JPH01230462A - Low-temperature sintering porcelain composition for multi-layer base - Google Patents

Low-temperature sintering porcelain composition for multi-layer base

Info

Publication number
JPH01230462A
JPH01230462A JP63057548A JP5754888A JPH01230462A JP H01230462 A JPH01230462 A JP H01230462A JP 63057548 A JP63057548 A JP 63057548A JP 5754888 A JP5754888 A JP 5754888A JP H01230462 A JPH01230462 A JP H01230462A
Authority
JP
Japan
Prior art keywords
low
weight
composition
temperature sintering
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63057548A
Other languages
Japanese (ja)
Other versions
JPH062619B2 (en
Inventor
Wakichi Tsukamoto
塚本 和吉
Kouji Kajiyoshi
梶芳 浩二
Yasunobu Yoneda
康信 米田
Yukio Sakabe
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP63057548A priority Critical patent/JPH062619B2/en
Publication of JPH01230462A publication Critical patent/JPH01230462A/en
Publication of JPH062619B2 publication Critical patent/JPH062619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To improve mechanical strength of low-temperature sintering porcelain composition without damaging physical properties, by blending a main component containing codierite, B2O3 and one or more of CaO, SrO and BaO in specific ratio with silver. CONSTITUTION:A main component consisting of (A) 60-90wt.% codierite, (B) 5-20wt.% B2O3 and (C) 1-25wt.% one or more of CaO, SrO and BaO is blended with 0.01-5wt.% calculated as Ag of Ag or Ag-containing compound (e.g., AgO,. AgCl, AgBr or AgNO3) to give a low-temperature sintering composition for multi-layer base suitable as a multi-layer porcelain base having formed a circuit between porclelains.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、多層基板用低温焼結磁器組成物に関し、特
に、複数の磁器層が積層され、磁器間に回路が形成され
て成る多層磁器基板に適した、多層基板用低温焼結磁器
組成物に関する。
Detailed Description of the Invention [Field of Industrial Application] This invention relates to a low-temperature sintered porcelain composition for a multilayer board, and particularly to a multilayer porcelain composition in which a plurality of porcelain layers are laminated and a circuit is formed between the porcelains. The present invention relates to a low-temperature sintered ceramic composition for multilayer substrates, which is suitable for substrates.

〔先行技術〕[Prior art]

一般に、電子機器の小型化に伴い、電子回路を構成する
各種電子部品を実装するのに磁器基板が汎用され、最近
では、実装密度を更に高めるため、表面に導電材料のペ
ーストで回路パターンを形成した未焼成の磁器シートを
複数枚積層し、これを焼成して一体化した多層磁器基板
が開発されている。
In general, with the miniaturization of electronic devices, ceramic substrates are commonly used to mount various electronic components that make up electronic circuits.Recently, in order to further increase the mounting density, circuit patterns are formed on the surface with conductive material paste. A multilayer porcelain substrate has been developed in which a plurality of unfired porcelain sheets are laminated and then fired and integrated.

従来はこのような多層も〃器基板の材料としてアルミナ
が用いられていたが、これには、■その焼結温度が15
00〜1600°Cと高温であるため、焼結に要する多
量のエネルギーが必要になりコスト高になる、■基板内
部に形成される内部回路の導電材料が高温の焼結温度に
耐え得るWやMo等の高融点金属しこ限定されるため、
回路パターンそのものの抵抗値が高くなる、■アルミナ
の熱膨張係数がアルミナ基板の上に搭載される半導体を
構成するシリコンチップよりも大きいため、シリコンチ
ップに熱ストレスが加わりそれにクランクを発生させる
原因となる、■アルミナそのものの誘電率が高いため、
回路の内部を伝播する信号の遅延時間が大きくなる、等
の問題があった。
Conventionally, alumina has been used as the material for such multilayer substrates, but this requires the following: ■ Its sintering temperature is 15
Since the temperature is 00 to 1600°C, a large amount of energy is required for sintering, which increases costs.■ The conductive material of the internal circuit formed inside the substrate is made of W or other materials that can withstand high sintering temperatures. Because it is limited to high melting point metals such as Mo,
The resistance value of the circuit pattern itself becomes high. ■The coefficient of thermal expansion of alumina is larger than that of the silicon chip that makes up the semiconductor mounted on the alumina substrate, which causes heat stress to be applied to the silicon chip and cause cranking. ■Because the dielectric constant of alumina itself is high,
There have been problems such as increased delay time of signals propagating inside the circuit.

これに対して同一出願人は、上記のような問題点を解決
した多層基板用低温焼結磁器組成物を別途提案している
(特願昭61−234128号)。
In response, the same applicant has separately proposed a low-temperature sintered ceramic composition for multilayer substrates that solves the above-mentioned problems (Japanese Patent Application No. 234128/1982).

これを要約して説明すると、この多層基板用低温焼結磁
器組成物は、コージェライトが60〜90重量%、B2
O3が5〜20重量%並びにCaO1SrOおよびBa
Oの一種以上カ月〜25重量%から成ることを特徴とす
るものである。
To summarize this, this low-temperature sintered ceramic composition for multilayer substrates contains 60 to 90% by weight of cordierite and B2
5-20 wt% O3 and CaO1SrO and Ba
It is characterized by consisting of 25% by weight of at least one type of O.

ここでコージェライトとは、2Mg0・2AI□03・
5SiOzの他、E、N、Levin et al、に
よるIIPhase Diagrams for Ce
ramists”、The AmericanCera
mic 5ociety、Columbus、1964
.P、246(Fig、712)に開示されている組成
範囲から構成されるものであり、より具体的には第1図
における領域Aのものを指す。
Here, cordierite is 2Mg0, 2AI□03,
In addition to 5SiOz, IIPhase Diagrams for Ce by E.N. Levin et al.
ramists”, The AmericanCera
mic 5ociety, Columbus, 1964
.. P, 246 (Fig, 712), and more specifically refers to the composition range A in Fig. 1.

上記のように組成範囲を限定した理由は次の通りである
。即ち、コージェライトが60重量%未満では熱膨張係
数が大きくなり、一方90重量%を越えると焼結温度が
高くなるからであり、またB2O3が5重量%未満では
焼結温度が高くなり、一方20重量%を越えると発泡し
、焼結温度範囲が狭くなるからであり、またCaO、S
rOおよびBaOの一種以上が1重量%未満では焼結せ
ず、一方25重量%を越えると誘電率が大きくなるから
である。
The reason for limiting the composition range as described above is as follows. That is, if cordierite is less than 60% by weight, the coefficient of thermal expansion will be large, while if it exceeds 90% by weight, the sintering temperature will be high.If B2O3 is less than 5% by weight, the sintering temperature will be high; This is because if it exceeds 20% by weight, it will foam and the sintering temperature range will become narrower.
This is because if one or more of rO and BaO is less than 1% by weight, sintering will not occur, while if it exceeds 25% by weight, the dielectric constant will increase.

このような多層基板用低温焼結磁器組成物によれば、■
1020 ’C以下の温度で焼結可能であり、回路パタ
ーンを形成するための導電材料としてA、、、Ag−P
d等の比較的安価な貴金属が使用でき、また非酸化性の
雰囲気で焼成できるため、回路パターンの導電材料とし
て安価なCu、Ni等の卑金属が使用でき、更には内部
に抵抗パターンを形成するに当たっても、サーメット材
料が使用できる、■熱膨張係数が3〜5 X 10−6
/’Cと小さく、この基板の上にシリコンを搭載しても
、熱ストレスによってシリコンにクラックが発生する恐
れがない、■誘電率が6以下と、アルミナの値よりも小
さいため、信号の遅延時間の短縮が図れる、等の効果が
得られる(後述する第1表参照)。
According to such a low-temperature sintered ceramic composition for multilayer substrates, ■
A, Ag-P can be sintered at temperatures below 1020'C and can be used as a conductive material for forming circuit patterns.
Since relatively inexpensive noble metals such as d can be used, and since it can be fired in a non-oxidizing atmosphere, inexpensive base metals such as Cu and Ni can be used as conductive materials for circuit patterns, and furthermore, resistance patterns can be formed inside. Even if it hits, cermet material can be used.■Thermal expansion coefficient is 3 to 5
/'C, even if silicon is mounted on this substrate, there is no risk of cracks occurring in the silicon due to thermal stress. ■ Dielectric constant is less than 6, which is smaller than that of alumina, so signal delay is reduced. Effects such as time reduction can be obtained (see Table 1 below).

〔発明の目的] 」二記のような多層基板用低温焼結磁器組成物を更に横
側したとごろ、それを焼成したセラミックス(磁器)の
機械的強度(曲げ強度)についてなお改善の余地がある
ことが分かった。これは、上記のようなセラミックスの
内部に直径1〜10μm程度のボア(空孔)が比較的多
く含まれおり(第1表参照)、これが当該セラミックス
に機械的な力が加えられた際の破壊の起点となるため、
ボアの直径が大きく、ボアの数が多いセラミックスはど
機械的強度が小さくなるからである。
[Object of the Invention] When the low-temperature sintered porcelain composition for multilayer substrates as described in Section 2 was further lateralized, there was still room for improvement in the mechanical strength (flexural strength) of the ceramics (porcelain) fired from it. I found out something. This is because the ceramics described above contain a relatively large number of bores (holes) with a diameter of about 1 to 10 μm (see Table 1), and this is due to the fact that when mechanical force is applied to the ceramics, Because it becomes the starting point of destruction,
This is because ceramics with large bore diameters and a large number of bores have low mechanical strength.

そこでこの発明は、上記のような多層基板用低温焼結磁
器組成物を更に改善して、その上記のような優れた特性
を損なうことなく、機械的強度のより大きなセラミック
スを得ることができる多層基板用低温焼結磁器組成物を
提供することを目的とする。
Therefore, the present invention aims to further improve the low-temperature sintered ceramic composition for multilayer substrates as described above, and to create a multilayer ceramic that can obtain ceramics with greater mechanical strength without impairing the excellent properties described above. The object of the present invention is to provide a low-temperature sintered porcelain composition for a substrate.

〔目的達成のための手段〕[Means to achieve the purpose]

この発明の多層基板用低温焼結磁器組成物は、コージェ
ライトが60〜90重量%、B 20 :+ カ5〜2
0重量%並びにCaO、SrOおよびBaOの一種以上
が1〜25真量%から成る主成分に対して、銀または銀
の化合物を金属銀に換算して0゜01〜5重量%添加含
有させて成ることを特徴とする。
The low-temperature sintered ceramic composition for multilayer substrates of the present invention contains cordierite in an amount of 60 to 90% by weight, and B20: + F of 5 to 2.
0% by weight and 1 to 25% by weight of one or more of CaO, SrO and BaO, and 0.01 to 5% by weight of silver or a silver compound calculated as metallic silver. It is characterized by becoming.

主成分の組成範囲の限定理由は前述の通りである。The reason for limiting the composition range of the main components is as described above.

銀添加量を上記のように限定したのは、0.01重量%
未満では、ボアの直径力月μm以下とならずセラミック
スの機械的強度があまり改善されないからであり、一方
5重量%を越えると、セラミックスの絶縁性が低下する
からである。
The amount of silver added was limited as above to 0.01% by weight.
If the amount is less than 5% by weight, the diameter of the bore will not be less than μm, and the mechanical strength of the ceramic will not be improved much. On the other hand, if it exceeds 5% by weight, the insulation properties of the ceramic will deteriorate.

銀の化合物としては、例えばAgz○、Ag、CI、A
gBr、AgT、A g N 03等の銀元素を含む化
合物が採り得る。
Examples of silver compounds include Agz○, Ag, CI, A
Compounds containing silver elements such as gBr, AgT, and AgN03 can be used.

〔実施例〕〔Example〕

まず、比較のために、前述したような同一出願人が先に
提案している多層基板用低温焼結磁器組成物の範囲に属
するが銀を添加していない組成物を用いた試料の特性等
を第1表に示す。
First, for comparison, the characteristics of a sample using a composition that falls within the range of the low-temperature sintered porcelain composition for multilayer substrates previously proposed by the same applicant as mentioned above, but does not contain silver. are shown in Table 1.

(以下余白) これは次のようにして測定したものである。(Margin below) This was measured as follows.

まず、コージェライトの原料を準備した。原料として、
SiO3、MgOまたはMgCO2あるいはTalc(
3Mg0 ・4 S i○z ・H2O) 、AIzO
aを秤量し、混合した。この混合物を1350〜140
0 ’Cで仮焼した。このようにして第1図で示したコ
ージェライト組成物を得た。このコージェライト仮焼物
を粉砕して新たにコージェライト原料として準備した。
First, raw materials for cordierite were prepared. As a raw material,
SiO3, MgO or MgCO2 or Talc (
3Mg0 ・4 S i○z ・H2O) , AIzO
A was weighed and mixed. This mixture is 1350-140
It was calcined at 0'C. In this way, the cordierite composition shown in FIG. 1 was obtained. This calcined cordierite was crushed and prepared as a new cordierite raw material.

次に、このコージェライト原料と、その他の構成(A料
、即ちB2O3またBNあるいはB、C1CaOまたは
CaCO3、Sr○またはSrCO3、BaOまたはB
 a C03、Cu O、N i O、C0203を4
備し、第1表に示す組成の磁器が得られるように、秤量
、混合した。
Next, this cordierite raw material and other components (material A, namely B2O3 or BN or B, C1CaO or CaCO3, Sr○ or SrCO3, BaO or B
a C03, Cu O, N i O, C0203 to 4
The materials were prepared, weighed, and mixed so as to obtain porcelain having the composition shown in Table 1.

そしてこの混合物を800〜900°Cの温度で仮焼し
、粉砕した。この粉砕した粉末に有機バインダーを加え
て混練し、得られたスラリーをドクターブレード法にて
厚さ1mmのシート状に成形した。このセラミックグリ
ーンシートをi従30mm、横10mmの大きさにカッ
トし、水蒸気中に通過させた窒素をキャリヤガスとする
窒素−水蒸気の還元性もしくは非酸化性雰囲気中900
 ’Cの温度でバインダー成分を燃焼させ、これを第1
表に示す各温度で1時間焼成して磁器を得た。
This mixture was then calcined at a temperature of 800 to 900°C and pulverized. An organic binder was added to the pulverized powder and kneaded, and the resulting slurry was formed into a sheet with a thickness of 1 mm using a doctor blade method. This ceramic green sheet was cut into a size of 30 mm in width and 10 mm in width, and was placed in a reducing or non-oxidizing atmosphere of nitrogen-steam with nitrogen passed through water vapor as a carrier gas.
The binder component is burned at a temperature of 'C, and this is
Porcelain was obtained by firing for 1 hour at each temperature shown in the table.

また、このセラミックグリーンシートを@i 3 mm
、横20mmの角板状にカットし、これを3枚積層して
200kg/cJで加圧し角柱状にした。
Also, this ceramic green sheet @i 3 mm
It was cut into a rectangular plate shape with a width of 20 mm, and three sheets were laminated and pressed at 200 kg/cJ to form a rectangular column shape.

そして、これを上記の方法で焼成し、熱膨張測定用の試
料とした。
This was then fired using the method described above to obtain a sample for thermal expansion measurement.

尚、同表中の誘電率εおよび誘電体損失tanδは、共
に周波数IMHzで測定した値であり、比抵抗は、試料
に直流100Vを印加したときの値であり、熱膨張係数
αは、 α−(ΔL/L (T2  Tl)l+αSi○2より
算出した値であり、ここでΔLは加熱による試料の見掛
けの伸び(mm)、Lは室温での試料の長さ(mm) 
、T、は室温、T2は500°C1αS i O2は石
英ガラスの熱膨張係数である。
The dielectric constant ε and dielectric loss tan δ in the same table are both values measured at a frequency of IMHz, the specific resistance is the value when 100 V DC is applied to the sample, and the thermal expansion coefficient α is α -(ΔL/L (T2 Tl)l+αSi○2), where ΔL is the apparent elongation of the sample due to heating (mm), and L is the length of the sample at room temperature (mm).
, T is room temperature, T2 is 500° C1αS i O2 is the thermal expansion coefficient of quartz glass.

また、ボア直径は、電子顕微鏡を用いて1000倍で観
察したときのボアの最大直径である(第2表の場合も同
し)。
Further, the bore diameter is the maximum diameter of the bore when observed at 1000 times magnification using an electron microscope (the same applies to Table 2).

次に、上記第1表の試料の組成を主成分とし、これに銀
を添加した実施例の特性等を第2表に示す。同表中の括
弧内の試料番号■〜■は、主成分が第1表に示す同番号
のものであることを示す。
Next, Table 2 shows the characteristics of an example in which the composition of the sample in Table 1 was used as the main component and silver was added thereto. Sample numbers ■ to ■ in parentheses in the same table indicate that the main components are those with the same numbers shown in Table 1.

(以下余白) 第2表 この試料の製造工程等は、第1表の試料の場合とほぼ同
しであり、それとの相違点を説明すると、前述した主成
分用のコージェライト原料とその他の構成材料とを秤量
、混合する段階で、添加物としてAgまたはAg2O、
AgC] 、AgBr 、AgIもしくはA g N 
03を準備して上記主成分を]00としたときの金属A
gに換算した銀添加量が第2表に示すものになるように
秤量、混合した。もっともこの添加物は、この段階と、
その後の前述した仮焼粉砕物に有機バインダーを加える
段階とのどちらか一方、あるいは両方の段階で加えても
よい。
(Leaving space below) Table 2 The manufacturing process for this sample is almost the same as that for the sample in Table 1. At the stage of weighing and mixing the materials, Ag or Ag2O,
AgC], AgBr, AgI or AgN
Metal A when preparing 03 and setting the above main component to ]00
They were weighed and mixed so that the amount of silver added in terms of g was as shown in Table 2. However, this additive is used at this stage and
It may be added at either or both of the subsequent steps of adding an organic binder to the calcined and pulverized product.

第2表において、*印を付したものはこの発明の範囲外
のものであり、それ以外は全てこの発明の範囲内のもの
である。
In Table 2, those marked with an * are outside the scope of this invention, and all others are within the scope of this invention.

この表と第1表とを比べれば分かるように、第1表のよ
うな主成分に根を0.01〜5重量%添加含有させるこ
とで、第1表のものよりもボア直径が遥かに小さくで緻
密なセラミックスが得られ、その機械的強度(曲げ強度
)を1.8倍以上に高めることができた。
As can be seen by comparing this table with Table 1, by adding 0.01 to 5% by weight of roots to the main ingredients as shown in Table 1, the bore diameter is much greater than that in Table 1. A small and dense ceramic was obtained, and its mechanical strength (bending strength) was increased by more than 1.8 times.

しかも、比抵抗も第1表のものとほぼ同じ位あり、絶縁
基板としての特性を損なうごともない。
Moreover, the specific resistance was almost the same as that in Table 1, and the properties as an insulating substrate were not impaired.

また、その他の特性も第1表のものと特に変わらないの
で、第2表では省略した。
In addition, since other characteristics are not particularly different from those in Table 1, they are omitted in Table 2.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、同一出願人が先に提案
した多層基板用低温焼結磁器HA成酸物優れた特性を損
なうことなく、緻密で機械的強度のより大きなセラミッ
クスを得ることができるようになる。
As described above, according to the present invention, it is possible to obtain ceramics that are denser and have greater mechanical strength without impairing the excellent properties of the low-temperature sintered porcelain HA compound for multilayer substrates previously proposed by the same applicant. become able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1閏は、コージェライトの組成範囲を示す回である。 The first leap represents the composition range of cordierite.

Claims (1)

【特許請求の範囲】[Claims] (1)コージェライトが60〜90重量%、B_2O_
3が5〜20重量%並びにCaO、SrOおよびBaO
の一種以上が1〜25重量%から成る主成分に対して、
銀または銀の化合物を金属銀に換算して0.01〜5重
量%添加含有させて成ることを特徴とする多層基板用低
温焼結磁器組成物。
(1) Cordierite is 60-90% by weight, B_2O_
5 to 20% by weight of 3 and CaO, SrO and BaO
For the main component consisting of 1 to 25% by weight of one or more of
A low-temperature sintered ceramic composition for a multilayer substrate, characterized in that it contains silver or a silver compound in an amount of 0.01 to 5% by weight in terms of metallic silver.
JP63057548A 1988-03-11 1988-03-11 Low temperature sintered porcelain composition for multilayer substrate Expired - Fee Related JPH062619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63057548A JPH062619B2 (en) 1988-03-11 1988-03-11 Low temperature sintered porcelain composition for multilayer substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63057548A JPH062619B2 (en) 1988-03-11 1988-03-11 Low temperature sintered porcelain composition for multilayer substrate

Publications (2)

Publication Number Publication Date
JPH01230462A true JPH01230462A (en) 1989-09-13
JPH062619B2 JPH062619B2 (en) 1994-01-12

Family

ID=13058840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63057548A Expired - Fee Related JPH062619B2 (en) 1988-03-11 1988-03-11 Low temperature sintered porcelain composition for multilayer substrate

Country Status (1)

Country Link
JP (1) JPH062619B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115141006A (en) * 2022-07-04 2022-10-04 杭州电子科技大学 Microwave dielectric ceramic material, composite material, preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115141006A (en) * 2022-07-04 2022-10-04 杭州电子科技大学 Microwave dielectric ceramic material, composite material, preparation method and application thereof

Also Published As

Publication number Publication date
JPH062619B2 (en) 1994-01-12

Similar Documents

Publication Publication Date Title
KR900002303B1 (en) Insulating paste for multilayer substrate
JP3387458B2 (en) Insulator composition, insulator paste and laminated electronic component
JP2007284327A (en) Ceramic composition and laminated ceramic circuit device
JP2009023895A (en) Ceramic substrate and its producing method
JPH04212441A (en) Ceramic wiring board
JPH01230462A (en) Low-temperature sintering porcelain composition for multi-layer base
JP3164700B2 (en) Glass ceramic substrate and method for manufacturing the same
JPS63265858A (en) Low-temperature sintered ceramics composition for multi-layered substrate
JPH0416551A (en) Low-temperature sintered porcelain composition
JP2003040670A (en) High thermal expansion ceramic composition, high thermal expansion ceramic and its manufacturing method, and multilayer wiring substrate and its mounting structure
JP2600778B2 (en) Low temperature sintering porcelain composition for multilayer substrate
JP3120603B2 (en) Low-temperature sintered porcelain composition for multilayer substrates
JPH0667783B2 (en) Low temperature sintered porcelain composition for multilayer substrate
JP3101966B2 (en) High thermal expansion Al2O3-SiO2-based sintered body and method for producing the same
JP5354320B2 (en) Ceramic substrate and manufacturing method thereof
JP2580439B2 (en) High dielectric constant alumina sintered body and method for producing the same
JPH0676255B2 (en) Low temperature sintered porcelain composition for multilayer substrate
JP3134437B2 (en) Low-temperature sintered ceramic composition for multilayer substrate
JP3236759B2 (en) Insulating porcelain and multilayer wiring board using the same
JPH09295883A (en) Copper-metallizing composition and glass ceramic circuit board using the same
JP2001220219A (en) Glass-ceramic sintered compact and multilayer circuit board using the same
JP2004161562A (en) Ceramic material for circuit board
JPH10245263A (en) Low-temperature sinterable porcelain composition
JPH04139060A (en) Ceramic circuit board
JPH08283066A (en) Ceramic substrate fired at low temperature

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees