JPH01230496A - Novel diamond carbon membrane and its production - Google Patents

Novel diamond carbon membrane and its production

Info

Publication number
JPH01230496A
JPH01230496A JP25025588A JP25025588A JPH01230496A JP H01230496 A JPH01230496 A JP H01230496A JP 25025588 A JP25025588 A JP 25025588A JP 25025588 A JP25025588 A JP 25025588A JP H01230496 A JPH01230496 A JP H01230496A
Authority
JP
Japan
Prior art keywords
plasma
film
diamond
substrate
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25025588A
Other languages
Japanese (ja)
Other versions
JP2637509B2 (en
Inventor
Keiko Ikoma
生駒 圭子
Noriko Kurihara
栗原 紀子
Keiji Hirabayashi
敬二 平林
Yasushi Taniguchi
靖 谷口
Joji Ando
安藤 譲二
Susumu Ito
進 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP25025588A priority Critical patent/JP2637509B2/en
Publication of JPH01230496A publication Critical patent/JPH01230496A/en
Application granted granted Critical
Publication of JP2637509B2 publication Critical patent/JP2637509B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To easily obtain the title carbon membrane which is excellent in surface smoothness, chemical and structural stability at elevated temperature and etching resistance, by applying a magnetic field to, and simultaneously introducing microwaves into the plasma-generating chamber to convert a carbon-containing gas into plasma under specific conditions. CONSTITUTION:A base plate 10 such as a Si base is fixed on the base holder 11 in the plasma-generating chamber 1 and the chamber 1 is evacuated with a vacuum evacuator 7 to about 1X10<-6> Torr. Then, direct current is applied to the heating/ cooling controller 12 to heat the base 10 at 450 deg.C. Then, a prescribed volume of a carbon-containing gas is introduced from the source 16 into the plasma-generating chamber 1 to adjust the pressure to 10<-2>-10 Torr. Further, electric magnets 5 are used to apply a magnetic field satisfying the conditions for electron cyclotron resonance such as about 1300gauss near the window 2 for introducing microwaves and about 875gauss near the surface of the base 10, and microwaves are introduced from the microwave power source 4 to convert the carbon-containing gas into plasma so that the ratio of the intensity of plasma emission spectrum caused by C2 specie/the intensity of CH active specie becomes 5-0.05. Thus, the title carbon membrane is formed on the base 10 at 100-800 deg.C.

Description

【発明の詳細な説明】 〔従来技術の説明〕 従来、薄膜状に形成したダイヤモンド膜及びDLC膜が
知られていて、それらは絶縁膜、保護膜、電子素子の材
料、光学薄膜としての利用が期待されている。そして中
には既ムこスピーカー振動板などに実用された例もある
。そのようなダイヤモンド薄膜、あるいはDLC膜の製
造方法については気相から合成する方法が各種提案され
ていて、それらの代表例は下体するごときものである。
[Detailed Description of the Invention] [Description of Prior Art] Conventionally, diamond films and DLC films formed into thin films have been known, and they can be used as insulating films, protective films, materials for electronic devices, and optical thin films. It is expected. In some cases, it has been used in practical applications such as speaker diaphragms. Various methods have been proposed for producing such diamond thin films or DLC films, including synthesis from a gas phase, and a representative example of these is a method for producing diamond thin films or DLC films.

(11イオンビーム蒸着法(特開昭6O−127298
):イオンビームスパッタ法(特開昭57−10651
3);RFスパッタ法(特開昭63−53255);R
Fダグロー放電法J、Fink et al、、  5
olidS tate Comm、↓7(1983)6
87)i及びDC−放電法(特開昭6O−145995
)(2)マイクロ波プラズマCVD法(特公昭6l−3
320);熱フイラメントCVD法(特開昭58−91
100);及び熱プラズマCVD法上記(1)に述べた
いずれの方法によっても一般にアモルファス性の高い表
面の滑らかなりLC膜が得られる。しかし得られるいず
れのDLC膜も下体するように問題点のあるものである
(11 Ion beam evaporation method (Japanese Unexamined Patent Publication No. 127298
): Ion beam sputtering method (Japanese Patent Application Laid-Open No. 57-10651
3); RF sputtering method (Japanese Patent Application Laid-Open No. 63-53255); R
F. Douglow discharge method J, Fink et al., 5
solid State Comm, ↓7 (1983) 6
87) i and DC-discharge method (JP-A-6O-145995
) (2) Microwave plasma CVD method (Special Publication Show 6l-3
320); Hot filament CVD method (Japanese Unexamined Patent Publication No. 1986-91
100); and Thermal Plasma CVD Method Any of the methods described in (1) above generally yields a highly amorphous LC film with a smooth surface. However, any DLC film obtained has some problems.

即ちイオンビーム蒸着法はイオン銃にメタンガスなどを
流して含炭素イオンビームを形成し、該イオンビームを
基体に照射して成膜する方法である。この方法により得
られる膜は電子線回折法で結晶性のものが検出されるこ
とがあるが、i−c膜と呼ばれている膜も含めて全体と
してはアモルファス性が高く、−表面平滑度は良い。し
かしその膜特性はアモルファス部分の特性に依存し、特
に光学バンドギャップが狭くまた電気抵抗率が低いこと
から天然ダイヤモンドに比べるとかなり劣るものである
That is, the ion beam evaporation method is a method in which a carbon-containing ion beam is formed by flowing methane gas or the like through an ion gun, and a substrate is irradiated with the ion beam to form a film. Crystalline films obtained by this method are sometimes detected by electron diffraction, but the film as a whole, including the film called ic film, is highly amorphous, and has - surface smoothness. is good. However, the film properties depend on the properties of the amorphous portion, and are considerably inferior to natural diamonds, especially since the optical bandgap is narrow and the electrical resistivity is low.

イオンビームスパッタ法はグラファイトをターゲットに
し、該ターゲットをイオン銃によって活性化したイオン
ビーム状のスパッタガスでスパッタして成膜する方法で
ある。RFスパッタ法はグラファイトをターゲットにし
、該ターゲットを高周波エネルギーで活性化したスパッ
タガスでスパッタして成膜する方法である。これらの方
法によるといずれの場合にあっても水素含有量の少なく
、高硬度の膜が得られはするものの、それらの膜は光学
ハンドギャップ、電気抵抗率等の膜特性の点で劣り、満
足のゆくものではない。
The ion beam sputtering method is a method of forming a film by using graphite as a target and sputtering the target with an ion beam-shaped sputtering gas activated by an ion gun. The RF sputtering method is a method of forming a film by using graphite as a target and sputtering the target with a sputtering gas activated by high frequency energy. Although these methods yield films with low hydrogen content and high hardness, they are inferior in film properties such as optical hand gap and electrical resistivity, and are not satisfactory. It's not something that goes by.

RFダグロー放電法高周波を、DC放電法は直流電圧を
印加することによってプラズマを生成し、含炭素ガスを
分解して成膜する方法である。
The RF Douglow discharge method is a method in which plasma is generated by applying a high frequency, and the DC discharge method is a method in which a plasma is generated by applying a direct current voltage, and a carbon-containing gas is decomposed to form a film.

これらの方法によってはa−C:H膜と呼ばれる膜を含
めて一般にアモルファスでH含有量の多い膜を形成する
ことができる。しかしこうした膜はH含有量が多いこと
から光学バンドギャップが広く、そして電気抵抗率が高
いが、特に硬度や屈折率の点で劣り満足のゆくものでは
ない。
Depending on these methods, it is possible to form films that are generally amorphous and have a high H content, including films called a-C:H films. However, although such films have a wide optical bandgap and high electrical resistivity due to their high H content, they are unsatisfactory, especially in terms of hardness and refractive index.

以上述べたことの他に上記(1)に述べた方法について
は、下体する他の問題点がまたある。即ち、それらのい
ずれの方法によっても、得られるH含有量が多い膜は総
して単位体積当たりの炭素原子数が少なく、たとえイー
CH□→−nの長鎖ポリマー構造を含まないa−C:H
のような膜であっても、密度の小さいものになってしま
うために、特に耐エツチング性について安定性を欠如す
る。また上記(1)に述べた方法にあっては膜中の水素
含有量は、基体温度を制御するか(D、R,Mcken
zie et al、。
In addition to what has been described above, there are other problems with the method described in (1) above. That is, by any of these methods, the obtained film with a high H content generally has a small number of carbon atoms per unit volume, and even if a-C does not contain a long chain polymer structure of e-CH :H
Even such a film has a low density and thus lacks stability, especially in terms of etching resistance. In addition, in the method described in (1) above, the hydrogen content in the film can be controlled by controlling the substrate temperature (D, R, Mcken
Zie et al.

Th1n 5olid F iln+s↓08(198
3)247)、成膜に関与するイオン種の運動エネルギ
ーを基体バイアス電位を制御するか(K、Yamamo
to et al、。
Th1n 5olid F iln+s↓08(198
3) 247), whether the kinetic energy of ion species involved in film formation is controlled by the substrate bias potential (K, Yamamo
to et al.

Jpn、J、Appl、Phys、27(198B) 
 1415)、自己バイアス電位を制御するか、或いは
加速電圧により制御する(C,Weissmantel
 et al、、Th1nSolid Films 9
6  (1982)  31)ことにより調節で力る。
Jpn, J. Appl, Phys, 27 (198B)
1415), controlling the self-bias potential or by accelerating voltage (C, Weissmantel
et al, Th1nSolid Films 9
6 (1982) 31).

しかし膜中の1(含有量を少なくするようにすると多く
の場合は、ダイヤモンド結晶相が増加することなくして
SP2混成炭素の数、グラファイト構造の数やその共役
系の大きさが増加してしまい、ために光学バンドギャッ
プが減少し、電気抵抗率も低下するなどの問題が生じる
However, in many cases, if the content of 1 (1) in the film is reduced, the number of SP2 hybridized carbons, the number of graphite structures, and the size of their conjugated systems increase without increasing the diamond crystal phase. , which causes problems such as a decrease in the optical bandgap and a decrease in electrical resistivity.

更にまたこれらの従来のDLC膜はアニールされる表徐
々に脱水素化して膜構造が変化し、それにより膜質が低
下する欠点がある。その際、膜中にグラファイト構造が
生しるか若しくはそれが増加して電気的特性が低下し、
耐エツチング性等の安定性が低下する(B、Disch
ler et al、、  5olidState C
omm、↓8(1983)105、圧用ら第2回ダイヤ
モンドシンポジウム予稿集(1987)7頁)。
Furthermore, these conventional DLC films have the disadvantage that the film structure changes due to gradual dehydrogenation during annealing, thereby degrading the film quality. At that time, a graphite structure is generated in the film or increases, and the electrical properties deteriorate.
Stability such as etching resistance decreases (B, Disch
ler et al., 5solidStateC
omm, ↓8 (1983) 105, Proceedings of the 2nd Diamond Symposium by Shiyo et al. (1987) p. 7).

上記(2)に述べた方法については、それらのいずれの
方法によっても、一般にアモルファス成分の混入が少な
いダイヤモンド多結晶膜が得られるとされている。しか
し得られるそうした膜はいずれも上述するような問題点
を存する。
Regarding the methods described in (2) above, it is generally said that a diamond polycrystalline film containing a small amount of amorphous components can be obtained by any of these methods. However, all such films that are obtained suffer from the problems described above.

即ち、先ずマイクロ波プラズマCVD法はマイクロ波プ
ラズマにより原料ガスを分解して成膜する方法である。
That is, first, the microwave plasma CVD method is a method of forming a film by decomposing a source gas using microwave plasma.

この方法によると無電極放電であるため、不純物の少な
い膜が得られるが、基体温度を800℃以上といった高
温に保持して成膜するため10μm程度のダイヤモンド
粒子が点在する状態で形成されるところとなったり、或
いは、そうした粒子が連なった状態のいわゆる結晶膜が
形成されるところとなるため、膜が得られたにしてもそ
の膜は均質性を欠如して凹凸表面の採用に価しないもの
である。
Since this method uses electrodeless discharge, a film with few impurities can be obtained, but since the film is formed while maintaining the substrate temperature at a high temperature of 800°C or higher, it is formed with diamond particles of about 10 μm scattered. Otherwise, a so-called crystal film is formed in which such particles are connected, so even if a film is obtained, the film lacks homogeneity and is not worthy of being used as an uneven surface. It is something.

熱フィラメン)CVD法は熱電子放出部材により含炭素
ガスを分解して成膜する方法である。この方法は上記マ
イクロ波プラズマCVD法に比較して、大面積基板に成
膜できる長所をもつが、その成膜は、マイクロ波CVD
法と同様成膜条件下で行うことから、得られる膜はマイ
クロ波プラズマCVD法の場合と同様で採用に価しない
The CVD method (hot filament) is a method of forming a film by decomposing carbon-containing gas using a thermionic emission member. This method has the advantage of being able to form a film on a large-area substrate compared to the microwave plasma CVD method mentioned above;
Since it is carried out under the same film forming conditions as the method, the resulting film is similar to that of the microwave plasma CVD method and is not worth adopting.

熱プラズマCVD法はガス温度1700に以上である高
温プラズマを用いて成膜する方法である。
The thermal plasma CVD method is a method of forming a film using high-temperature plasma having a gas temperature of 1700° C. or more.

この方法による成膜はマイクロ波プラズマCVD法や熱
フイラメント法よりさらに高圧高温条件下で行うので結
晶欠陥の少ない良質なダイヤモンドが高速に生成しはす
るものの、得られるものは、マイクロ波プラズマCVD
法や熱フイラメントCVD法のいずれの場合より、ダイ
ヤモンド粒子は大きくなり、そうした粒子が点在する状
態のものになったり、或いはそうした粒子が連なった状
態のものになってしまい、いずれにしろ採用に価しない
ものとなる。
Film formation by this method is performed under higher pressure and higher temperature conditions than the microwave plasma CVD method or the thermal filament method, so high-quality diamond with few crystal defects is produced at a high speed, but the resultant material is not as good as the microwave plasma CVD method.
In either case, the diamond particles are larger than in the case of the method or the hot filament CVD method, and the diamond particles are either scattered or connected, and in any case, they cannot be used. It becomes worthless.

ダイヤモンド膜やDLC膜を製造する別の方法として磁
場を印加したマイクロ波プラズマCVD法による方法が
提案されている。(特開昭60−103098号公報又
は特開昭61−36200号公報参照) ところで特開昭60−103098号公報の記載に徴す
るに、該公報に記載の方法によると、良質なダイヤモン
ド膜が得られるとされているが、条件として基体温度を
700〜900 ’cにし、圧力を10−3〜10−5
Torrにすることが記載されているところ、圧力条件
をこのように低圧にし、且つ基体温度をこのように高温
にしたのでは成膜をもたらす程のガス分子密度が生じに
くい等のことがあって所望のダイヤモンド膜を定常的に
得ることは困難である。特開昭61−36200号公報
によると高堆積速度でダイヤモンド膜が形成される旨記
載されているが、当該公報に記載の方法は基体を高温に
保持し、圧力条件を50 Torrと高くすることから
、形成されるものはダイヤモンドで構成されるものであ
ったにしろ、ダイヤモンド粒子が点在する状態のものに
なったり、或いはそうした粒子の連なった状態のものに
なったりする機会が多いといえ、所望の表面平坦性のよ
いダイヤモンド膜なるものを定常的に得ることは困難で
ある。
As another method for manufacturing diamond films and DLC films, a method using a microwave plasma CVD method in which a magnetic field is applied has been proposed. (Refer to JP-A-60-103098 or JP-A-61-36200.) By the way, according to the description in JP-A-60-103098, it is possible to obtain a high-quality diamond film by the method described in the publication. However, the conditions are that the substrate temperature is 700 to 900'c and the pressure is 10-3 to 10-5.
Although it is stated that the pressure should be set to Torr, if the pressure conditions are set to such a low pressure and the substrate temperature is set to such a high temperature, it is difficult to generate a gas molecular density sufficient to form a film. It is difficult to consistently obtain a desired diamond film. According to JP-A No. 61-36200, it is stated that a diamond film is formed at a high deposition rate, but the method described in this publication requires maintaining the substrate at a high temperature and increasing the pressure condition to 50 Torr. Therefore, even if what is formed is composed of diamond, there are many chances that it will be in a state in which diamond particles are scattered or in a state in which such particles are connected. However, it is difficult to consistently obtain a diamond film with the desired surface flatness.

ところで電子デバイスに絶縁膜や保護膜を使用する場合
、それらの膜はいずれにしろ表面の平滑度が高いもので
あることが要求される。また通電や光照射に伴って発熱
する類のデバイスの放熱体や、部材又はある種の物質と
の接触摩耗を防止するだめの保護膜は熱安定性、耐エツ
チング性、金属有機物、酸アルカリ等との非反応性など
の化学的安定性を有することが要求される。しかしなが
らこうした要求を総じて満たし、表面平滑性のよい、実
用に供し得るDLC膜は未だ実現されていないのが実情
である。
By the way, when an insulating film or a protective film is used in an electronic device, those films are required to have high surface smoothness. In addition, heat dissipators of devices that generate heat when energized or exposed to light, and protective films that prevent contact abrasion with parts or certain substances, have thermal stability, etching resistance, metal-organic substances, acid-alkali, etc. It is required to have chemical stability such as non-reactivity with However, the reality is that a practically usable DLC film that satisfies all of these requirements and has good surface smoothness has not yet been realized.

〔発明の目的〕[Purpose of the invention]

本発明は上記問題点に鑑み成されたものであり、その主
たる目的は、上述の社会的要求を満たし、従来の方法で
は定常的に製造することの困難な、表面平滑度の良いD
LC膜及びその製造方法を提供することにある。
The present invention has been made in view of the above-mentioned problems, and its main purpose is to satisfy the above-mentioned social demands and to produce a D with good surface smoothness, which is difficult to regularly manufacture using conventional methods.
An object of the present invention is to provide an LC film and a method for manufacturing the same.

本発明の他の目的は化学的安定性にずくれ耐エツチング
性があり、特に高い温度条件で化学的、構造的安定性の
劣化がない膜及びその効率的に製造方法を提供すること
にある。
Another object of the present invention is to provide a film that is chemically stable and has resistance to shearing and etching, and whose chemical and structural stability does not deteriorate especially under high temperature conditions, and an efficient method for producing the same. .

本発明の更なる目的は、各種の電子デバイスにおける素
子の絶縁膜或いは保護膜として、またサーマルヘッドや
磁気ヘッドや軸受などの機械的保護膜として利用できる
DLC膜及びその製造方法を提供することにある。
A further object of the present invention is to provide a DLC film that can be used as an insulating film or protective film for elements in various electronic devices, and as a mechanical protective film for thermal heads, magnetic heads, bearings, etc., and a method for manufacturing the same. be.

本発明の更に別の目的は磁場を印加した有磁場マイクロ
波プラズマCVD法を介して前記DLC膜を効率的に製
造できる方法を提供することにある。
Still another object of the present invention is to provide a method for efficiently manufacturing the DLC film using a magnetic field microwave plasma CVD method in which a magnetic field is applied.

〔発明の構成〕 本発明は、上記目的を達成するものであって、冊 汎用性のある新規なダイヤモンド状炭素膜(以下、場合
により“DLC膜”という。)及びその製造方法を提供
する。
[Structure of the Invention] The present invention achieves the above object, and provides a novel diamond-like carbon film (hereinafter referred to as a "DLC film" as the case may be) and a method for manufacturing the same.

本発明により提供されるDL、C膜は、(1)ダイヤモ
ンド結晶相を膜構造中に主体的に含有し、且つ20at
omic%の水素を含有して、電子線回折法による解析
でダイヤモンド結晶相の存在が確認され、また、X線回
折法による解析で2θ−43,9に回折ピークが現れる
こと、(ii)!?度(density)が1.8g/
cm”又はそれ以上であること、(iii )膜表面が
平滑で優れた耐エツチング性を有すること、(1v)化
学的安定性及び構造的安定性を有し、それらの安定性は
高温条件下にあっても劣化しないこと、等により特徴づ
けられる。
The DL, C film provided by the present invention (1) mainly contains a diamond crystal phase in the film structure, and
omic% of hydrogen, the presence of a diamond crystal phase was confirmed by electron diffraction analysis, and a diffraction peak appeared at 2θ-43,9 by X-ray diffraction analysis, (ii)! ? The density is 1.8g/
cm” or larger; (iii) the film surface is smooth and has excellent etching resistance; (1v) it has chemical stability and structural stability, and these stability can be maintained under high temperature conditions. It is characterized by the fact that it does not deteriorate even under extreme conditions.

本発明により提供される該DLC膜は特定の方法により
製造されるものであって、該方法は、電磁石を外周に有
し且つマイクロ波導入手段を備えた実質的に真空に保持
し得るマイクロ波プラズマ生成室内に基板を配置し、マ
イクロ波導入窓の前記プラズマ生成室側近傍の磁場強度
と前記基体表面近傍の磁場強度とが電子サイクロトロン
共鳴条件(即ちECR条件)を満たす強度又はそれ以上
になるような磁場を前記電磁石を介して印加し且つ前記
マイクロ波導入手段を介してマイクロ波を前記プラズマ
生成室内に導入し、そこに導入された成膜用の含炭素ガ
スを10−2乃至10 Torrの圧力条件下でプラズ
マ化し、その際該プラズマ中の02活性種に起因するプ
ラズマ発光スペクトル強度IC2とCH活性種に起因す
るプラズマ発光スペクトル強度IcHとの比を5≧Ic
z/Icn≧0.05の範囲に調節し、且つ基体温度を
350〜700℃に保持することにより成膜を行う方法
である。
The DLC film provided by the present invention is manufactured by a specific method, which uses a microwave which can be maintained in a substantially vacuum state and has an electromagnet on the outer periphery and is provided with microwave introduction means. A substrate is placed in a plasma generation chamber, and the magnetic field intensity near the plasma generation chamber side of the microwave introduction window and the magnetic field intensity near the surface of the substrate are at or above an intensity that satisfies electron cyclotron resonance conditions (i.e., ECR conditions). A magnetic field such as the above is applied via the electromagnet, and microwaves are introduced into the plasma generation chamber via the microwave introducing means, and the carbon-containing gas for film formation introduced therein is heated to a temperature of 10-2 to 10 Torr. plasma under the pressure conditions of 5≧Ic.
This is a method of forming a film by adjusting the range of z/Icn≧0.05 and maintaining the substrate temperature at 350 to 700°C.

上記特定のDLC膜及びその製造方法を包含する本発明
は、上述する実験により得られた事実に基づいて完成す
るに至ったものである。
The present invention, which includes the above-mentioned specific DLC film and its manufacturing method, was completed based on the facts obtained through the above-mentioned experiments.

本発明者らは、上述したように従来のマイクロ波CVD
法により、高圧下に基体温度を高温に保持してダイヤモ
ンド粒子が形成される事実に鑑み、採用に価するダイヤ
モンド若しくはダイヤモンド状炭素膜(diamond
−1ike carbon film)が得られる可能
性を実験を介して模索した。
The present inventors have developed a conventional microwave CVD method as described above.
In view of the fact that diamond particles are formed by the method by maintaining the substrate temperature at high temperature under high pressure, diamond or diamond-like carbon films are suitable for use.
-1ike carbon film) was explored through experiments.

即ち本発明者らは、上述の従来のマイクロ波CVD法に
よる手法とは逆に、成膜時の圧力を低くし且つ基体温度
を低温に保ち、且つその際磁場を印加し、そこにマイク
ロ波エネルギーを付与して成膜を試みた。具体的には次
のような試みを行った。
That is, the present inventors, contrary to the above-mentioned conventional microwave CVD method, lowered the pressure during film formation, kept the substrate temperature at a low temperature, applied a magnetic field, and applied microwaves to the film. Attempts were made to form a film by applying energy. Specifically, the following attempts were made.

成膜装置として第1図に示す装置を使用した。The apparatus shown in FIG. 1 was used as a film forming apparatus.

基体10として表面を研磨処理したSt基板を用いた。As the base 10, an St substrate whose surface was polished was used.

該基体10を基板ホルダー11上に固定した。次いで、
基体10とマイクロ波導入窓2との距離を150nに調
節した。その後プラズマ生成室1の内圧を真空排気装置
7を作動して約1×10−6Torrにした。次に加熱
制御装置に直流電力を印加して基体10を450℃に加
熱した。原料ガス供給系からCHaとH2を、各々マス
フローコントローラーにより流量を調節してプラズマ生
成室1に導入し、メインバルブ8を調節してプラズマ生
成室内の圧力を所定の圧力にした。次いで電磁石5の定
電流電源6の電流値を調節してマイクロ波導入窓2のプ
ラズマ生成室側近傍位置で磁場強度が1300ガウス、
また基体10の表面近傍位置で875ガウスになるよう
に磁場を印加した。かくしたところでマイクロ波電源を
ONにして2.45GHzのマイクロ波を所定の投入パ
ワーでプラズマ生成室1内に投入した。その際、基体1
0の裏面に設置した熱電対(図示せず)により、基体温
度を測定して58°0℃に制御した。またその際基体1
0の近傍に設置した光フアイバープラズマ発光測定用プ
ローブ14によりプラズマ中のC2とCHの発光スペク
トルを測定し、C2とCHの発光強度比を検出し、予め
設定しておいた検量線と比較して所定の■c2/Icや
比になるようにCH,とH2の流量比、マイクロ波パワ
ー、基板位置を適宜変動させた。以上のようにして成膜
操作を行った。
The base 10 was fixed on a substrate holder 11. Then,
The distance between the base 10 and the microwave introduction window 2 was adjusted to 150n. Thereafter, the internal pressure of the plasma generation chamber 1 was brought to approximately 1.times.10@-6 Torr by operating the evacuation device 7. Next, DC power was applied to the heating control device to heat the substrate 10 to 450°C. CHa and H2 were introduced into the plasma generation chamber 1 from the raw material gas supply system with their respective flow rates adjusted by mass flow controllers, and the pressure inside the plasma generation chamber was adjusted to a predetermined pressure by adjusting the main valve 8. Next, the current value of the constant current power supply 6 of the electromagnet 5 is adjusted so that the magnetic field strength is 1300 Gauss at a position near the microwave introduction window 2 on the plasma generation chamber side.
Further, a magnetic field of 875 Gauss was applied near the surface of the base 10. At this point, the microwave power source was turned on and a 2.45 GHz microwave was introduced into the plasma generation chamber 1 at a predetermined input power. At that time, the base 1
The substrate temperature was measured with a thermocouple (not shown) installed on the back surface of the substrate and was controlled at 58°0°C. In addition, at that time, the base 1
The emission spectra of C2 and CH in the plasma are measured with the optical fiber plasma emission measurement probe 14 installed near zero, the emission intensity ratio of C2 and CH is detected, and compared with a preset calibration curve. The flow rate ratio of CH and H2, microwave power, and substrate position were changed as appropriate so that a predetermined c2/Ic ratio was obtained. The film forming operation was performed as described above.

以上の成膜操作は表1に示すようにプラズマ生成室1内
の圧力及びICz/rcuを変えて繰返し行った。
The above film forming operation was repeated while changing the pressure inside the plasma generation chamber 1 and ICz/rcu as shown in Table 1.

かくして基体10上に成膜されるか否か、成膜された場
合その堆積膜が如何なるものか、又該堆積膜が実用に価
するものであるか否かをテストし、それらの結果を表1
にまとめた。
In this way, tests were conducted to determine whether or not a film could be formed on the substrate 10, what kind of film the deposited film would be if formed, and whether or not the deposited film was of any practical value, and the results would be presented. 1
summarized in.

表1に示す結果から明らかなように、プラズマ生成室1
の内圧をl X l 0−2Torr乃至10Torr
の範囲にし、該プラズマ生成室1内に生成するプラズマ
中のCt’活性種とCH活性種が、プラズマ発光スペク
トル強度でみて、C2活性種のプラズマ発光スペクトル
強度IC2とCH活性種のプラズマ発光スペクトル強度
1coが、式:5≧Icz/IcM≧0.05を満足す
るようにする場合、ダイヤモンド相を膜構造中に有し、
膜表面が平滑で、優れた耐エツチング性を有し、化学的
及び構造的に安定であって、満足できる特性を有するダ
イヤモンド状炭素膜が得られることを実験的に確認した
As is clear from the results shown in Table 1, plasma generation chamber 1
The internal pressure of l X l 0-2 Torr to 10 Torr
The Ct' active species and the CH active species in the plasma generated in the plasma generation chamber 1 are within the range of the plasma emission spectrum intensity IC2 of the C2 active species and the plasma emission spectrum of the CH active species. When the strength 1co satisfies the formula: 5≧Icz/IcM≧0.05, a diamond phase is present in the film structure,
It was experimentally confirmed that a diamond-like carbon film with a smooth film surface, excellent etching resistance, chemical and structural stability, and satisfactory properties could be obtained.

なお、膜中のダイヤモンド相の確認は、公知の電子線回
折法及びX線回折法により行った。膜表面の平滑度は、
公知の触針法(needle tracer meth
od)により評価した。膜の耐エツチング性は、HFと
HN O,とCH3C00Hとの3=5=3の混合液に
10分間浸漬した後、膜表面を光学顕微鏡で観察すると
ともに前記触針法により膜表面の平滑度を測定すること
により評価した。
The diamond phase in the film was confirmed by known electron beam diffraction and X-ray diffraction. The smoothness of the membrane surface is
The well-known needle tracer meth
od). The etching resistance of the film was determined by immersing it in a 3=5=3 mixture of HF, HNO, and CH3C00H for 10 minutes, then observing the film surface with an optical microscope and measuring the smoothness of the film surface using the stylus method. It was evaluated by measuring.

膜の構造安定性は、テスト用の真空恒温槽の試料保持テ
ーブルに膜試料を設置し、該槽内を1×1O−6Tor
rに減圧し、第10図に示した温度プラズマに従って加
熱し、その後冷却し、上記耐エツチング性の評価の方法
を行って評価した。膜試料の特性の評価は、電気抵抗率
と光学的バンドギ□   ヤソプを測定することにより
行った。
The structural stability of the membrane was determined by placing the membrane sample on the sample holding table of a vacuum constant temperature chamber for testing, and setting the inside of the chamber at 1 x 1 O-6 Torr.
The pressure was reduced to r, heated according to the temperature plasma shown in FIG. 10, and then cooled, and the etching resistance was evaluated using the above method for evaluating etching resistance. Characteristics of the membrane samples were evaluated by measuring electrical resistivity and optical band gap.

上記実験では、成膜時の基体温度を580℃にし、磁場
強度をマイクロ波導入窓のプラズマ生成室側近傍位置で
1300ガウスにし、基体の表面近傍位置で875ガウ
スになるようにしたが、これらのパラメーターが上述の
◎とOの評価を得たダイヤモンド状炭素膜と同等のもの
を得るに当たって、許容範囲があるか否かを調べた。即
ち、上述の実験の手法の上記2ケ所での磁場強度を変動
させて繰返し行って、上記実験と同様にして複数の膜試
料の作成を試み、評価を行った。
In the above experiment, the substrate temperature during film formation was 580°C, the magnetic field strength was 1300 Gauss near the microwave introduction window on the plasma generation chamber side, and 875 Gauss near the surface of the substrate. It was investigated whether there was an acceptable range for obtaining a diamond-like carbon film whose parameters were equivalent to the above-mentioned diamond-like carbon films that received ratings of ◎ and O. That is, the above-described experimental method was repeated by varying the magnetic field strength at the two locations, and a plurality of film samples were attempted to be prepared and evaluated in the same manner as in the above-described experiment.

その結果衣のことが判明した。即ち、マイクロ波導入窓
のプラズマ生成室側近傍位置の磁場強度がECR条件を
満たず875ガウス又はそれ以上になり、且つ、基体の
表面近傍位置の磁場強度がECR条件を満たす875ガ
ウス又はそれ以上になるようにプラズマ生成室に磁場を
印加する場合、望ましいダイヤモンド状炭素膜が得られ
ることが判明した。
As a result, I found out about the clothes. That is, the magnetic field strength at a position near the plasma generation chamber side of the microwave introduction window is 875 Gauss or more, which does not satisfy the ECR condition, and the magnetic field strength at a position near the surface of the substrate is 875 Gauss or more, satisfying the ECR condition. It has been found that a desirable diamond-like carbon film can be obtained when a magnetic field is applied to the plasma generation chamber such that

なお、プラズマ生成室内マイクロ波導入窓のプラズマ生
成室側近傍位置の磁場強度が875ガウス以下である場
合は、マイクロ波パワーがプラズマ内に伝搬吸収せず、
プラズマが不安定になったり、基体の表面近傍位置での
プラズマ密度が低下してしまって、成膜しない場合がし
ばしばある。
Note that if the magnetic field strength at the position near the plasma generation chamber side of the microwave introduction window in the plasma generation chamber is 875 Gauss or less, the microwave power will not be propagated and absorbed in the plasma.
There are many cases where the plasma becomes unstable or the plasma density decreases near the surface of the substrate, resulting in failure to form a film.

また、マイクロ波導入窓のプラズマ生成室側近傍位置の
磁場強度が875ガウス以上であっても、基体の表面近
傍位置の磁場強度がBCR条件を満たず磁場強度である
875ガウス以下である場合、膜中の水素含有量が増加
して膜の密度が低下したり、グラファイト構造が増加し
て電気抵抗率、光学バンドギャップ、耐エツチング性な
どの特性が劣る等の問題が生じる。
In addition, even if the magnetic field strength at a position near the plasma generation chamber side of the microwave introduction window is 875 Gauss or more, if the magnetic field strength at a position near the surface of the base body does not satisfy the BCR condition and is below the magnetic field strength of 875 Gauss, Problems arise such as an increase in the hydrogen content in the film, which lowers the density of the film, and an increase in the graphite structure, which deteriorates properties such as electrical resistivity, optical band gap, and etching resistance.

また、望ましいダイヤモンド状炭素膜の形成をもたらす
C2活性種とCH活性種とを基体表面近傍で上述の式:
5≧IC2/ICI+≧0.05を満たすように形成す
るには、プラズマ化成室内の圧力、磁場強度と並列でマ
イクロ波のプラズマ生成室内への投入パワーが重要であ
ることが判明した。そして該マイクロ波の投入パワーは
、プラズマ生成室の規模、磁場強度及び該室内の圧力の
相関関係で適宜決定されるが、一般的には400乃至2
kWの範囲が好ましいことが判明した。なお、該マイク
ロ波の投入パワーが400W以下の場合、成膜用原料ガ
スからの成膜に寄与する因子(precursor)の
生成が不十分になり、成膜速度が低下する他、成膜され
る膜中の水素含量が増大してしまったりする。また、該
マイクロ波の投入パワーが2kW以上であると、投入さ
れるマイクロ波パワーは、プラズマ化成室内のプラズマ
に吸収されずに反射パワーとなってマイクロ波導波管や
電磁石を加熱してそれらを損傷してしまう場合がしばし
ばある。
In addition, C2 active species and CH active species that lead to the formation of a desirable diamond-like carbon film are formed near the substrate surface using the above formula:
It has been found that in order to form the plasma so as to satisfy 5≧IC2/ICI+≧0.05, the power of the microwave input into the plasma generation chamber is important in parallel with the pressure inside the plasma formation chamber and the magnetic field strength. The input power of the microwave is appropriately determined depending on the size of the plasma generation chamber, the magnetic field strength, and the correlation between the pressure inside the chamber, but is generally 400 to 2
A range of kW has been found to be preferred. In addition, if the input power of the microwave is 400 W or less, the production of factors (precursors) that contribute to film formation from the film forming raw material gas will be insufficient, and the film formation rate will decrease, and the film formation rate will decrease. The hydrogen content in the film may increase. In addition, when the input power of the microwave is 2kW or more, the input microwave power is not absorbed by the plasma in the plasma formation chamber and becomes reflected power, heating the microwave waveguide and electromagnet and damaging them. It is often damaged.

本発明者らは更に、上述の各種パラメーターを選択して
成膜用原料ガスから生成される成膜に寄与するprec
ursorが基体表面への望ましいダイヤモンド状炭素
膜の効率的形成をもたらす条件を模索した。その結果、
プラズマ生成室の基体の設置位置及び該基体の成膜時の
温度が重要であることが判った。即ち、基体の設置位置
については、磁場強度と内圧に依存するところが大であ
るが、−般的には、マイクロ波導入窓から10〜500
flの距離範囲に設置するのが望ましいことが判った。
The present inventors further selected the above-mentioned various parameters to create a prec which contributes to film formation generated from the film formation raw material gas.
We sought conditions under which ursor would efficiently form a desirable diamond-like carbon film on the surface of a substrate. the result,
It has been found that the installation position of the substrate in the plasma generation chamber and the temperature of the substrate during film formation are important. That is, the installation position of the substrate largely depends on the magnetic field strength and internal pressure, but generally it is located 10 to 500 meters from the microwave introduction window.
It has been found that it is desirable to install it within a distance range of fl.

なお、基体をマイクロ波導入窓から10fl以下の距離
内に設置する場合、基体表面近傍でのプラズマ放電が不
安定になり易くなることの他、マイクロ波導入窓に炭素
が付着して該窓のマイクロ波パワーのプラズマ生成室へ
の投入を低下させたり、該付着物が堆積膜中に混入して
しまったりする。
Note that if the substrate is installed within a distance of 10 fl or less from the microwave introduction window, plasma discharge near the substrate surface tends to become unstable, and carbon may adhere to the microwave introduction window, causing damage to the window. This may reduce the input of microwave power into the plasma generation chamber, or the deposit may be mixed into the deposited film.

また、基体の設置位置をマイクロ波導入窓から5001
1以上の位置にする場合、基板近傍で成膜に寄与するp
recursorの生成が円滑ムこ行われなくなり、成
膜速度が可成り小さくなったり、時として成膜が起こら
ない場合もある。
Also, change the installation position of the base to 5001 from the microwave introduction window.
If the position is 1 or more, p that contributes to film formation near the substrate
The generation of recursors is no longer carried out smoothly, and the film formation rate becomes considerably low, or in some cases, film formation does not occur at all.

また成膜時の基体温度については、該温度はC2活性種
とCH活性種との基体表面近傍での発光強度比や圧力に
依存して異なるが、350乃至700℃の範囲に保持す
る場合、望ましいダイヤモンド状炭素膜が得られること
がわかった。
Regarding the substrate temperature during film formation, the temperature varies depending on the emission intensity ratio of C2 active species and CH active species near the substrate surface and the pressure, but when maintained in the range of 350 to 700 ° C. It has been found that a desirable diamond-like carbon film can be obtained.

なお、350℃以下では成膜しなかったり、成膜しても
H含有量が多く密度が低い膜が生成し、高温条件に対す
る構造的及び化学的安定性が低下する問題が生じる。一
方700℃以上では、生成した膜中にグラファイト構造
を含有したり、グラファイト構造が主成分の膜が生成し
たりし、得られる膜は耐エツチング性が低く、電気抵抗
率などの特性が低いものになってしまう。
Note that at temperatures below 350° C., a film may not be formed, or even if a film is formed, a film with a high H content and low density will be formed, resulting in a problem of reduced structural and chemical stability under high temperature conditions. On the other hand, at temperatures above 700°C, the resulting film may contain a graphite structure or a film whose main component is a graphite structure, resulting in a film with low etching resistance and low properties such as electrical resistivity. Become.

本発明は、以上判明した事実に基づいて完成するに至っ
たものであり、本発明による前述のダイヤモンド状炭素
膜は、上述した各種パラメーターを総合的且つ有機的関
係において適宜選択して形成されるものである。
The present invention has been completed based on the facts found above, and the aforementioned diamond-like carbon film according to the present invention is formed by appropriately selecting the various parameters described above in a comprehensive and organic relationship. It is something.

本発明に用いられる成膜用原料ガスは、炭素源としては
含炭素ガスであ軌ばいずれのものであってもよい。それ
らの好ましい例として、例えば、メタン、エタン、エチ
レン、ベンゼン、トルエンなどの炭化水素、メタノール
、エタノール等のアルコール類やケトン類、エーテル類
、アミン類、また−酸化炭素、二酸化炭素等を挙げるこ
とができる。これらの他、CF 4ICC12a IC
Z H2C7!z等炭化水素の1部水素がハロゲン元素
で置換したハロゲン化物を使用することができる。
The film-forming raw material gas used in the present invention may be any carbon-containing gas as a carbon source. Preferred examples thereof include hydrocarbons such as methane, ethane, ethylene, benzene, toluene, alcohols such as methanol and ethanol, ketones, ethers, amines, carbon oxide, carbon dioxide, etc. Can be done. In addition to these, CF 4ICC12a IC
Z H2C7! It is possible to use a halide in which part of the hydrogen in a hydrocarbon such as z is replaced with a halogen element.

さらに発光強度比1c2/ ICXを所定の値に調節し
、グラファイト成分が膜中に生成しないようにするため
に希釈ガスとしてH2ガスを用いることが望ましい。な
お、成膜原料ガスの種類にもよるが、H2ガスに代えて
Hid、02+ l(cβ、HF等のガスを使用しても
よい。H2ガスを含めたこれらのガスは、混合して用い
ることもできる。また、放電安定化を計るについて、こ
れらのガスにHe 、Ar 、N2ガス等を混合しても
よい。
Furthermore, it is desirable to use H2 gas as a diluent gas in order to adjust the emission intensity ratio 1c2/ICX to a predetermined value and to prevent graphite components from forming in the film. Note that, depending on the type of film-forming raw material gas, gases such as Hid, 02+l(cβ, HF, etc.) may be used instead of H2 gas. These gases, including H2 gas, may be used in combination. Furthermore, in order to stabilize the discharge, He 2 , Ar 2 , N2 gas, etc. may be mixed with these gases.

本発明の所望のダイヤモンド状炭素膜を得るについて使
用する基体としては、Ae、Si 、Ti 。
Substrates used to obtain the desired diamond-like carbon film of the present invention include Ae, Si, and Ti.

Hf 、Ta 、W、Mo等の金属や、SiC,WC。Metals such as Hf, Ta, W, Mo, SiC, WC.

TiC,TaC等の炭化物、5iOz 、A12zO3
゜TiO□等の酸化物、Si3N4.BN、TiN等の
窒化物を選択的に使用できる。なお、基体表面をラッピ
ング研磨処理等により表面処理したものを用いることが
できる。
Carbide such as TiC, TaC, 5iOz, A12zO3
Oxides such as ゜TiO□, Si3N4. Nitrides such as BN and TiN can be selectively used. Note that it is possible to use a substrate whose surface has been surface-treated by lapping and polishing treatment or the like.

本発明のダイヤモンド状炭素膜を形成する方法を実施す
るに当たっては、該方法を効率的に実施し得る装置であ
れば、いずれのものであっても使用できる。好ましい装
置としては第1図に示す構成の装置を挙げることができ
る。
In carrying out the method of forming a diamond-like carbon film of the present invention, any apparatus that can efficiently carry out the method can be used. A preferred device is one having the configuration shown in FIG.

第1図において、■はプラズマ生成室である。In FIG. 1, ■ is a plasma generation chamber.

該プラズマ生成室1には、マイクロ波導入窓2を介して
マイクロ波導波管3が接続している64はマイクロ波電
源で導波管3を介してプラズマ生成室1内にマイクロ波
が投入される。
A microwave waveguide 3 is connected to the plasma generation chamber 1 through a microwave introduction window 2. A microwave power source 64 injects microwaves into the plasma generation chamber 1 through the waveguide 3. Ru.

5は導波管3及び生成室1の周囲に設置された電磁石で
あり、定電流電源6の電流値を制御して磁場強度を調節
できる。16はガス供給源であり、ガス導入管を通じ生
成室1内に流すことができる。
Reference numeral 5 denotes an electromagnet installed around the waveguide 3 and the generation chamber 1, and the magnetic field strength can be adjusted by controlling the current value of the constant current power source 6. 16 is a gas supply source, which can be supplied into the production chamber 1 through a gas introduction pipe.

7はプラズマ生成室1内を排気する排気装置であり、生
成室1内圧力は真空計9によってモニターされメインバ
ルブ8により調節することができる。排気装置10はタ
ーボ分子ポンプ、あるいは拡散ポンプとロークリポンプ
との組み合わせが好ましい。
Reference numeral 7 denotes an exhaust device for evacuating the inside of the plasma generation chamber 1. The pressure inside the generation chamber 1 is monitored by a vacuum gauge 9 and can be adjusted by a main valve 8. The exhaust device 10 is preferably a turbo-molecular pump or a combination of a diffusion pump and a Lochli pump.

基体10は基体ホルダー11にとりつけられる。The base 10 is attached to a base holder 11.

12は補助加熱/冷却装置であり、基板裏側位置に設置
された熱電対(図示せず)によって測定され所定の温度
に調節される。
Reference numeral 12 denotes an auxiliary heating/cooling device, which is measured by a thermocouple (not shown) installed on the back side of the substrate and adjusted to a predetermined temperature.

13は基板位置の制御装置であり、所望の位置に基板ホ
ルダーおよび光ファイバー14の位置を8周節できる。
Reference numeral 13 denotes a substrate position control device, which can move the substrate holder and the optical fiber 14 to desired positions eight times.

14は光フアイバー型のプラズマ発光測定用プローブで
、基板近傍のプラズマ発光スペクトルを測定するための
指向性端面(directional endface
)を有している。発光スペクトルを測定するについては
、前記方法の他に、プラズマ生成室1にのぞき窓(図示
せず)をもうけ、該窓を介して測定することもできる。
Reference numeral 14 denotes an optical fiber type probe for measuring plasma luminescence, which has a directional end face for measuring the plasma luminescence spectrum near the substrate.
)have. In order to measure the emission spectrum, in addition to the method described above, it is also possible to provide a viewing window (not shown) in the plasma generation chamber 1 and perform measurement through the window.

15は分光器で、光ファイバーを介して該分光器に入力
した光を分光してスペクトルを測定する。
Reference numeral 15 denotes a spectrometer, which separates the light input into the spectrometer via an optical fiber and measures the spectrum.

第2図はシステム制御コントローラによる制御の種類と
制御のための入力情報を示す概念図である。図示される
ように、磁場強度、原料ガスの流量、各室内の真空度、
IctlIt□比、支持体(基板)温度などの入力情報
(測定値)に基づいてシステム制御コントローラによっ
て電磁石電流値制御、ガス圧制御、ガス流量比制御、マ
イクロ波パワー制御、温度制御(基体)、基***置制御
を行う。
FIG. 2 is a conceptual diagram showing types of control by the system controller and input information for the control. As shown in the diagram, the magnetic field strength, the flow rate of raw material gas, the degree of vacuum in each chamber,
Based on input information (measured values) such as IctlIt□ ratio and support (substrate) temperature, the system controller controls electromagnet current value, gas pressure control, gas flow rate ratio control, microwave power control, temperature control (substrate), Performs base position control.

以下に実施例を挙げて本発明を更に説明するが、本発明
はこれらの実施例により何ら限定されるものではない。
The present invention will be further explained below with reference to Examples, but the present invention is not limited to these Examples in any way.

去旌開上 第1図に示した装置を用いて行った。Opening the door This was carried out using the apparatus shown in FIG.

RMS 30八にラッピング研磨したSi基体10を基
体ホルダー11にとりつけ、マイクロ波導入窓から13
0m++か200韮の所定の位置に設置した。排気装置
7によりプラズマ生成室内をI×10  ’Torrに
排気した後、ガス供給源16からマスフローコントロー
ラーによりCHa / H2の流量比を1/4に制御し
て混合したガスを流した。
Mount the Si substrate 10, which has been lapped and polished to RMS 308, on the substrate holder 11, and insert it through the microwave introduction window 13.
It was installed at a predetermined position at 0m++ or 200m. After the inside of the plasma generation chamber was evacuated to I×10' Torr by the exhaust device 7, the mixed gas was flowed from the gas supply source 16 by controlling the flow rate ratio of CHa/H2 to 1/4 using a mass flow controller.

メインバルブ8により表2に示す所定の圧力に調節し、
加熱装置12より基板温度を300℃に保持した。次に
、電磁石電源6の電流値を調節し、電磁石5により磁場
を発生させ、マイクロ波導入窓プラズマ生成室側近傍位
置で1800ガウス、80mの位置で1300ガウス、
220 *xの位置で875ガウスになるようにした。
Adjust the pressure to the predetermined pressure shown in Table 2 using the main valve 8,
The substrate temperature was maintained at 300° C. by a heating device 12. Next, the current value of the electromagnet power supply 6 is adjusted, and the electromagnet 5 generates a magnetic field of 1800 Gauss at a position near the microwave introduction window plasma generation chamber side, and 1300 Gauss at a position 80 m away.
It was set to 875 Gauss at the position of 220 *x.

そしてマイクロ波電源4をONにし2.45GHzのマ
イクロ波を所定のパワーで投入してプラズマを生成した
Then, the microwave power source 4 was turned on and a 2.45 GHz microwave was applied at a predetermined power to generate plasma.

基板温度は、表2に示した所定の温度になるよう加熱・
冷却装置12を用いて調節した。
The substrate temperature is heated and heated to the predetermined temperature shown in Table 2.
Adjustment was made using a cooling device 12.

この時のプラズマの発光スペクトルを光ファイバー14
および分光器15で測定した。表20値からずれた時は
オートマチイックに微調整を行い、プラズマを安定させ
て成膜を行った。このようにして試料ぬ1乃至9の作成
を試みた。その結果、表2から明らかなように、試料階
1及び隘2の場合、いずれも成膜されなかった。成膜の
あった試料隘3乃至隘9について、電子線回折(E D
)、X線回折(XD) 、表面平滑度測定、膜中のH含
有量測定、密度測定を行った。
The emission spectrum of the plasma at this time is transmitted through the optical fiber 14.
and was measured using a spectrometer 15. When the values deviated from the values in Table 20, fine adjustments were automatically made to stabilize the plasma and film formation was performed. In this way, samples 1 to 9 were prepared. As a result, as is clear from Table 2, no film was formed on either sample floor 1 or floor 2. Electron diffraction (E D
), X-ray diffraction (XD), surface smoothness measurement, H content measurement in the film, and density measurement.

なお、表面平滑度測定は、公知の触針式膜厚計を使用し
て行った。膜中のH含有量の測定は、公知の燃焼法によ
る化学分析により行った。また、膜の密度の測定は、公
知の溶液法(solutionmethod)により行
った。
Note that the surface smoothness was measured using a known stylus-type film thickness meter. The H content in the film was measured by chemical analysis using a known combustion method. Furthermore, the density of the film was measured using a known solution method.

その結果、表2に示す測定結果が得られた。As a result, the measurement results shown in Table 2 were obtained.

表2の結果から、試料m4.5.6及び7の膜が、本発
明の目的とする所望のダイヤモンド状炭素膜であること
が判った。
From the results in Table 2, it was found that the films of samples m4.5.6 and 7 were the desired diamond-like carbon films targeted by the present invention.

fl、オ、試料階7の成膜時のプラズマ発光スペクトル
は、第3図に示すとおりのものであった。
The plasma emission spectrum during film formation of fl, e, and sample level 7 was as shown in FIG.

また試料階7の膜のSEM写真を第6図に、またそのX
線回折スペクトルを第9図にそれぞれ示す。
In addition, the SEM photograph of the membrane on sample floor 7 is shown in Figure 6, and its
The line diffraction spectra are shown in FIG. 9.

また、試料患7の膜については、グラファイト結晶は検
出されず、ダイヤモンド結晶のみ検出された。
Further, in the film of Sample No. 7, no graphite crystals were detected, and only diamond crystals were detected.

更に、平滑度の良好な試料隘2及び試料階4乃至7、更
に試料!419のそれぞれについて耐エツチングテスト
を行った。エツチングテストは、試料をHF/HNO3
/CH,C00H=315/3のSiエツチング用の溶
液に10分浸漬してエツチング処理した後、上述の触針
式膜厚計を使用して表面平滑度を測定することにより行
った。
In addition, there are sample holes 2 and sample floors 4 to 7 with good smoothness, and even more samples! An etching resistance test was conducted on each of No. 419. In the etching test, the sample is HF/HNO3
After etching was carried out by immersing it in a Si etching solution of /CH,C00H=315/3 for 10 minutes, the surface smoothness was measured using the above-mentioned stylus type film thickness meter.

測定結果は表3に示すとおりであった。The measurement results were as shown in Table 3.

表3の結果から、試料階4乃至7の膜は、耐工 ・ソチ
ング性に優れていることが判った。
From the results in Table 3, it was found that the membranes of sample grades 4 to 7 had excellent engineering resistance and soching properties.

太施桝ス 実施例1と同じ装置を用い実施例1と同様に操作して成
膜した。磁場強度はマイクロ波導入窓のプラズマ生成室
側近傍位置で1500ガウス基板位置で875ガウスと
し、導入窓から2001■の位置に基板を設置した。マ
イクロ波は950W導入した。それ以外の成膜条件は、
表4に示すとおりにした。
A film was formed using the same apparatus as in Example 1 and operating in the same manner as in Example 1. The magnetic field strength was 1500 Gauss at a position near the plasma generation chamber side of the microwave introduction window, and 875 Gauss at the substrate position, and the substrate was placed at a position 2001 cm from the introduction window. A 950W microwave was introduced. Other film forming conditions are as follows:
The procedure was as shown in Table 4.

以上のようにして試料膓10乃至17の作成を試みた。Samples 10 to 17 were prepared in the manner described above.

その結果、試料l1k110の場合、成膜不能であった
。成膜のあった試料隘11乃至17について実施例1と
同様にして評価した。評価結果は表4に示すとおりであ
った。
As a result, in the case of sample l1k110, it was impossible to form a film. Samples Nos. 11 to 17 on which films were formed were evaluated in the same manner as in Example 1. The evaluation results were as shown in Table 4.

また第4図に試料階14の成膜時のプラズマ発光スペク
トルを示し、第7図に性成物SEM写真を示した。
Further, FIG. 4 shows the plasma emission spectrum during film formation of the sample layer 14, and FIG. 7 shows a SEM photograph of the chemical composition.

表4の結果から、試料1k12.13及び17が本発明
の目的とする所望のダイヤモンド状炭素膜であることが
判った。
From the results in Table 4, it was found that Samples 1k12.13 and 17 were the desired diamond-like carbon films targeted by the present invention.

表面平滑度のよい試料Il&ll 1,12,13,1
5゜16及び17のそれぞれについて別の試料を用意し
、それぞれの膜上に真空蒸着法によりAI!のくし型電
極を蒸着した後、室温において抵抗率を公知手段により
測定した。
Samples with good surface smoothness Il&ll 1, 12, 13, 1
Separate samples were prepared for each of 5°16 and 17, and AI! was deposited on each film by vacuum evaporation. After the interdigitated electrodes were deposited, the resistivity was measured at room temperature by known means.

これら試料とは別に、試料隘11,12.13゜15.
16及び17と同じ成膜条件で成膜した別試料をテスト
用真空恒温槽の試料保持テーブルに設置した。該槽内を
l X I 0−6Torrに減圧し、第10図に示し
た温度プログラムに従って加熱し、その後冷却した。そ
して該槽内から取り出した各サンプルについても上記と
同様にしてAβのくし型電極を蒸着し、室温で抵抗率を
測定した。
Apart from these samples, sample depths 11, 12, 13, 15.
Another sample formed under the same film forming conditions as Nos. 16 and 17 was placed on the sample holding table of a test vacuum constant temperature chamber. The pressure inside the tank was reduced to 1 X I 0-6 Torr, heated according to the temperature program shown in FIG. 10, and then cooled. A comb-shaped electrode of Aβ was then deposited on each sample taken out from the tank in the same manner as above, and the resistivity was measured at room temperature.

表5に成膜直後の試料の抵抗率と前記高温耐久テスト後
の試料の抵抗率をまとめて示した。
Table 5 summarizes the resistivity of the sample immediately after film formation and the resistivity of the sample after the high temperature durability test.

表5の結果から明らかなように、試料膓12゜13及び
17は好ましい抵抗率を有し、該抵抗率は加熱処理して
も変動しないものであることが判った。
As is clear from the results in Table 5, Samples 12, 13 and 17 had favorable resistivities, and the resistivities did not change even after heat treatment.

大嵐桝主 第1図に示す装置を使用し゛、実施例1と同様の手法で
成膜し、試料1h18乃至22の作成を試みた。なお、
原料ガスとして、ベンゼン/H2=1/1を流し、圧力
を5 X 10−”Torrに調節し、磁場強度と基板
位置の条件は実施例2と同様にし、その他の成膜条件は
表6に示すとおりにした。その結果、試料21の場合、
成膜不能であった。成膜のあった他の試料について実施
例1と同様にして評価し、評価結果を表6に示した。
Using the apparatus shown in FIG. 1, samples 1h18 to 22 were prepared by forming films in the same manner as in Example 1. In addition,
Benzene/H2 = 1/1 was flowed as the raw material gas, the pressure was adjusted to 5 x 10-'' Torr, the magnetic field strength and substrate position conditions were the same as in Example 2, and other film forming conditions are shown in Table 6. The procedure was as shown.As a result, in the case of sample 21,
It was not possible to form a film. Other samples with film formation were evaluated in the same manner as in Example 1, and the evaluation results are shown in Table 6.

試料階19のとき、プラズマ発光スペクトル及び生成物
32M写真は第3図及び第6図と同様のものとなった。
At sample level 19, the plasma emission spectrum and the photograph of product 32M were similar to those shown in FIGS. 3 and 6.

また試料隘22の成膜時のプラズマ発光スペクトル及び
生成物32M写真を第5図及び第8図に示す。
Further, the plasma emission spectrum and the photograph of the product 32M during film formation of the sample well 22 are shown in FIGS. 5 and 8.

試料阻18.19.20及び22と同じ条件で、ステン
レス−鋼5US440C基板上に各々8000人の膜厚
に成膜して試料m18,19.20及び22に相当する
試料片を作成した。得られた試料片を第11図に示す摩
擦試験装置を用いて摩擦テストを行った。その際、第1
1図に開示するように試料片(121)をのせた回転台
125と、回転台125の上方にφ4璽曹径の銅製圧子
122を支持棒124に接続し、おもり123により一
定の荷重をかけ、一定の回転速度で回転した。
Sample pieces corresponding to Samples M18, M19.20, and M22 were prepared by forming films to a film thickness of 8000 mm on each stainless steel 5US440C substrate under the same conditions as M18, M19, M19, M20, and M22. A friction test was performed on the obtained sample piece using the friction test apparatus shown in FIG. At that time, the first
As shown in FIG. 1, a rotary table 125 on which a sample piece (121) is placed, and a copper indenter 122 with a diameter of 4 mm are connected to a support rod 124 above the rotary table 125, and a constant load is applied by a weight 123. , rotated at a constant rotational speed.

その結果、試料階18及び19については、テスト後で
あってもテスト前の表面状態とほとんど同様であったが
、試料11h20についてはテスト前とテスト後では可
成りの差があり、試料陽22の場合膜が消失してしまっ
た。
As a result, for sample floors 18 and 19, even after the test, the surface condition was almost the same as before the test, but for sample 11h20, there was a considerable difference between before and after the test. In this case, the membrane has disappeared.

実施例4 第1図に示す装置を使用し、実施例2と同様にして試料
階23乃至28の作成を試みた。その際原料ガスとして
CHCj!3/Hz= 1/3を用い、マイクロ波20
00Wを導入し、その他の成膜条件は表7に示すとおり
にした。
Example 4 Using the apparatus shown in FIG. 1, an attempt was made to create sample floors 23 to 28 in the same manner as in Example 2. At that time, CHCj! is used as the raw material gas! Using 3/Hz = 1/3, microwave 20
00W was introduced, and other film forming conditions were as shown in Table 7.

その結果、試料隘27と28の場合、いずれも成膜不能
であった。成膜のあった試料患23乃至25について、
実施例1と同様にして評価し、評価結果を表7に示した
As a result, in the case of sample holes 27 and 28, it was impossible to form a film. Regarding sample cases 23 to 25 where film formation occurred,
It was evaluated in the same manner as in Example 1, and the evaluation results are shown in Table 7.

表7の結果から、試料Th23.24及び26の膜は、
本発明の目的とするダイヤモンド状炭素膜であることが
わかった。
From the results in Table 7, the films of samples Th23.24 and 26 are:
It was found that this was the diamond-like carbon film targeted by the present invention.

ついで、試料階23乃至26のをそれぞれについて、実
施例1と同様の手法で耐エツチング性のテストをした。
Next, the etching resistance of each of sample floors 23 to 26 was tested in the same manner as in Example 1.

その結果、試料&23.24及び26の膜は良好な耐エ
ツチング性を有していたが、試料階25の膜は、膜状態
を呈さない程にエツチングされてしまった。
As a result, the films of samples &23, 24, and 26 had good etching resistance, but the film of sample 25 was etched to the extent that it did not exhibit a film state.

去鷹1」足 表8に示す以外の条件は、実施例1における試料阻6の
場合と同じにして試料南29乃至35の作成を試みた。
Samples 29 to 35 were prepared using the same conditions as for sample 6 in Example 1 except for those shown in Table 8.

その結果、試料隘29の場合、成膜不能であった。また
、試料階33の場合、見かけ上は膜状を呈するが、実態
はススで構成されるものであった。
As a result, in the case of sample size 29, it was impossible to form a film. Further, in the case of sample floor 33, although it appeared to be film-like, it was actually composed of soot.

成膜のあった試料N130.31,32.34及び35
について実施例1と同様の手法で評価し、評価結果を表
8に示した。
Samples N130.31, 32.34 and 35 with film formation
The results were evaluated using the same method as in Example 1, and the evaluation results are shown in Table 8.

表8の結果からして、試料陽30,31,32゜34及
び35が本発明の目的とするダイヤモンド状炭素膜であ
ることが判った。
From the results in Table 8, it was found that samples Nos. 30, 31, 32° 34 and 35 were diamond-like carbon films targeted by the present invention.

〔発明の効果の概要〕[Summary of effects of the invention]

本発明は、汎用性のある新規なダイヤモンド状炭素膜(
DLC膜)及びその製造方法を提供するものであり、前
記DLC膜は次の(1)乃至(iv)の事項により特徴
づけられる。即ち、(1)ダイヤモンド結晶相を膜構造
中に主体的に含有し且つ20 atomic%の水素を
含有して、電子線回折法による解析でダイヤモンド結晶
相の存在が確認され、また、X線回折法による解析で2
0= 43.9に回折ピークが現れること、(11)密
度(density)が1.8g/cm’又はそれ以上
であること、(iii )膜表面が平滑で優れた耐エツ
チング性を有すること、(1v)化学的安定性及び構造
的安定性を存し、それらの安定性は高温条件下にあって
も劣化しないこと。
The present invention is a novel, versatile diamond-like carbon film (
The present invention provides a DLC film) and a method for manufacturing the same, and the DLC film is characterized by the following items (1) to (iv). That is, (1) the film structure mainly contains a diamond crystal phase and contains 20 atomic% hydrogen, and the presence of the diamond crystal phase was confirmed by electron diffraction analysis, and by X-ray diffraction analysis. 2 by analysis using method
A diffraction peak appears at 0=43.9, (11) the density is 1.8 g/cm' or more, (iii) the film surface is smooth and has excellent etching resistance, (1v) It has chemical stability and structural stability, and these stability do not deteriorate even under high temperature conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に用いた装置の概略図、第2図
はシステム制御コントローラによる制御の種類と制御の
ための入力情報を示す概念図、第3回は本発明実施例の
プラズマ発光スペクトルを、第4図、第5図は本発明比
較例のプラズマ発生成物SEM写真を示す。第9図は本
発明実施例の生成膜X線回折スペクトル図を示す、第1
0図は加熱テストの温度設定を示した図、第1I図は摩
擦テスト装置の概略図を示す。 ■・・・プラズマ生成室、2・・・マイクロ波導入窓、
3・・・マイクロ波導波管、4・・・マイクロ波電源、
5・・・電磁石、6・・・電磁石電源、7・・・排気装
置、8・・・メインバルブ、9・・・真空計、10・・
・基体、11・・・基体ホルダー、12・・・加熱/冷
却制御装置、13・・・基***置制御装置、14・・・
発光スペクトル測定用光ファイバー、15・・・分光器
、16・・・ガス供給源系、17・・・ガス導入管。 奪讐象東          便鼾東堅智薩( ぶ1騙々S 畔¥P
Fig. 1 is a schematic diagram of the apparatus used in the embodiment of the present invention, Fig. 2 is a conceptual diagram showing the types of control by the system controller and input information for control, and the third part is a schematic diagram of the apparatus used in the embodiment of the present invention. The emission spectra are shown in FIGS. 4 and 5, and SEM photographs of plasma generated products of a comparative example of the present invention are shown. FIG. 9 shows the X-ray diffraction spectrum diagram of the produced film of the example of the present invention.
0 is a diagram showing the temperature settings for the heating test, and FIG. 1I is a schematic diagram of the friction test device. ■...Plasma generation chamber, 2...Microwave introduction window,
3...Microwave waveguide, 4...Microwave power supply,
5... Electromagnet, 6... Electromagnet power supply, 7... Exhaust device, 8... Main valve, 9... Vacuum gauge, 10...
- Substrate, 11... Substrate holder, 12... Heating/cooling control device, 13... Substrate position control device, 14...
Optical fiber for measuring emission spectrum, 15... Spectrometer, 16... Gas supply source system, 17... Gas introduction tube. Revenge Shoto Bennore Token Chisatsu

Claims (5)

【特許請求の範囲】[Claims] (1)基体の設置されたプラズマ生成室に、マイクロ波
導入窓のプラズマ生成室側近傍位置基体の表面近傍位置
の磁場強度が、電子サイクロトロン共鳴条件を満たす強
度以上の磁場を印加すると共に、マイクロ波を導入して
、そこに導入された成膜用の含炭素ガスを10^−^2
〜10Torrの圧力でプラズマ化し、その際該プラズ
マ中のC_2活性種に起因するプラズマ発光スペクトル
強度I_C_2とCH活性種に起因するプラズマ発光ス
ペクトル強度I_C_Hとの比を5≧I_C_2/I_
C_H≧0.05の範囲に調節し、かつ基体温度を10
0〜800℃に保持して成膜することにより得られるダ
イヤモンド状炭素膜。
(1) A magnetic field is applied to the plasma generation chamber in which the substrate is installed, in which the magnetic field strength at a position near the plasma generation chamber side of the microwave introduction window and near the surface of the substrate is greater than or equal to the intensity that satisfies the electron cyclotron resonance condition. A wave is introduced, and the carbon-containing gas for film formation introduced there is 10^-^2
Plasma is generated at a pressure of ~10 Torr, and at this time, the ratio of the plasma emission spectrum intensity I_C_2 due to C_2 active species in the plasma to the plasma emission spectrum intensity I_C_H due to CH active species is set to 5≧I_C_2/I_
Adjust the C_H≧0.05 range, and set the substrate temperature to 10
A diamond-like carbon film obtained by forming a film while maintaining the temperature at 0 to 800°C.
(2)磁場が印加されたプラズマ生成室にマイクロ波を
導入してプラズマを生成し、そのプラズマ中に設置され
た基体上に堆積膜を形成するダイヤモンド状炭素膜の製
造方法において、C_2活性種に起因するプラズマ発光
スペクトルの強度I_C_2とCH活性種に起因するプ
ラズマ発光スペクトル強度I_C_Hとの比が5≧I_
C_2/I_C_H≧0.05となっているプラズマ中
に前記基体を設置して成膜操作することを特徴とするダ
イヤモンド状炭素膜の製造方法。
(2) In a method for manufacturing a diamond-like carbon film, in which plasma is generated by introducing microwaves into a plasma generation chamber to which a magnetic field is applied, and a deposited film is formed on a substrate placed in the plasma, C_2 active species The ratio of the plasma emission spectrum intensity I_C_2 caused by CH active species to the plasma emission spectrum intensity I_C_H caused by CH active species is 5≧I_
A method for producing a diamond-like carbon film, characterized in that the substrate is placed in plasma where C_2/I_C_H≧0.05 and film formation is performed.
(3)前記プラズマ生成室の圧力範囲を10^−^2〜
10Torrの範囲にすることを特徴とする特許請求の
範囲第2項に記載のダイヤモンド状炭素膜の製造方法。
(3) Set the pressure range of the plasma generation chamber to 10^-^2~
3. The method for manufacturing a diamond-like carbon film according to claim 2, characterized in that the temperature is within a range of 10 Torr.
(4)前記の印加される磁場強度をマイクロ波導入窓の
プラズマ生成室側近傍および基体の表面近傍位置におい
て、電子サイクロトロン共鳴条件を満たす強度以上にす
ることを特徴とする特許請求の範囲第2項に記載のダイ
ヤモンド状炭素膜の製造方法。
(4) The applied magnetic field strength is set to be equal to or higher than the strength satisfying electron cyclotron resonance conditions in the vicinity of the plasma generation chamber side of the microwave introduction window and in the vicinity of the surface of the base body. A method for producing a diamond-like carbon film as described in .
(5)導入マイクロ波を2.45GHzの周波数のもの
にし、前記磁場強度を875ガウス以上にすることを特
徴とする特許請求の範囲第4項に記載のダイヤモンド状
炭素膜の製造方法。
(5) The method for manufacturing a diamond-like carbon film according to claim 4, characterized in that the introduced microwave has a frequency of 2.45 GHz and the magnetic field strength is 875 Gauss or more.
JP25025588A 1987-10-15 1988-10-03 Novel diamond-like carbon film and method for producing the same Expired - Fee Related JP2637509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25025588A JP2637509B2 (en) 1987-10-15 1988-10-03 Novel diamond-like carbon film and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25832687 1987-10-15
JP62-258326 1987-10-15
JP25025588A JP2637509B2 (en) 1987-10-15 1988-10-03 Novel diamond-like carbon film and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01230496A true JPH01230496A (en) 1989-09-13
JP2637509B2 JP2637509B2 (en) 1997-08-06

Family

ID=26539700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25025588A Expired - Fee Related JP2637509B2 (en) 1987-10-15 1988-10-03 Novel diamond-like carbon film and method for producing the same

Country Status (1)

Country Link
JP (1) JP2637509B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131379A (en) * 1990-09-21 1992-05-06 Hitachi Ltd Plasma treating device
US5531184A (en) * 1990-04-26 1996-07-02 Hitachi, Ltd. Method for producing synthetic diamond thin film, the thin film and device using it
JP2000320670A (en) * 1999-05-11 2000-11-24 Kayaba Ind Co Ltd Surface treatment method for piston
JP2005228727A (en) * 2003-04-24 2005-08-25 Tokyo Electron Ltd Plasma monitoring method, plasma monitoring device, and plasma treatment device
JP2007160506A (en) * 2007-02-23 2007-06-28 Sumitomo Electric Hardmetal Corp Amorphous carbon coated tool
JPWO2005103326A1 (en) * 2004-04-19 2008-03-13 独立行政法人産業技術総合研究所 Carbon film
JP2011517848A (en) * 2008-03-05 2011-06-16 アプライド マテリアルズ インコーポレイテッド Method for depositing amorphous carbon films with improved density and step coverage
JP4883590B2 (en) * 2006-03-17 2012-02-22 独立行政法人産業技術総合研究所 Laminated body and carbon film deposition method
JP2012041591A (en) * 2010-08-17 2012-03-01 Fuji Xerox Co Ltd Carbon film forming apparatus, carbon film forming method, member, tool, elastic member, and electrode member
JP2013001601A (en) * 2011-06-16 2013-01-07 National Institute For Materials Science Method and apparatus for growing diamond crystal
KR20200036224A (en) * 2018-09-28 2020-04-07 한국광기술원 DLC Coating Film for Infrared Optics, Apparatus and Method for Coating that Deposite Thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102256056B1 (en) * 2019-08-30 2021-05-25 한국광기술원 Apparatus and Method for Depositing a Coating Film on a Mold

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531184A (en) * 1990-04-26 1996-07-02 Hitachi, Ltd. Method for producing synthetic diamond thin film, the thin film and device using it
JPH04131379A (en) * 1990-09-21 1992-05-06 Hitachi Ltd Plasma treating device
JP2000320670A (en) * 1999-05-11 2000-11-24 Kayaba Ind Co Ltd Surface treatment method for piston
JP2005228727A (en) * 2003-04-24 2005-08-25 Tokyo Electron Ltd Plasma monitoring method, plasma monitoring device, and plasma treatment device
JP2010030899A (en) * 2004-04-19 2010-02-12 National Institute Of Advanced Industrial & Technology Carbon film
JPWO2005103326A1 (en) * 2004-04-19 2008-03-13 独立行政法人産業技術総合研究所 Carbon film
JP4538587B2 (en) * 2004-04-19 2010-09-08 独立行政法人産業技術総合研究所 LAMINATE, MANUFACTURING METHOD THEREOF, AND OPTICAL DEVICE, OPTICAL GLASS, WATCH, ELECTRONIC CIRCUIT BOARD, AND POLISHING TOOL WITH THE LAMINATE
JP2013040408A (en) * 2004-04-19 2013-02-28 National Institute Of Advanced Industrial Science & Technology Surface wave plasma cvd apparatus and method of manufacturing laminate by using the same
US8501276B2 (en) 2004-04-19 2013-08-06 National Institute Of Advanced Industrial Science And Technology Carbon film
JP4883590B2 (en) * 2006-03-17 2012-02-22 独立行政法人産業技術総合研究所 Laminated body and carbon film deposition method
JP2007160506A (en) * 2007-02-23 2007-06-28 Sumitomo Electric Hardmetal Corp Amorphous carbon coated tool
JP2011517848A (en) * 2008-03-05 2011-06-16 アプライド マテリアルズ インコーポレイテッド Method for depositing amorphous carbon films with improved density and step coverage
JP2012041591A (en) * 2010-08-17 2012-03-01 Fuji Xerox Co Ltd Carbon film forming apparatus, carbon film forming method, member, tool, elastic member, and electrode member
JP2013001601A (en) * 2011-06-16 2013-01-07 National Institute For Materials Science Method and apparatus for growing diamond crystal
KR20200036224A (en) * 2018-09-28 2020-04-07 한국광기술원 DLC Coating Film for Infrared Optics, Apparatus and Method for Coating that Deposite Thereof

Also Published As

Publication number Publication date
JP2637509B2 (en) 1997-08-06

Similar Documents

Publication Publication Date Title
US4935303A (en) Novel diamond-like carbon film and process for the production thereof
KR910001367B1 (en) Gaseous phase synthesized diamond film and method for synthesizing same
JP5066651B2 (en) Epitaxial diamond film base substrate manufacturing method and epitaxial diamond film manufacturing method using this base substrate
US20030152700A1 (en) Process for synthesizing uniform nanocrystalline films
JPH05506064A (en) Diamond mounting substrate for electronic applications
JPH01230496A (en) Novel diamond carbon membrane and its production
JP3194820B2 (en) Method for forming oriented diamond film
JPH01198482A (en) Formation of deposited film by microwave plasma cvd
US6902716B2 (en) Fabrication of single crystal diamond tips and their arrays
US5993919A (en) Method of synthesizing diamond
US5270029A (en) Carbon substance and its manufacturing method
TW594853B (en) The manufacturing method of diamond film and diamond film
JP2962631B2 (en) Method for producing diamond-like carbon thin film
Kawarada et al. Diamond synthesis by dc plasma jet cvd
JPS61201698A (en) Diamond film and its production
JP2010095408A (en) Method for manufacturing epitaxial diamond film and self-supporting epitaxial diamond substrate
USH1792H (en) Selection of crystal orientation in diamond film chemical vapor deposition
JP3190100B2 (en) Carbon material production equipment
Mills et al. Spectroscopic Characterization of the Atomic Hydrogen Energies and Densities and Carbon Species during Helium− Hydrogen− Methane Plasma CVD Synthesis of Diamond Films
Rudder et al. Growth Of Diamond-Like Films On Ni Surfaces Using Remote Plasma Enhanced Chemical Vapor Deposition
JPS6330397A (en) Method for synthesizing diamond
JPS60186500A (en) Method for synthesizing diamond from vapor phase
JPH06158323A (en) Method for synthesizing hard carbon coating film in vapor phase
Zhu Microwave plasma-enhanced chemical vapor deposition and structural characterization of diamond films
JPH0532489A (en) Synthesis of diamond using plasma

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees