JPH01231988A - Two-step treatment with reverse osmosis membrane - Google Patents

Two-step treatment with reverse osmosis membrane

Info

Publication number
JPH01231988A
JPH01231988A JP63058502A JP5850288A JPH01231988A JP H01231988 A JPH01231988 A JP H01231988A JP 63058502 A JP63058502 A JP 63058502A JP 5850288 A JP5850288 A JP 5850288A JP H01231988 A JPH01231988 A JP H01231988A
Authority
JP
Japan
Prior art keywords
water
reverse osmosis
osmosis membrane
ions
carbonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63058502A
Other languages
Japanese (ja)
Other versions
JPH0649191B2 (en
Inventor
Yuji Haraguchi
原口 祐治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP63058502A priority Critical patent/JPH0649191B2/en
Publication of JPH01231988A publication Critical patent/JPH01231988A/en
Publication of JPH0649191B2 publication Critical patent/JPH0649191B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • B01D61/026Reverse osmosis; Hyperfiltration comprising multiple reverse osmosis steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To efficiently reduce the total amt. of ions in secondary permeated water by treating alkali added decarbonated water with a first reverse osmosis membrane unit and treating the resulting primary permeated water with a second reverse osmosis membrane unit to obtain the secondary permeated water. CONSTITUTION:Alkali added decarbonated water is fed to a first reverse osmosis membrane unit 11 by a pump 10 and first-step treatment is carried out. Since most of carbonic acid in the fed water has been converted into hydrogencarbonate ions or carbonate ions, primary permeated water 12 contg. no carbonic acid and primary concd. water 13 contg. concd. ions are obtd. by the first-step treatment. The water 12 is then subjected to second-step- treatment with a second reverse osmosis membrane unit 14 to obtain secondary permeated water 15 and secondary concd. water 16. The water 15 is used as water for washing a semiconductor, water for manufacturing a medicine, etc., optionally after passing through an ion exchanging stage.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は電子工業における半導体洗浄用水や、製薬用水
等の製造に採用される2段式逆浸透膜処理方法の改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an improvement in a two-stage reverse osmosis membrane treatment method employed in the production of semiconductor cleaning water in the electronics industry, pharmaceutical water, and the like.

〈従来の技術〉 水中に含有される塩類を除く手段として、M習性、イオ
ン交換膜法、イオン交換樹脂法、逆浸i膜法等があるが
、河川水、湖沼水、あるいは工業用水、上水等の全力チ
オ:、y300rrg/l (Ca CO3換算)前後
からそれ以下の水質である原水を対象とした場合、エネ
ルギーコストが比較的安い点、および塩類とともに水中
に共存する有機物や微粒子も同時に除去できる点で、逆
浸透膜法が採用されることが多い。
<Prior art> Methods for removing salts contained in water include M behavior, ion exchange membrane method, ion exchange resin method, and reverse immersion membrane method. When targeting raw water with a quality of around 300rrg/l (Ca CO3 equivalent) or lower, the energy cost is relatively low, and the organic matter and fine particles that coexist in the water as well as salts are also The reverse osmosis membrane method is often adopted because it can be removed.

また塩類を除(とともに水中の有機物や微粒子を可及的
に除去する必要のある半導体洗浄用水や製薬用水等のい
わゆる超純水レベルの純水製造には逆浸透膜装置が不可
欠であり、当該超純水レベルの純水製造は原水をまず逆
浸透膜装置で処理することにより、全カチオンでlop
pm前後ないしそれ以下の透過水を得、次いで当該透過
水をイオン交換装置で処理するという、逆浸透膜装置と
イオン交換装置とを組み合わせたシステムが主流となっ
ている。
In addition, reverse osmosis membrane equipment is indispensable for the production of ultrapure water, such as semiconductor cleaning water and pharmaceutical water, which require removal of salts (as well as organic matter and fine particles in the water as much as possible). To produce ultra-pure water, raw water is first treated with a reverse osmosis membrane device, which removes all cations.
The mainstream is a system that combines a reverse osmosis membrane device and an ion exchange device, in which permeated water of around pm or less is obtained, and then the permeated water is treated with an ion exchange device.

このような逆浸透膜装置とイオン交換装置とを組み合わ
せたシステムにおいては、前段の逆浸透膜装置で可及的
に塩類を除去した方が後段のイオン交換装置の負担を低
減できるので、最近になって2段式逆浸透膜処理方法が
採用されるようになって来た。
In such a system that combines a reverse osmosis membrane device and an ion exchange device, it is better to remove salts as much as possible with the reverse osmosis membrane device in the first stage to reduce the burden on the ion exchange device in the second stage. As a result, a two-stage reverse osmosis membrane treatment method has come to be adopted.

すなわち原水を第1逆浸透膜装置に供給して全カチオン
で10ppm前後ないしそれ以下の一次透過水を得、ま
た当該一次透過水をさらに第2逆浸透膜装置に供給して
全カチオンでippm前後ないしそれ以下の二次透過水
を得、当該二次透過水を後段のイオン交換装置の供給水
とするものである。
That is, raw water is supplied to the first reverse osmosis membrane device to obtain primary permeated water with a total cation concentration of around 10 ppm or less, and the primary permeated water is further supplied to a second reverse osmosis membrane device to obtain a total cation concentration of around ippm. Secondary permeated water is obtained, and the secondary permeated water is used as feed water for the subsequent ion exchange device.

また当該イオン交換装置は再生廃液の中和処理の省略や
運転管理の簡素化のために、非再生型の強酸性カチオン
交換樹脂と強塩基性アニオン交換樹脂との混合樹脂を充
填したカートリッジ型混床式ポリシャーが用いられるよ
うになって来た。
In addition, in order to omit the neutralization process of recycled waste liquid and simplify operation management, the ion exchange device is a cartridge-type mixture filled with a non-regenerating type of mixed resin of a strongly acidic cation exchange resin and a strongly basic anion exchange resin. Floor-type polishers have come into use.

しかしながら前述した2段式逆浸透膜処理方法には以下
のような問題点がある。
However, the two-stage reverse osmosis membrane treatment method described above has the following problems.

すなわち透過水回収率を上昇させるために、系外に排出
する濃縮水の濃縮率を大とする必要があり、そのため原
水にカルシウムイオンが含まれていると膜面に炭酸カル
シウムが析出し膜面を汚染する恐れがある。
In other words, in order to increase the permeate recovery rate, it is necessary to increase the concentration rate of the concentrated water discharged outside the system. Therefore, if the raw water contains calcium ions, calcium carbonate will precipitate on the membrane surface. There is a risk of contaminating the

したがって従来ではこれを回避するため、原水に酸を添
加してpHを低下させて炭酸カルシウムの析出を防止し
ながら原水を逆浸透膜処理するのである。
Therefore, conventionally, in order to avoid this, raw water is treated with a reverse osmosis membrane while adding an acid to the raw water to lower the pH and prevent precipitation of calcium carbonate.

なお原水に酸を添加するため本来ならば逆浸透膜でその
大半を除去することができる炭酸水素イオンの一部分な
いし大部分を逆浸透膜ではほとんど除去することができ
ない炭酸に変化させてしまうので、通常、原水に酸を添
加した後、ラシヒリング等の充填塔の上部から水を流下
させるとともに充填塔の下部から空気等の気体を流入す
る、いわゆる脱炭酸塔あるいは真空脱気塔で処理するこ
とにより炭酸を除くことが行われている。
Furthermore, since acid is added to the raw water, some or most of the bicarbonate ions, most of which could normally be removed by a reverse osmosis membrane, are converted into carbonic acid, which can hardly be removed by a reverse osmosis membrane. Normally, after adding acid to raw water, water is allowed to flow down from the top of a packed tower such as a Raschig ring, and at the same time gas such as air is introduced from the bottom of the packed tower. Carbon dioxide is removed.

しかしながら従来の脱炭酸処理においては、炭酸の除去
効果が不充分であり、残留した炭酸は第1逆浸透膜装置
の一次透過水に含まれることとなる。
However, in the conventional decarboxylation treatment, the carbonic acid removal effect is insufficient, and the remaining carbonic acid is contained in the primary permeated water of the first reverse osmosis membrane device.

またこの−次週過水をさらに第2逆浸透膜装置で処理し
たとしても、当然のことながら当該炭酸は除去すること
ができず、結局二次透過水にそのまま透過することとな
り、後段のイオン交換装置のイオン負荷を増大せしめる
Furthermore, even if this next week's permeated water is further treated with the second reverse osmosis membrane device, the carbonic acid cannot be removed, and it ends up passing through the secondary permeated water as it is, which is then used for ion exchange at the subsequent stage. Increases the ion load of the device.

したがって従来では第1逆浸透膜装置の一次透過水に水
酸化ナトリウム溶液等のアルカリを添加し、−次週過水
中の炭酸を逆浸透膜で除去できることのできる炭酸水素
イオン(HCO3−)およびまたは炭酸イオン(CO3
”−)に変化させ、次いで当該アルカリ添加水を第2逆
浸透膜装置で処理する方法が採用されている。
Therefore, in the past, an alkali such as a sodium hydroxide solution was added to the primary permeated water of the first reverse osmosis membrane device, and the following week, bicarbonate ions (HCO3-) and/or carbonic acid were added to the primary permeated water of the first reverse osmosis membrane device. Ion (CO3
”-), and then the alkali-added water is treated with a second reverse osmosis membrane device.

このような従来の2段式逆浸透膜処理方法の原理を簡単
にまとめると以下のごとくなる。
The principle of such a conventional two-stage reverse osmosis membrane treatment method can be briefly summarized as follows.

すなわち原水に酸を添加する工程(主目的;原水のpH
を下げて逆浸透膜面の炭酸カルシウムスケールの析出防
止)、酸添加水を脱炭酸処理する工程(主目的;逆浸透
膜装置で除去不可能な炭酸を事前にできるだけ除去して
おり)、脱炭酸処理水を第1逆浸透膜装置で処理して一
次透過水を得る工程(主目的;−次脱塩)、−次週過水
にアルカリを添加する工程(主目的;−次週過水中の残
留炭酸を炭酸水素イオンおよびまたは炭酸イオンに変化
させる)、アルカリを添加した一次透過水を第2逆浸透
膜装置で処理して二次透過水を得る工程(主目的;二次
脱塩)からなる。
In other words, the process of adding acid to raw water (main purpose: adjusting the pH of raw water)
(preventing the precipitation of calcium carbonate scale on the reverse osmosis membrane surface), the process of decarboxylating acid-added water (main purpose; carbon dioxide that cannot be removed by reverse osmosis membrane equipment is removed as much as possible in advance), Process of treating carbonated water with the first reverse osmosis membrane device to obtain primary permeated water (main purpose; - secondary desalination), - process of adding alkali to next week's permeate water (main purpose; - residual in next week's permeate water) Converting carbonic acid into bicarbonate ions and/or carbonate ions), and processing primary permeated water with alkali added in a second reverse osmosis membrane device to obtain secondary permeated water (main purpose: secondary desalination) .

しかしながら上述した従来の2段式逆浸透膜処理方法は
炭酸を残留させた脱炭酸処理水をそのまま第1逆浸透膜
装置で処理しており、この点に問題がある。
However, in the conventional two-stage reverse osmosis membrane treatment method described above, the decarbonated water in which carbonic acid remains is treated as it is in the first reverse osmosis membrane device, which is a problem.

すなわち脱炭酸塔等で処理したとしても、その脱炭酸処
理水中の炭酸は通常6ppm(炭酸カルシウム換算)前
後であり、当該脱炭酸処理水をそのまま第1逆浸透膜装
置で処理するので、前述したごとく結局−次週過水中に
ほぼ同量の炭酸が含まれる。
That is, even if it is treated with a decarboxylation tower etc., the carbon dioxide in the decarboxylated water is usually around 6 ppm (calcium carbonate equivalent), and the decarboxylated water is directly processed with the first reverse osmosis membrane device, so as mentioned above. In the end, next week's water will contain almost the same amount of carbonic acid.

また当該一次透過水にアルカリを添加して当該炭酸を炭
酸水素イオンおよびまたは炭酸イオン等の炭酸成分イオ
ンに変化させたとしても、当該炭酸成分イオンは硫酸や
塩化物イオン等の鉱酸アニオンと比較して逆浸透膜で排
除しに<<、二次透過水中の全イオン量は期待する程低
下しない。
Furthermore, even if an alkali is added to the primary permeate water to change the carbonic acid into bicarbonate ions and/or carbonate component ions such as carbonate ions, the carbonate component ions are compared with mineral acid anions such as sulfuric acid and chloride ions. However, the total ion content in the secondary permeate water does not decrease as much as expected.

〈発明が解決しようとする問題点〉 本発明は原水に含まれる炭酸およびまたは炭酸水素イオ
ン等の炭酸成分を可及的に第1逆浸透膜装置で排除する
ことにより、2段式逆浸透膜処理方法における二次透過
水の全イオン量を低下させ、これによって後段に設置す
るイオン交換装置のイオン負荷を低減させ、全体として
のランニングコストをより低下させることを目的とする
<Problems to be Solved by the Invention> The present invention provides a two-stage reverse osmosis membrane system by removing carbonic acid components such as carbonic acid and/or hydrogen carbonate ions contained in raw water as much as possible in the first reverse osmosis membrane device. The purpose is to reduce the total ion content of the secondary permeated water in the treatment method, thereby reducing the ion load on the ion exchange equipment installed in the subsequent stage, and further reducing the overall running cost.

〈問題点を解決するための手段〉 かかる目的を達成するためになされた本発明よりなる2
段式逆浸透膜処理方法は、炭酸水素イオンを含む原水に
酸を添加する工程、次いで酸添加水を脱炭酸処理する工
程、次いで脱炭酸処理水を第1逆浸透膜装置で処理して
一次透過水を得る工程、次いで一次透過水を第2逆浸透
膜装置で処理して二次透過水を得る工程とからなる2段
式逆浸透膜処理方法において、脱炭酸処理水に、残留す
る炭酸を可及的に炭酸水素イオンおよびまたは炭酸イオ
ンに変化させ得る量のアルカリを添加し、当該アルカリ
を添加した脱炭酸処理水を第1逆浸透膜装置で処理して
一次透過水を得、次いで当該一次透過水を第2逆浸透膜
装置で処理して二次透過水を得ることを特徴とする2段
式逆浸透膜処理方法である。
<Means for solving the problem> The present invention is made to achieve the above object.
The staged reverse osmosis membrane treatment method includes a step of adding an acid to raw water containing bicarbonate ions, a step of decarboxylating the acid-added water, and then a step of treating the decarboxylated water with a first reverse osmosis membrane device. In a two-stage reverse osmosis membrane treatment method comprising a step of obtaining permeate water, and a step of treating the primary permeate water in a second reverse osmosis membrane device to obtain secondary permeate water, residual carbonic acid is removed from the decarbonated water. Add an amount of alkali to convert the carbonate into bicarbonate ions and/or carbonate ions as much as possible, and treat the decarbonated water to which the alkali has been added in a first reverse osmosis membrane device to obtain primary permeated water. This is a two-stage reverse osmosis membrane treatment method characterized in that the primary permeated water is treated in a second reverse osmosis membrane device to obtain secondary permeated water.

く作用〉 本発明者は炭酸水素イオンを含む原水に酸を添加し、炭
酸水素イオンを炭酸に変化させ、これを脱炭酸塔や真空
脱気器で処理し、水中に含まれる炭酸の大部分を炭酸ガ
スとして放散せしめた、いわゆる脱炭酸水を逆浸透膜装
置で処理する場合、当該脱炭酸水に水酸化ナトリムウ溶
液等のアルカリを添加して、水中に残留する少量の炭酸
を炭酸水素イオンや炭酸イオンに変化させた、いわゆる
アルカリ性の脱炭酸水を逆浸透膜処理しても、逆浸透膜
に炭酸カルシウムに起因するスケールが付着しないこと
を知見した。
Effect〉 The present inventor added an acid to raw water containing bicarbonate ions, changed the bicarbonate ions to carbonic acid, and treated this with a decarboxylation tower or vacuum deaerator to remove most of the carbonic acid contained in the water. When treating so-called decarbonated water, which has released carbon dioxide as carbon dioxide gas, with a reverse osmosis membrane device, an alkali such as a sodium hydroxide solution is added to the decarbonated water to convert the small amount of carbon dioxide remaining in the water into bicarbonate ions. We have discovered that even when so-called alkaline decarbonated water, which has been changed into carbonate ions, is treated with a reverse osmosis membrane, scale caused by calcium carbonate does not adhere to the reverse osmosis membrane.

すなわち逆浸透膜処理する水にたとえカルシウムイオン
が存在していても、炭酸カルシウムを構成する一方の成
分である炭酸成分が事前に脱炭酸処理することにより少
量となっているために、系のpHがアルカリ性であって
も炭酸カルシウムが生成しないのである。
In other words, even if calcium ions are present in the water subjected to reverse osmosis membrane treatment, the carbonic acid component, one of the constituents of calcium carbonate, is present in a small amount due to prior decarboxylation treatment, so the pH of the system will change. Calcium carbonate is not produced even if the water is alkaline.

本発明は上記知見に基づいてなされたもので、脱炭酸水
に積極的にアルカリを添加し、残留する少量の炭酸を炭
酸水素イオンおよびまたは炭酸イオンに変化させ、これ
を第1逆浸透膜装置で処理することにより、炭酸成分を
効果的に除去するものである。
The present invention has been made based on the above findings, and consists of actively adding alkali to decarbonated water, converting a small amount of remaining carbonic acid into bicarbonate ions and/or carbonate ions, and converting the carbonate into bicarbonate ions and/or carbonate ions in the first reverse osmosis membrane device. This treatment effectively removes carbonic acid components.

従来の2段式逆浸透膜処理方法においては、炭酸が残留
する脱炭酸水をそのまま第1逆浸透膜装置で処理してい
たので、当該炭酸がほとんどそのまま一次透過水に透過
していた。
In the conventional two-stage reverse osmosis membrane treatment method, decarbonated water in which carbonic acid remains is treated as it is in the first reverse osmosis membrane device, so that most of the carbonic acid permeates into the primary permeated water.

したがって炭酸の除去に関しては第1逆浸透膜はほとん
ど関与することな(、当該炭酸を炭酸水素イオンおよび
または炭酸イオンの形に変えてもっばら第2逆浸透膜装
置で除去していたのである。
Therefore, the first reverse osmosis membrane is hardly involved in the removal of carbonic acid (the carbonic acid is converted into bicarbonate ions and/or carbonate ions and is mostly removed by the second reverse osmosis membrane device).

しかしながら本発明においては脱炭酸処理水中の炭酸を
炭酸水素イオンおよびまたは炭酸イオンに変化させ、こ
れを第1逆浸透膜装置と第2逆浸透膜装置の2段で処理
するので、二次透過水の全イオン量を確実に低下させる
ことができる。
However, in the present invention, the carbonic acid in the decarboxylated water is changed into bicarbonate ions and/or carbonate ions, and this is processed in two stages, the first reverse osmosis membrane device and the second reverse osmosis membrane device, so the secondary permeated water The total ion amount can be reliably reduced.

以下に本発明を実施する装置の態様の一例のフローを図
面に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A flow of an example of an embodiment of an apparatus for carrying out the present invention will be described below based on the drawings.

第1図に示したごとく、必要により凝集沈殿、濾過、活
性炭処理等の前処理した原水1に、塩酸、硫酸等の酸を
受は入れた酸貯槽2から酸注入ポンプ3を用いて、酸を
添加する。
As shown in Fig. 1, acid injection pump 3 is used to feed raw water 1, which has been pretreated by coagulation sedimentation, filtration, activated carbon treatment, etc., as required, from an acid storage tank 2 containing an acid such as hydrochloric acid or sulfuric acid. Add.

当該酸の添加は原水に存在する炭酸水素イオンを以下の
反応(酸として硫酸を用いた場合)により炭酸とするも
のである。
The addition of the acid converts hydrogen carbonate ions present in the raw water into carbonic acid through the following reaction (when sulfuric acid is used as the acid).

11CO−3−+ ’AH2SOa−H2CO3+’4
SOa−第4SOa−たように炭酸成分は系の水のp 
ttによって、H2CO2、HCO3\cox”−とな
り、酸性側では炭酸(Hz CO:l )となる。
11CO-3-+ 'AH2SOa-H2CO3+'4
SOa - 4th SOa - The carbonic acid component is the p of the water in the system.
tt, it becomes H2CO2, HCO3\cox”-, and on the acidic side it becomes carbonic acid (Hz CO:l ).

したがって、酸を添加した原水を続いて脱炭酸装置4に
流入することにより生成された炭酸を炭酸ガスとして放
出する。
Therefore, the acid-added raw water subsequently flows into the decarboxylation device 4, and the carbon dioxide produced is released as carbon dioxide gas.

本発明に用いる脱炭酸装置4は、ラシヒリング等の気液
接触用の充填材を充填した塔の上部から原水を流下し、
塔の下部からプロワ−5を用いて空気を流入して原水中
の炭酸を炭酸ガスとして除去する、いわゆる脱炭酸塔や
前記充填材を充填した塔の上部から真空ポンプ等にてガ
スを吸収する、いわゆる真空脱気塔等を用いる。
The decarboxylation device 4 used in the present invention allows raw water to flow down from the top of a column filled with a packing material for gas-liquid contact such as a Raschig ring,
Air is introduced from the bottom of the tower using a blower 5 to remove carbon dioxide in the raw water as carbon dioxide gas, a so-called decarbonation tower, or a vacuum pump or the like is used to absorb gas from the top of the tower filled with the above-mentioned filler. , a so-called vacuum degassing tower or the like is used.

なお第2図に示したごとく系のpHが4.5以下となる
と原水中の炭酸水素イオンはほとんど炭酸となる。
As shown in FIG. 2, when the pH of the system becomes 4.5 or lower, most of the hydrogen carbonate ions in the raw water turn into carbonic acid.

したがって脱炭酸装置4の処理水のpHをpH電極6で
検出し、当該処理水のpHが4.5以下になるように酸
注入ポンプ3を計装的に制御し、酸の注入量を調整する
Therefore, the pH of the treated water in the decarboxylation device 4 is detected by the pH electrode 6, and the acid injection pump 3 is instrumented to be controlled so that the pH of the treated water is 4.5 or less, and the amount of acid to be injected is adjusted. do.

なお従来行われているように脱炭酸装置4の入口水のp
Hをたとえば4.5〜5.5に調整して脱炭酸処理する
のは好ましくない。
Note that as conventionally done, the p of the inlet water of the decarboxylation device 4 is
It is not preferable to perform the decarboxylation treatment by adjusting H to, for example, 4.5 to 5.5.

すなわちこの場合は脱炭酸処理の過程において炭酸が除
去されるためにpHが上昇し、炭酸の一部が炭酸水素イ
オンに変化するため、炭酸成分が残留することとなるか
らである。
That is, in this case, the pH increases as carbonic acid is removed during the decarboxylation process, and part of the carbonic acid changes to hydrogen carbonate ions, so that the carbonic acid component remains.

第1図に示したフローのように脱炭酸処理水のpHが常
に4.5以下になるようにして脱炭酸処理することによ
り、炭酸を可及的に除去することができる。
By carrying out the decarboxylation treatment so that the pH of the decarboxylated water is always 4.5 or less as shown in the flow shown in FIG. 1, carbonic acid can be removed as much as possible.

なお脱炭酸処理水のpHをあまり低くすると、それだけ
イオンを増加させる原因となるので、本発明では脱炭酸
処理水のpHを4.0〜4.5程度とするとよい。
Note that if the pH of the decarboxylated water is too low, it will cause an increase in ions, so in the present invention, the pH of the decarboxylated water is preferably about 4.0 to 4.5.

このようにして炭酸を可及的に除去した脱炭酸処理水に
、今度は水酸化ナトリウム溶液等のアルカリを受は入れ
たアルカリ貯槽7からアルカリ注入ポンプ8を用いてア
ルカリを添加する。
To the decarboxylated water from which carbon dioxide has been removed as much as possible in this way, alkali is added using an alkali injection pump 8 from an alkali storage tank 7 that has received an alkali such as a sodium hydroxide solution.

当該アルカリの添加は脱炭酸処理水に残留する炭酸を以
下の反応(アルカリとして水酸化ナトリウムを用いた場
合)により、炭酸水素イオン、およびまたは炭酸イオン
とするものである。
The addition of the alkali converts the carbonic acid remaining in the decarbonated water into bicarbonate ions and/or carbonate ions through the following reaction (when sodium hydroxide is used as the alkali).

t(zco3+ NaOH−4Na ’″+HCO3−
+ H!0H2CO3+ 2NaOH−2Na” + 
CO3−+ 2)1zO第2図に示したように系の水の
pHが8.0以上となると、水中の炭酸のほとんどは炭
酸水素イオンあるいは炭酸イオンとなる。したがってア
ルカリ添加後のpHをpH電極9で検出し、このpHが
8.0以上になるようにアルカリ注入ポンプ8を計装的
に制御し、アルカリの注入量を調整する。
t(zco3+ NaOH-4Na '''+HCO3-
+H! 0H2CO3+ 2NaOH-2Na” +
CO3-+ 2) 1zO As shown in Figure 2, when the pH of the water in the system becomes 8.0 or higher, most of the carbonic acid in the water becomes bicarbonate ions or carbonate ions. Therefore, the pH after addition of the alkali is detected by the pH electrode 9, and the alkali injection pump 8 is controlled instrumentally to adjust the amount of alkali injected so that the pH becomes 8.0 or higher.

なおあまりpHを高くすると、それだけイオンを増加さ
せることとなるので、好ましくは8.0〜8.5程度に
調整するとよい。
Note that if the pH is increased too much, the number of ions will increase accordingly, so it is preferably adjusted to about 8.0 to 8.5.

このようにしてアルカリを添加した脱炭酸水をポンプ1
0を用いて第1逆浸透膜装置11に供給し、第1段処理
を行う。
In this way, pump 1 pumps decarbonated water to which alkali has been added.
0 is used to supply it to the first reverse osmosis membrane device 11 and perform the first stage treatment.

前述したごとく第1逆浸透膜装置11の供給水中の炭酸
は可及的に炭酸水素イオンおよびまたは炭酸イオンとな
っているので、炭酸と相違して充分に逆浸透膜で排除さ
れ、炭酸を含まない一次週過水12およびイオンが濃縮
された一次濃縮水13が得られる。
As mentioned above, the carbonic acid in the water supplied to the first reverse osmosis membrane device 11 is as much as bicarbonate ions and/or carbonate ions, so unlike carbonic acid, it is sufficiently removed by the reverse osmosis membrane and contains carbonic acid. A primary concentrated water 12 containing no ion-concentrated primary concentrated water 12 and an ion-concentrated primary concentrated water 13 are obtained.

次いで当該一次透過水12をさらに第2逆浸透膜装置1
4で第2段処理し、二次透過水15および二次濃縮水1
6を得る。なお二次濃縮水16は比較的水質が良好な水
であるので、通常は図示していない回収配管を用いて、
たとえば原水槽に回収する。
Next, the primary permeated water 12 is further passed through the second reverse osmosis membrane device 1
4, and the secondary permeate water 15 and the secondary concentrated water 1
Get 6. In addition, since the secondary concentrated water 16 is water of relatively good quality, it is usually collected using a recovery pipe (not shown).
For example, it is collected in a raw water tank.

またこのようにして得られた二次透過水15は、そのま
まあるいはさらにイオン交換処理等を経て、半導体洗浄
用水や製薬用水等として用いられる。
Further, the secondary permeated water 15 thus obtained is used as water for semiconductor cleaning, water for pharmaceuticals, etc., either as it is or after further ion exchange treatment or the like.

く効果〉 以上説明したごとく本発明は原水に酸を添加して、原水
に存在する炭酸水素イオンを全て炭酸とし、かつ当該炭
酸を可及的に脱炭酸処理して除去し、さらに脱炭酸処理
水にアルカリを添加して、脱炭酸処理水中に残留する少
量の炭酸を可及的に炭酸水素イオンおよびまたは炭酸イ
オンとなし、しかる後に逆浸透膜装置で2段処理するの
で、原水に存在する炭酸成分を効果的に除去することが
でき、よって二次透過水のイオン量を従来法と比較して
大幅に低下させることができる。
Effect> As explained above, the present invention adds an acid to raw water, converts all the hydrogen carbonate ions present in the raw water into carbonic acid, removes the carbonic acid as much as possible by decarboxylation, and further decarboxylate. By adding alkali to the water, the small amount of carbonic acid remaining in the decarbonated water is converted into bicarbonate ions and/or carbonate ions as much as possible, and then subjected to two-stage treatment using a reverse osmosis membrane device, so that the remaining amount of carbonic acid in the decarbonated water is converted into bicarbonate ions and/or carbonate ions. Carbonic acid components can be effectively removed, and the amount of ions in the secondary permeate water can therefore be significantly reduced compared to conventional methods.

したがって当該二次透過水をたとえば非再生型のカート
リッジ型混床式ポリシャーで処理する場合においては、
当該ポリシャーの交換頻度を大幅に延長させることがで
き、超純水を製造するためのランニングコストを大幅に
低下させることができる。
Therefore, when the secondary permeate water is treated with a non-regenerating cartridge-type mixed bed polisher, for example,
The frequency of replacing the polisher can be significantly extended, and the running cost for producing ultrapure water can be significantly reduced.

以下に本発明の効果をより一層明確とするために実施例
を説明する。
Examples will be described below to further clarify the effects of the present invention.

実施例 砂濾過および活性炭濾過を施した第1表に示す水質の市
水を原水とし、第1図に示すフローに基づいて本発明を
実施した。
EXAMPLE The present invention was carried out based on the flow shown in FIG. 1 using as raw water city water that had been subjected to sand filtration and activated carbon filtration and had the quality shown in Table 1.

すなわち脱炭酸処理水のpHが460になるごとく原水
に硫酸を添加し、次いで脱炭酸処理した。
That is, sulfuric acid was added to the raw water so that the pH of the decarboxylated water became 460, and then the decarboxylation treatment was performed.

続いて当該脱炭酸処理水のpHが8.0になるごとく、
脱炭酸処理水に水酸化ナトリウム溶液を添加し、p H
8,0となした脱炭酸処理水をNTR−739(日東電
工■制逆浸透膜)を装着した第1逆浸透膜装置で処理し
、当該一次透過水を続いて5U−720(東し■制逆浸
透膜)を装着した第2逆浸透膜装置で処理し二次透過水
を得た。この時の一次透過水および二次透過水の水質を
第2表および第3表に示す。
Next, the pH of the decarboxylated water was 8.0,
Add sodium hydroxide solution to the decarboxylated water and adjust the pH
The decarbonated water, which has been reduced to 8.0, is treated with the first reverse osmosis membrane device equipped with NTR-739 (Nitto Denko's reverse osmosis membrane), and the primary permeated water is then treated with 5U-720 (Nitto Denko's reverse osmosis membrane). The water was treated with a second reverse osmosis membrane device equipped with a reverse osmosis membrane (reverse osmosis membrane) to obtain secondary permeated water. The water quality of the primary permeated water and secondary permeated water at this time is shown in Tables 2 and 3.

なお本処理方法を720時間(30日間)Vt行したが
、第1逆浸透膜装置の透過水量が低下することはなかっ
た。
Although this treatment method was carried out for 720 hours (30 days), the amount of water permeated through the first reverse osmosis membrane device did not decrease.

第1表  原水水質 比較例 実施例で用いたと同じ原水に硫酸を加えてpH460に
調整し、p H4,0とした原水を脱炭酸処理した。続
いて当該脱炭酸処理水を実施例で用いたと同じ第1逆浸
透膜装置で処理して一次透過水を得、当該一次透過水に
水酸化ナトリウム溶液を加えてpHを8.0に調整した
。次いでp H8,0に調整した一次透過水を実施例で
用いたと同じ第2逆浸透膜装置で処理し二次透過水を得
た。
Table 1 Comparative Examples of Raw Water Quality The same raw water as used in the examples was adjusted to pH 460 by adding sulfuric acid, and the raw water was decarboxylated to pH 4.0. Subsequently, the decarbonated water was treated with the same first reverse osmosis membrane device as used in the example to obtain primary permeated water, and a sodium hydroxide solution was added to the primary permeated water to adjust the pH to 8.0. . Next, the primary permeated water adjusted to pH 8.0 was treated with the same second reverse osmosis membrane device as used in the example to obtain secondary permeated water.

この時の一次透過水、pHを8.0に調整後の一次透過
水、二次透過水の水質を第4表、第5表、第6表に示す
The quality of the primary permeated water, the primary permeated water after adjusting the pH to 8.0, and the secondary permeated water at this time are shown in Tables 4, 5, and 6.

第4表  −次週過水 第5表  pH8,0に調整した−次透過水第6表  
二次透過水 以上の実施例および比較例の二次透過水の水質に示され
るごとく、本発明方法では全カチオン0゜O8ppm、
全アニオン0.llppmに対して、従来方法では全カ
チオン0.48 ppm、全アニオン0.51ppm(
いずれもCaCO5換算)であり、本発明方法によれば
従来方法に比較して全カチオンで約6分の11全アニオ
ンで約5分の1の二次透過水が得られる。
Table 4 - Next week's permeated water Table 5 - Next week's permeated water adjusted to pH 8.0 Table 6
As shown in the water quality of the secondary permeated water in Examples and Comparative Examples, the method of the present invention has a total cation concentration of 0°O8 ppm,
Total anions 0. llppm, in the conventional method, total cations were 0.48 ppm and total anions were 0.51 ppm (
According to the method of the present invention, the amount of secondary permeated water is approximately 1/6 of the total cations and approximately 1/5 of the total anions compared to the conventional method.

したがって二次透過水をさらにイオン交換装置で処理す
る場合は、当該イオン交換装置の通水時間を少なくとも
約5倍とすることができる。
Therefore, when the secondary permeated water is further treated with an ion exchange device, the water passage time through the ion exchange device can be increased at least about five times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施する装置の態様の一例のフローを
示す説明図であり、第2図はpHにおける炭酸と炭酸水
素イオンと炭酸イオンのモル比を示す説明図であり、縦
軸にモル比、横軸にpHを示す。 1・・・原水      2・・・酸貯槽3・・・酸注
入ポンプ  4・・・脱炭酸装置5・・・ブロワ−6・
・・pH電極 7・・・アルカリ貯槽  8・・・アルカリ注入ポンプ
9・・・pH電極   10・・・ポンプ11・・・第
1逆浸透膜装置 12・・・−次週過水  13・・・−次濃縮水14・
・・第2逆浸透膜装置 15・・・二次透過水  16・・・二次濃縮水手続補
正書(自発) 平成1年5月24日 特許庁長官  吉 ロ1 文 毅 殿 1、事件の表示 昭和63年特許願第58502号 2、発明の名称 2段式逆浸透膜処理方法 3、補正をする者 事イ′1との関係 特許出願人 住 所  東京都文京区本郷5丁目5番16号名 称 
 (440)  オルガノ株式会社代表者   前  
1) 容  克 4、代理人〒113 1”E I5.812−5151 5、補正の対象 明細3中の下記事項を訂正願います。 1、第5頁12行目〜13行目に「除去できることので
きる」とあるのを「除去することのできる」と訂正する
。 以上
FIG. 1 is an explanatory diagram showing the flow of an example of an embodiment of an apparatus for carrying out the present invention, and FIG. 2 is an explanatory diagram showing the molar ratio of carbonic acid, hydrogen carbonate ion, and carbonate ion at pH. The molar ratio and the pH are shown on the horizontal axis. 1... Raw water 2... Acid storage tank 3... Acid injection pump 4... Decarboxylation device 5... Blower 6.
...pH electrode 7...alkali storage tank 8...alkali injection pump 9...pH electrode 10...pump 11...first reverse osmosis membrane device 12...-Next week's overhydration 13... -Next concentrated water 14.
...Second reverse osmosis membrane device 15...Secondary permeated water 16...Secondary concentrated water procedural amendment (voluntary) May 24, 1999 Commissioner of the Japan Patent Office Yoshiro 1 Moon Yi 1, of the incident Description 1986 Patent Application No. 58502 2 Name of the invention Two-stage reverse osmosis membrane treatment method 3 Relationship with the person making the amendment A'1 Patent applicant address 5-5-16 Hongo, Bunkyo-ku, Tokyo Title name
(440) Organo Co., Ltd. Representative
1) Rong Ke 4, Agent 〒113 1”E I5.812-5151 5. Please correct the following matters in Specification Subject to Amendment 3. 1. On page 5, lines 12-13, ``What can be removed?'' The phrase "can be removed" should be corrected to "can be removed."that's all

Claims (1)

【特許請求の範囲】[Claims] 炭酸水素イオンを含む原水に酸を添加する工程、次いで
酸添加水を脱炭酸処理する工程、次いで脱炭酸処理水を
第1逆浸透膜装置で処理して一次透過水を得る工程、次
いで一次透過水を第2逆浸透膜装置で処理して二次透過
水を得る工程とからなる2段式逆浸透膜処理方法におい
て、脱炭酸処理水に、残留する炭酸を可及的に炭酸水素
イオンおよびまたは炭酸イオンに変化させ得る量のアル
カリを添加し、当該アルカリを添加した脱炭酸処理水を
第1逆浸透膜装置で処理して一次透過水を得、次いで当
該一次透過水を第2逆浸透膜装置で処理して二次透過水
を得ることを特徴とする2段式逆浸透膜処理方法。
A step of adding an acid to raw water containing bicarbonate ions, a step of decarboxylating the acid-added water, a step of treating the decarbonated water with a first reverse osmosis membrane device to obtain primary permeated water, and then a step of obtaining primary permeated water. In a two-stage reverse osmosis membrane treatment method that includes a step of treating water in a second reverse osmosis membrane device to obtain secondary permeated water, residual carbonic acid is removed from the decarbonated water as much as possible to form bicarbonate ions and Alternatively, an amount of alkali that can be converted into carbonate ions is added, and the decarbonated water to which the alkali is added is treated in a first reverse osmosis membrane device to obtain primary permeated water, and then the primary permeated water is passed through a second reverse osmosis membrane device. A two-stage reverse osmosis membrane treatment method, characterized in that secondary permeated water is obtained by treatment with a membrane device.
JP63058502A 1988-03-14 1988-03-14 Two-stage reverse osmosis membrane treatment method Expired - Lifetime JPH0649191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63058502A JPH0649191B2 (en) 1988-03-14 1988-03-14 Two-stage reverse osmosis membrane treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63058502A JPH0649191B2 (en) 1988-03-14 1988-03-14 Two-stage reverse osmosis membrane treatment method

Publications (2)

Publication Number Publication Date
JPH01231988A true JPH01231988A (en) 1989-09-18
JPH0649191B2 JPH0649191B2 (en) 1994-06-29

Family

ID=13086194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63058502A Expired - Lifetime JPH0649191B2 (en) 1988-03-14 1988-03-14 Two-stage reverse osmosis membrane treatment method

Country Status (1)

Country Link
JP (1) JPH0649191B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416279A (en) * 1990-05-08 1992-01-21 Hitachi Plant Eng & Constr Co Ltd Production of pure water
US5722442A (en) * 1994-01-07 1998-03-03 Startec Ventures, Inc. On-site generation of ultra-high-purity buffered-HF for semiconductor processing
JP2002284795A (en) * 2001-03-23 2002-10-03 Morinaga Milk Ind Co Ltd Method for membrane-treatment of protein-containing aqueous solution
KR100429763B1 (en) * 2002-01-08 2004-05-03 정건용 Method for Recycling the Valuable Components from Cleaning Wastewater of Printed Circuit Board
US7320756B2 (en) 2001-05-05 2008-01-22 Debasish Mukhopadhyay Method and apparatus for treatment of feedwaters by membrane separation under acidic conditions
US7646147B2 (en) 2006-05-19 2010-01-12 Au Optronics Corp. Electro-luminescence panel
US8758720B2 (en) 1996-08-12 2014-06-24 Debasish Mukhopadhyay High purity water produced by reverse osmosis
US9073763B2 (en) 1996-08-12 2015-07-07 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation
JP2017221929A (en) * 2016-06-17 2017-12-21 三浦工業株式会社 Water treatment system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001294860A1 (en) * 2000-09-29 2002-04-08 Ionics Incorporated High recovery reverse osmosis process and apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614591A (en) * 1984-06-04 1986-01-10 アローヘツド、インダストリアル、ウオーター、インコーポレイテツド Reverse osmosis system
JPS6242787A (en) * 1985-08-15 1987-02-24 Kurita Water Ind Ltd Apparatus for producing high-purity water
JPS62110795A (en) * 1985-11-06 1987-05-21 Kurita Water Ind Ltd Device for producing high-purity water
JPS6328486A (en) * 1986-07-21 1988-02-06 Shinko Fuaudoraa Kk Method for removing dissolved carbon dioxide in pure water producing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614591A (en) * 1984-06-04 1986-01-10 アローヘツド、インダストリアル、ウオーター、インコーポレイテツド Reverse osmosis system
JPS6242787A (en) * 1985-08-15 1987-02-24 Kurita Water Ind Ltd Apparatus for producing high-purity water
JPS62110795A (en) * 1985-11-06 1987-05-21 Kurita Water Ind Ltd Device for producing high-purity water
JPS6328486A (en) * 1986-07-21 1988-02-06 Shinko Fuaudoraa Kk Method for removing dissolved carbon dioxide in pure water producing apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416279A (en) * 1990-05-08 1992-01-21 Hitachi Plant Eng & Constr Co Ltd Production of pure water
US5722442A (en) * 1994-01-07 1998-03-03 Startec Ventures, Inc. On-site generation of ultra-high-purity buffered-HF for semiconductor processing
US8758720B2 (en) 1996-08-12 2014-06-24 Debasish Mukhopadhyay High purity water produced by reverse osmosis
US9073763B2 (en) 1996-08-12 2015-07-07 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation
US9428412B2 (en) 1996-08-12 2016-08-30 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation
JP2002284795A (en) * 2001-03-23 2002-10-03 Morinaga Milk Ind Co Ltd Method for membrane-treatment of protein-containing aqueous solution
JP4619559B2 (en) * 2001-03-23 2011-01-26 森永乳業株式会社 Method for membrane treatment of protein-containing aqueous solution
US7320756B2 (en) 2001-05-05 2008-01-22 Debasish Mukhopadhyay Method and apparatus for treatment of feedwaters by membrane separation under acidic conditions
KR100429763B1 (en) * 2002-01-08 2004-05-03 정건용 Method for Recycling the Valuable Components from Cleaning Wastewater of Printed Circuit Board
US7646147B2 (en) 2006-05-19 2010-01-12 Au Optronics Corp. Electro-luminescence panel
JP2017221929A (en) * 2016-06-17 2017-12-21 三浦工業株式会社 Water treatment system

Also Published As

Publication number Publication date
JPH0649191B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
JP4880656B2 (en) Water treatment apparatus and water treatment method
CN103011441B (en) Method for deep treatment on cyanogens, fluorine and ammonia nitrogen-containing waste water
CN108017213A (en) A kind of high slat-containing wastewater recycling treatment system and technique
JPH01231988A (en) Two-step treatment with reverse osmosis membrane
JP3646900B2 (en) Apparatus and method for treating boron-containing water
JPS62204892A (en) Desalting method
JPH0252088A (en) Apparatus for making desalted water
JPH05253576A (en) Treatment of fluorine-containing water
JPS62110795A (en) Device for producing high-purity water
JP3319053B2 (en) Treatment method for fluoride-containing water
JPS6336890A (en) Apparatus for producing high-purity water
JP4519930B2 (en) Ultrapure water production method and ultrapure water production apparatus
JPH0214794A (en) Treatment of waste liquid after regeneraton of ion exchange apparatus
JPH09253638A (en) Ultrapure water making apparatus
JP2010089051A (en) Method and apparatus for treating water containing phosphoric acid, nitric acid and organic acid
JPH02303593A (en) Two-stage type reverse osmosis membrane device
JP3697800B2 (en) Wastewater treatment method
JP2002355683A (en) Ultrapure water making method and apparatus
JPS586297A (en) Treatment of raw water of high content of silica
JP3543435B2 (en) Ultrapure water production method
JP3645007B2 (en) Ultrapure water production equipment
JP7261711B2 (en) Ultrapure water production system and ultrapure water production method
JPH11165179A (en) Method for treating fluorine-containing water
JP2000271569A (en) Production of pure water
CN220703439U (en) High sodium chloride, sodium nitrate&#39;s wastewater treatment system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080629

Year of fee payment: 14