電気的接続が保持できる様に圧力が加えられている半導
体装置。
(1) A first semiconductor element is fixed to a first insulating substrate, an electrode of the first semiconductor element is electrically connected by contact with a conductor wiring of an opposing second insulating substrate, and the second
The electrodes of the second semiconductor element fixed to the insulating substrate are electrically connected by contact with the conductive wiring of the first insulating substrate, and the electrodes of the first and second semiconductor elements are connected to the conductor wiring of the first insulating substrate. 2 and a semiconductor device to which pressure is applied so as to maintain electrical connection through contact with the conductor wiring of the first insulating substrate.
(2)第1の半導体素子を固着した第1の絶縁性基板と
第2の半導体素子を固着した第2の絶縁性基板とが両者
間に塗布した絶縁性の接続樹脂の硬化により固定され、
第1及び第2の半導体素子の電極と第2及び第1の絶縁
性基板の導体配線との接触による電気的接続が保持され
ている特許請求の範囲第1項記載の半導体装置。
(2) the first insulating substrate to which the first semiconductor element is fixed and the second insulating substrate to which the second semiconductor element is fixed are fixed by curing an insulating connecting resin applied between the two;
2. The semiconductor device according to claim 1, wherein electrical connection is maintained through contact between the electrodes of the first and second semiconductor elements and the conductor wiring of the second and first insulating substrates.
(3)第1及び第2の半導体素子の電極が第2及び第1
の絶縁性基板の導体配線とはんだ付けにより接続されて
いる特許請求の範囲第1項記載の半導体装置。
(3) The electrodes of the first and second semiconductor elements are the second and first electrodes.
The semiconductor device according to claim 1, wherein the semiconductor device is connected to the conductor wiring of the insulating substrate by soldering.
JP15822787A 1987-06-25 1987-06-25 Semiconductor device Pending JPS642343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15822787A JPS642343A (en) 1987-06-25 1987-06-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15822787A JPS642343A (en) 1987-06-25 1987-06-25 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH012343A true JPH012343A (en) 1989-01-06
JPS642343A JPS642343A (en) 1989-01-06

Family

ID=15667056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15822787A Pending JPS642343A (en) 1987-06-25 1987-06-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS642343A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6502409B1 (en) * 2000-05-03 2003-01-07 Computer Process Controls, Inc. Wireless method and apparatus for monitoring and controlling food temperature

Similar Documents

Publication Publication Date Title
KR100268205B1 (en) Attaching heat sinks directly to flip chips and ceramic chip carriers
US5561323A (en) Electronic package with thermally conductive support member having a thin circuitized substrate and semiconductor device bonded thereto
US6339254B1 (en) Stacked flip-chip integrated circuit assemblage
US5773884A (en) Electronic package with thermally conductive support member having a thin circuitized substrate and semiconductor device bonded thereto
US5633533A (en) Electronic package with thermally conductive support member having a thin circuitized substrate and semiconductor device bonded thereto
KR100694739B1 (en) Ball grid array package with multiple power/ground planes
JP3526788B2 (en) Method for manufacturing semiconductor device
US6584681B2 (en) Method for producing a microelectronic component of sandwich construction
US6709895B1 (en) Packaged microelectronic elements with enhanced thermal conduction
KR950006439B1 (en) Semiconductor device and method
KR0169820B1 (en) Chip scale package with metal wiring substrate
JPH05211281A (en) Stepped package for electronic device
JPS63239832A (en) Method of mounting ic chip onto printed circuit board, ic chip package obtained by the method and ic chip tape carrier for implementing the method
JP2001217354A (en) Mounting structure for semiconductor chip, and semiconductor device
TW201417642A (en) Connecting substrate and package on package structure
JP3251323B2 (en) Electronic circuit device
US6168975B1 (en) Method of forming extended lead package
KR960016006B1 (en) Method and apparatus for interconnecting device using tab in board technology
JP2785536B2 (en) Multi-chip module and manufacturing method thereof
JPH012343A (en) semiconductor equipment
JP3012753B2 (en) TAB package and connection method
JPH02135762A (en) Semiconductor device
JPH05243418A (en) Plastic pga type semiconductor device
JPH08172142A (en) Semiconductor package, its manufacturing method, and semiconductor device
JP2532400Y2 (en) Hybrid IC