JPH01227160A - Photosensitive body and production thereof - Google Patents

Photosensitive body and production thereof

Info

Publication number
JPH01227160A
JPH01227160A JP5446588A JP5446588A JPH01227160A JP H01227160 A JPH01227160 A JP H01227160A JP 5446588 A JP5446588 A JP 5446588A JP 5446588 A JP5446588 A JP 5446588A JP H01227160 A JPH01227160 A JP H01227160A
Authority
JP
Japan
Prior art keywords
carbon
film
selenium semiconductor
selenium
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5446588A
Other languages
Japanese (ja)
Other versions
JP2807790B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP5446588A priority Critical patent/JP2807790B2/en
Publication of JPH01227160A publication Critical patent/JPH01227160A/en
Application granted granted Critical
Publication of JP2807790B2 publication Critical patent/JP2807790B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08285Carbon-based
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0433Photoconductive layers characterised by having two or more layers or characterised by their composite structure all layers being inorganic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14704Cover layers comprising inorganic material

Abstract

PURPOSE:To form a film consisting of carbon or essentially consisting of carbon as a wear corrosion resistant layer by providing a selenium semiconductor to a part or the whole of a photoconductive layer on a base and providing said film thereon. CONSTITUTION:A base body 10 formed by previously coating the selenium semiconductor as the photoconductive layer on a base by a vapor deposition method is disposed on a stainless steel container 1' having a cap 1''. The film consisting of the amorphous carbon having a fine crystal structure or essentially consisting of said carbon is provided on the selenium semiconductor. The film has 0.1-5mum thickness and is added with hydrogen or halogen element. The hard protective layer as the wear resistant layer is thereby provided on this photosensitive body.

Description

【発明の詳細な説明】 r発明の利用分野J 本発明は、支持体上の光導電層の一部または全部にセレ
ン半導体が設けられ、この上面に炭素または炭素を主成
分とする被膜を耐摩耗層として設けることにより、静電
複写機、レーザプリンタ等の感光性ドラムを構成せしめ
んとするものである。
Detailed Description of the Invention rField of Application of the Invention J The present invention provides a structure in which a selenium semiconductor is provided on a part or all of a photoconductive layer on a support, and a coating of carbon or a film mainly composed of carbon is coated on the upper surface of the selenium semiconductor. By providing it as a wear layer, it is intended to construct photosensitive drums for electrostatic copying machines, laser printers, and the like.

本発明は、高周波または直流電界を同時に用いる気相反
応(CVD)方法により、被形成面特に広い面積に渡っ
て、より大きい被膜成長速度で、炭素または炭素を主成
分とする被膜形成をせしめた静電複写機用等の感光体の
製造方法に関する。
The present invention enables the formation of carbon or a film mainly composed of carbon at a higher film growth rate, particularly over a wide area of the surface to be formed, by a vapor phase reaction (CVD) method that simultaneously uses high frequency or direct current electric fields. The present invention relates to a method of manufacturing a photoreceptor for electrostatic copying machines and the like.

r従来技術1 従来、静電複写機の感光体を製造する際に石いる気相反
応による薄膜形成技術として、珪化物の反応性気体を用
いた高周波または直流電界によるプラズマCVD法(グ
ロー放電CVD法)によりアモルファスシリコン膜を感
光体として用いる方法が知られている。
Conventional technology 1 Conventionally, when manufacturing photoreceptors for electrostatic copying machines, a plasma CVD method (glow discharge CVD) using a high frequency or direct current electric field using a reactive gas of silicide has been used as a thin film forming technology using a gas phase reaction. A method using an amorphous silicon film as a photoreceptor is known.

しかし、かかるグロー放電CVD法を用いたアモルファ
スシリコン膜を用いる場合、その厚さが5μm程度を必
要とするため、クラックが感光体中に生じやすい、表面
に凹凸が生じやすい、作製中に反応容器の内壁に付着し
たフレークが、被形成面に落下し、ボイド、ピンホール
等を作りやすい等の欠点を有する。このため、アモルフ
ァスシリコン膜は感光体としては固く、長寿命性を有し
ながらも、実用上は今−歩というところであった。
However, when using an amorphous silicon film using such glow discharge CVD method, the thickness needs to be about 5 μm, so cracks are likely to occur in the photoreceptor, unevenness is likely to occur on the surface, and the reaction vessel is The flakes adhering to the inner wall of the substrate fall onto the surface to be formed, which tends to create voids, pinholes, etc. For this reason, although the amorphous silicon film is hard and has a long life as a photoreceptor, its practical use has been limited.

他方、感光体としては、有機樹脂を用いた静電ドラムが
知られている。このドラムは、支持体上に有機樹脂をコ
ーティングするだけのため、特に工業上安価で多量生産
を行いやすいという特徴を有する。しかしその寿命は5
〜7万枚の静電能力までで、劣化して使用不可能となっ
てしまう。
On the other hand, as a photoreceptor, an electrostatic drum using an organic resin is known. Since this drum simply coats the support with an organic resin, it is particularly industrially inexpensive and easy to mass produce. However, its lifespan is 5
The electrostatic capacity of ~70,000 sheets deteriorates and becomes unusable.

又、セレン半導体を感光体として用いる静電ドラムも知
られている。
Furthermore, electrostatic drums using selenium semiconductors as photoreceptors are also known.

このセレンドラムは現在、PPCコピー、等で一般に広
く用いられているものであり、その性能も安定しており
、最も実績のあるドラムである。
This selenium drum is currently widely used in PPC copying, etc., and its performance is stable, making it the most proven drum.

しかしながらこのセレン半導体は耐摩耗性にとぼしく長
期の使用には耐えないものであった。
However, this selenium semiconductor has poor wear resistance and cannot withstand long-term use.

そのため、この感光体上に、耐摩耗層とqで硬い保護層
を設けることが期待されていた。
Therefore, it has been expected to provide a wear-resistant layer and a hard protective layer on this photoreceptor.

r発明の構成」 本発明は、支持体を自己加熱以上に加熱することをなく
した。そして光導電層としてセレン半導体を用いた。こ
のセレン半導体は高温状態にすることができないため、
静電複写ドラムの中心部の母材、一般には金属またはそ
の合金で作るが、これを加熱することなく、または外部
より冷却媒体を供給しつつ、炭素または炭素を主成分と
する(以下炭素という)膜を形成した。本発明は、この
導電性固体と外部の電極との間に直流バイアスを加えつ
つ、さらに加えてこの他の一方の電極との間に高周波電
界を加えたプラズマCVD法を用いたものである。
rConfiguration of the Invention The present invention eliminates heating of the support beyond self-heating. A selenium semiconductor was used as the photoconductive layer. This selenium semiconductor cannot be heated to high temperatures, so
The base material at the center of the electrostatic copying drum, which is generally made of metal or its alloy, is made of carbon or carbon-based material (hereinafter referred to as carbon) without heating or by supplying a cooling medium from the outside. ) formed a film. The present invention uses a plasma CVD method in which a DC bias is applied between this conductive solid and an external electrode, and in addition, a high frequency electric field is applied between this conductive solid and the other electrode.

本発明は、反応性気体としてメタン、エチレン等の炭化
水素化物気体を用いている。そしてこれらのキャリアガ
スとして水素を用いた。本発明では炭化珪素、珪素膜を
用いていない。これらは硬さが不十分であり、成膜に2
00〜350°Cを必要とするため、セレン半導体の特
性が変化してしまうからである。他方、本発明の炭素膜
は下地被膜と密着性がよく、かつ成膜が200°C以下
、好ましくは一100〜+150°Cであるため、互い
に反応しない。
The present invention uses hydrocarbon gases such as methane and ethylene as reactive gases. Hydrogen was used as a carrier gas for these. The present invention does not use silicon carbide or a silicon film. These have insufficient hardness and require 2
This is because the temperature of 00 to 350°C is required, which changes the characteristics of the selenium semiconductor. On the other hand, the carbon film of the present invention has good adhesion to the underlying film, and since the film is formed at a temperature of 200°C or lower, preferably -100°C to +150°C, they do not react with each other.

本発明においては、さらにこれらの炭素化物の反応性気
体の分解、活性化を助長するため、マイクロ波励起また
はホイスラーモード活性を行った。
In the present invention, microwave excitation or Heusler mode activation was performed to further promote the decomposition and activation of the reactive gases of these carbonates.

そして反応をして炭素または炭素を主成分とする被膜の
成膜速度を助長させた。
Then, a reaction occurred to accelerate the deposition rate of carbon or a film containing carbon as a main component.

本発明において、感光性材料として、公知のセレン半導
体光導電材料を用いる。さらにその上に、本発明の炭素
膜または炭素を主成分とする膜をコートする。
In the present invention, a known selenium semiconductor photoconductive material is used as the photosensitive material. Furthermore, the carbon film of the present invention or a film mainly composed of carbon is coated thereon.

また支持体は金属であり、それらはAI、 Cr、 M
o、 Au、 Ir、Nb、V、Ti、Pd、Pt等の
金属またはこれらの合金を用い得る。これら伝導性支持
体とopcとの間に非単結晶シリコン半導体特にPまた
はN型の半導体を介在させてもよい。 本発明において
、この炭素膜形成の際、この支持体と他の電極との間の
導電性を向上させるため、プラズマCVDを行っている
際、同時にこの反応炉内、特にセレン半導体部に光照射
をし、セレン半導体の発生する電子、ホールを用いて炭
素膜をより均一に作製することは有効である。
Also, the support is metal, and they are AI, Cr, M
Metals such as O, Au, Ir, Nb, V, Ti, Pd, and Pt, or alloys thereof may be used. A non-single crystal silicon semiconductor, particularly a P or N type semiconductor, may be interposed between the conductive support and the OPC. In the present invention, in order to improve the conductivity between the support and other electrodes when forming the carbon film, light is irradiated into the reactor, especially the selenium semiconductor part, at the same time as plasma CVD is performed. It is effective to create a more uniform carbon film using electrons and holes generated by selenium semiconductors.

1作用」 かくして支持体上にセレン半導体を公知の蒸着法、その
他の方法でコートし、さらに必要に応じて障壁層を作り
、その上に平滑性に優れ、かつ耐摩耗性に優れた絶縁性
炭素または炭素を主成分とする被膜をコートすることが
できた。
1 action" Thus, a selenium semiconductor is coated on the support by a known vapor deposition method or other method, and a barrier layer is further formed as necessary, and an insulating layer with excellent smoothness and wear resistance is formed on the barrier layer. It was possible to coat with carbon or a film mainly composed of carbon.

その結果、従来のアモルファスシリコンドラムが耐摩耗
性を有しながらも、表面の凹凸が激しい、クランクが生
じやすい等多くの欠点を有していたのに比べ他方、本発
明においては、この耐摩耗性を有する炭素膜は下地のセ
レン半導体膜上に室温または冷却して成膜するにもかか
わらず、互いによく密着しあう。さらに炭素膜のビッカ
ース硬度が2000Kg/mm2以上と固(、耐摩耗性
がよい。本発明の感光性セレン半導体を用いた感光性ド
ラム上へ炭素膜をプロランキング層として設けることば
きわめて相乗効果の大きい優れたものである。
As a result, while conventional amorphous silicon drums have wear resistance, they have many drawbacks such as severe surface irregularities and a tendency to crack. Even though the carbon films having the properties are formed on the underlying selenium semiconductor film at room temperature or after being cooled, they adhere well to each other. Furthermore, the carbon film has a Vickers hardness of 2000 Kg/mm2 or more, and has good wear resistance. Providing the carbon film as a professional ranking layer on the photosensitive drum using the photosensitive selenium semiconductor of the present invention has an extremely large synergistic effect. It is excellent.

本発明においては、マイクロ波で反応性気体を予め励起
しつつ、かつ高周波プラズマを用いるため、この炭素膜
はダイヤモンドと同じ結合またはダイヤモンドが一部に
混成した炭素膜を作ることができる。
In the present invention, since a reactive gas is excited in advance with microwaves and high-frequency plasma is used, the carbon film can be formed with the same bonds as diamond or with diamond partially mixed therein.

さらに本発明のマイクロ波励起は水素、不活性気体また
は非生成物気体(分解または反応をしてもそれ自体は気
体しか生じない気体)と炭化水素化物気体とを同時にマ
イクロ波励起室に導入して活性化している。この時、こ
の炭素膜は磁場があるとその内壁面に生成物が付着しに
くく、好ましかった。
Furthermore, the microwave excitation of the present invention simultaneously introduces hydrogen, an inert gas, or a non-product gas (a gas that itself produces only a gas even when decomposed or reacted) and a hydrocarbon gas into the microwave excitation chamber. It is activated. At this time, this carbon film was preferable because it was difficult for products to adhere to the inner wall surface in the presence of a magnetic field.

以下に実施例に従い本発明を示す。The present invention will be illustrated below with reference to Examples.

実施例1 本実施例は、炭素膜作製用プラズマCVD法による感光
体の作製を示す。
Example 1 This example shows the production of a photoreceptor using a plasma CVD method for producing a carbon film.

第1図は本実施例で用いた装置の概要を示す。FIG. 1 shows an outline of the apparatus used in this example.

図面において、ステンレス容器(1゛)はm(1”)を
有し、反応空間(1)を構成させている。この容器(1
゛)には、予めセレン半導体を公知の薫着法により支持
体上にコートした基体(10)を配設させた。
In the drawing, a stainless steel container (1゛) has m (1") and constitutes a reaction space (1). This container (1
In (2), there was provided a substrate (10) on which a selenium semiconductor was coated in advance by a known smoke coating method.

基体(lO)を保持体(8> 、 (8’ )により回
転させつつ保持した。その裏側の!I(1”)側には排
気口(7)をホモジナイザ(20°)を有して設け、基
体の装着の時はi(1”)を上方向に開けて行う。高周
波電圧または直流電圧はこの基体に保持体により一方の
電極と他の一方の網状電極(20)との間に印加した。
The substrate (lO) was rotated and held by the holders (8>, (8'). On the back side of the !I (1") side, an exhaust port (7) was provided with a homogenizer (20°). When attaching the base, i (1") is opened upward. A high frequency voltage or DC voltage is applied to the base between one electrode and the other mesh electrode (20) using a holder. did.

ここに、高周波または直流電源(6)より13.56M
Hzまたは直流バイアス付の高周波電界を加える。
Here, 13.56M from high frequency or DC power supply (6)
Apply a high frequency electric field with Hz or DC bias.

基体(10)はこの電界に垂直に第1図では位置させて
いる。基体はその円周方向に回転させている。
The substrate (10) is positioned in FIG. 1 perpendicular to this electric field. The base body is rotated in its circumferential direction.

また第1図において左右方向が長いときは被膜形成と同
時にこのドラムを回転しつつ移動させてもよい。この基
体を多数配設しく図面の前後方向)これらを回転しつつ
均一な膜厚で多数同時に作るべく移動させてもよい。
Moreover, when the left and right direction is long in FIG. 1, the drum may be rotated and moved at the same time as the coating is formed. A large number of these substrates may be arranged (in the front-back direction of the drawing) and may be rotated and moved in order to simultaneously form a large number of films with uniform thickness.

反応性気体はドーピング系(13)より(18)を経て
石英管(29)で作られたマイクロ波を用いた共鳴空間
(2)に供給される。この共鳴空間は外側に空心磁石コ
イル(5) 、 (5’ )を配し磁場を加える。同時
にマイクロ波発振器(3)によりアナライザー(4)を
経て例えば2.45G)lzのマイクロ波が共鳴空間(
2)に供給される。この空間ではホイッスラーモードの
共鳴を起こすべく、反応性気体としてメタンを(32)
より加える。さらに水素で希釈されたジボラン(B2H
6)またはフォスヒン(PH3)を(32)より、さら
に水素のキャリアガスを(31)より加える。例えばメ
タン:水素=1:1とし、高周波電力として50W〜I
KWを加えたプラズマ電界として0.03〜3Mcm2
とした。DCバイアスは特に加えないと炭素膜中に水素
が多く含まれ、光学的エネルギバンド巾も2.5〜3.
5eVが得られる。基体側を正バイヤスとすると、水素
イオンが反発されて結果として膜中の水素含有量を減少
させ、その光学的エネルギバンド巾も1.0〜2.Oe
Vとなる。
The reactive gas is supplied from the doping system (13) via (18) to the resonance space (2) using microwaves made of a quartz tube (29). Air-core magnet coils (5) and (5') are placed on the outside of this resonance space to apply a magnetic field. At the same time, the microwave oscillator (3) sends microwaves of 2.45G)lz through the analyzer (4) into the resonant space (
2). In this space, methane (32) is used as a reactive gas to cause Whistler mode resonance.
Add more. Diborane further diluted with hydrogen (B2H
6) Or add phosphin (PH3) from (32) and hydrogen carrier gas from (31). For example, with methane:hydrogen=1:1, the high frequency power is 50W~I
0.03 to 3 Mcm2 as plasma electric field including KW
And so. If no DC bias is applied, a large amount of hydrogen will be contained in the carbon film, and the optical energy band width will be 2.5 to 3.
5 eV is obtained. When the substrate side is positively biased, hydrogen ions are repelled, resulting in a decrease in the hydrogen content in the film, and the optical energy band width is also 1.0 to 2. Oe
It becomes V.

基体表面温度は−100〜+200°C好ましくは一1
00〜+150°Cであり、セレン半導体の耐熱性が十
分高くないため、この炭素膜のコート中に何ら損傷、溶
融、変質しないようにした。
The substrate surface temperature is -100 to +200°C, preferably -11
Since the heat resistance of the selenium semiconductor was not sufficiently high, it was ensured that no damage, melting, or deterioration occurred during coating with this carbon film.

さらにマイクロ波での予備励起を行うと、この場合の成
膜速度は500〜1000人/分が得られ、きわめて高
速成膜が可能であった。しかしこの予備励起を行わない
と、100〜200人/分の成膜速度しか得られなかっ
た。
Further, when preliminary excitation with microwaves was performed, the film formation rate in this case was 500 to 1000 people/min, making extremely high-speed film formation possible. However, without this preliminary excitation, a deposition rate of only 100 to 200 persons/min could be obtained.

かくして炭素膜を0.1〜4μm、好ましくは0.5〜
2μmの厚さに形成し、層としてその光学的エネルギバ
ンド巾を大きくし、結果として耐摩耗層であると同時に
静電荷の障壁層として作用させた。
Thus, the carbon film has a thickness of 0.1 to 4 μm, preferably 0.5 to 4 μm.
It was formed to a thickness of 2 μm, and the optical energy band width of the layer was increased, and as a result, it acted as both an abrasion resistant layer and an electrostatic charge barrier layer.

しかしかくすると、炭素膜のビッカース硬度が4000
Kg/mm”以上ではなく、2000〜4000Kg/
mm2と低下するため、実用上Eg、硬度、厚さの最適
設計が必要である。
However, in this case, the Vickers hardness of the carbon film is 4000
Kg/mm” or more, not 2000-4000Kg/
Since the thickness decreases to mm2, it is necessary to optimally design Eg, hardness, and thickness for practical purposes.

本発明ではビッカース硬度は2000にg/mm2以上
を有し、熱伝導率2.5W/cm deg以上の炭素膜
を実使用上の寿命において20万枚以上のコピー可能の
仕様とした。もちろんこの硬度が1000〜2000K
g/mm2では商品寿命が10万〜20万と低下してし
まうが、それなりの市場を求めればそれでも商品化は可
能であろう。
In the present invention, a carbon film having a Vickers hardness of 2,000 g/mm2 or more and a thermal conductivity of 2.5 W/cm deg or more is designed to be capable of making 200,000 copies or more during its practical life. Of course, this hardness is 1000-2000K
At g/mm2, the product life will be reduced to 100,000 to 200,000, but it will still be possible to commercialize it if a certain market is sought.

こノ圧力は、排気系(11)のコントロールバルブ(1
4)によりターボ分子ポンプを併用した真空ポンプ(9
)の排気量を調整して行った。
This pressure is controlled by the control valve (1) of the exhaust system (11).
4), a vacuum pump (9) using a turbo molecular pump
) by adjusting the exhaust volume.

更に必要に応じて、図面においては電子または共鳴励起
したアルゴンを反応空間に十分法げるため、一方の電極
(20)が反応性気体のホモジナイザ(20)の効果を
併用させ得る。即ち、このホモジナイザの穴より放出さ
れる気体(21)を基体表面に均一に広い面積で成膜さ
せ、その厚さも大面積の均一性をより良好に得るため好
ましい。
Furthermore, if necessary, in the drawing, one electrode (20) can also have the effect of a reactive gas homogenizer (20) in order to sufficiently diffuse electron- or resonance-excited argon into the reaction space. That is, the gas (21) released from the holes of the homogenizer is preferably formed on the surface of the substrate uniformly over a wide area, and the thickness thereof is also preferable in order to obtain better uniformity over the large area.

もちろんホモジナイザをいれるとこの面への電子及び活
性気体の衝突は避けられず、結果としてそこでのエネル
ギ消費がおき、成長速度の減少が見られる。そのため、
全体の空間で高い成長速度をより得んとするためには、
マイクロ波による励起が高周波はプラズマCVDのみで
あるよりも有効であった。
Of course, if a homogenizer is included, collision of electrons and active gas with this surface is unavoidable, resulting in energy consumption and a decrease in the growth rate. Therefore,
In order to obtain a high growth rate in the entire space,
High frequency excitation by microwave was more effective than plasma CVD alone.

実験例1 この実験例は被膜として、水素とメタンとを1:1とし
ダイヤモンド結合を有するアモルファスまたはダイヤモ
ンド微結晶を含むアモルファス炭素膜を形成させたもの
である。
Experimental Example 1 In this experimental example, an amorphous film containing diamond bonds or an amorphous carbon film containing diamond microcrystals was formed by mixing hydrogen and methane in a ratio of 1:1.

反応空間の圧力をQ、l torr、非生成物気体とし
て(31)より水素を200SCCMで供給した。加え
て、メタンを(32)より200SCCMで供給した。
The pressure in the reaction space was set to Q, l torr, and hydrogen was supplied at 200 SCCM from (31) as a non-product gas. In addition, methane was fed from (32) at 200 SCCM.

マイクロ波は2.45Gtlzの周波数を有し、30W
 〜1.3 K−の出力例えば500−で調整した。磁
場(5) 、 (5’ )の共鳴強度は875ガウスと
した。13.56MHzの高周波電流を50〇−加えた
。かくして放電を開始した後排気系を調整した。
The microwave has a frequency of 2.45Gtlz and is 30W
The output was adjusted to ~1.3 K-, for example 500-. The resonance intensity of the magnetic fields (5) and (5') was set to 875 Gauss. A high frequency current of 13.56 MHz was applied for 500 MHz. After starting the discharge, the exhaust system was adjusted.

導電性表面をすくなくとも一部に有する円筒状の基体(
10)を用い、この被形成面上に非単結晶炭素例えばア
モルファス炭素を形成し、不要気体を(7)を経て排気
系(11)にて放出した。すると基板温度が室温(プラ
ズマによる実加熱で150°C程度になる)において被
膜形成速度30人/秒を作ることができ、製膜時間は約
15分だった。この速度はプラズマCVDのみで得られ
る1、5人/秒に比べ20倍の速さである。このアモル
ファス炭素の電気特性の1例を調べると、固有抵抗10
10Ωcm、ビッカース硬度2300Kg/mmz、光
学的エネルギバンド巾1 、8eVであった。
A cylindrical substrate having at least a portion of an electrically conductive surface (
10) was used to form non-single crystal carbon, such as amorphous carbon, on the surface to be formed, and unnecessary gas was discharged through the exhaust system (11) via (7). As a result, it was possible to create a film formation rate of 30 persons/second at a substrate temperature of room temperature (approximately 150°C when actually heated by plasma), and the film formation time was approximately 15 minutes. This speed is 20 times faster than the 1.5 persons/second obtained by plasma CVD alone. An example of the electrical properties of this amorphous carbon is that it has a specific resistance of 10
It had a Vickers hardness of 10 Ωcm, a Vickers hardness of 2300 Kg/mmz, and an optical energy band width of 1.8 eV.

生成物気体をメタンでなくエチレンまたはアセチレンと
水素との混合気体とすると、更に被膜成長速度の向上を
期待できる。
If the product gas is a mixed gas of ethylene or acetylene and hydrogen instead of methane, further improvement in the film growth rate can be expected.

実施例2 この装置を用い複写機の感光体ドラムを作製した。基体
(10)として支持体は直径25cm長さ30cmのア
ルミニュームまたはその合金を用いた。その上にはセレ
ン半導体がコートされているものを用いた。この基体(
10)を第1図の装置にセットし、反応空間の圧力Q、
3torr 、水素2005CCMを(31)より、C
B、 200 SCCMを(32)より導入した。気体
は室温とし、特に加熱冷却をしなかった。この後、プラ
ズマ放電用電源(13,56MHz出力300W、 D
Cバイアス+200vを気体に印加)にて本実施例では
200人/分形成した。
Example 2 A photosensitive drum for a copying machine was manufactured using this apparatus. As the base (10), aluminum or its alloy was used as a support with a diameter of 25 cm and a length of 30 cm. A material coated with selenium semiconductor was used. This base (
10) is set in the apparatus shown in Figure 1, and the pressure in the reaction space Q,
3 torr, 2005 CCM of hydrogen from (31), C
B, 200 SCCM was introduced from (32). The gas was kept at room temperature and was not particularly heated or cooled. After this, power supply for plasma discharge (13,56MHz output 300W, D
In this example, 200 people/min were formed by applying C bias +200 V to the gas.

こうして0.4 μmの厚さの炭素膜を形成した。In this way, a carbon film with a thickness of 0.4 μm was formed.

この後−度反応室を排気し残留ガスを反応室外へ排気し
た。
After this, the reaction chamber was evacuated and residual gas was exhausted to the outside of the reaction chamber.

実施例3 ホイッスラーモード、高周波プラズマCVDを加えて用
い、実施例2と同様な感光体を作製した。
Example 3 A photoreceptor similar to Example 2 was produced using Whistler mode and high frequency plasma CVD.

作製条件は実施例1と同様である。基体は一30°Cに
冷却し、直流バイアスは+400νを印加して。そして
0.5 μmもの厚さの炭素膜を形成した。本実施例で
は基体(10)を回転させるとともに前後左右に移動さ
せなから製膜を行った。
The manufacturing conditions are the same as in Example 1. The substrate was cooled to -30°C, and a DC bias of +400ν was applied. A carbon film with a thickness of 0.5 μm was then formed. In this example, film formation was performed while rotating the substrate (10) and not moving it back and forth and left and right.

本実施例により作製された感光体に対し、室温→150
°C→室温の温度サイクルを100回行った結果を表1
に示す。被膜にクラックが入ったり基板よりはがれたり
ピーリングせず、歩留まりは100%だった。
For the photoreceptor manufactured according to this example, room temperature → 150
Table 1 shows the results of 100 temperature cycles from °C to room temperature.
Shown below. The film did not crack, peel or peel from the substrate, and the yield was 100%.

表1 また、Sampleを静電複写機に装着し、感光体ドラ
ムに密接して転写紙のまき込みを防止する金属またはそ
れに炭素膜がコートされたスキージを設けたが、感光体
の炭素被膜は下地のセレン半導体より、また金属支持体
よりセレン半導体自身はがれることがなく、A4版サイ
ズで105〜106枚の複写動作に対しても変化はなか
った。
Table 1 Sample was also installed in an electrostatic copying machine, and a squeegee made of metal or coated with a carbon film was installed in close contact with the photoreceptor drum to prevent the transfer paper from getting caught, but the carbon film on the photoreceptor was The selenium semiconductor itself did not peel off from the underlying selenium semiconductor or from the metal support, and there was no change even when copying 105 to 106 sheets of A4 size.

これは、この炭素膜のコートがまったくない場合、10
4〜7X10’枚までしかもたないことと比べると、無
限に耐摩耗性を有することと等価になる。
This is equivalent to 10
Compared to having only 4 to 7 x 10' sheets, this is equivalent to having infinite wear resistance.

「効果」 本発明は、セレン半導体を用いた感光層上にアモルファ
スまたは微結晶構造を有し、かつ電気的には絶縁性を有
する炭素膜がコートされたものである。そしてこのコー
ティングをセレン半導体の耐熱限界である温度以下の温
度で製造せんとするものである。
"Effects" In the present invention, a photosensitive layer using a selenium semiconductor is coated with a carbon film having an amorphous or microcrystalline structure and electrically insulating properties. The aim is to manufacture this coating at a temperature below the heat resistance limit of selenium semiconductors.

またこの反応容器内のクリーニングはこの雰囲気を酸素
またはこれに水素を導入して高周波プラズマでアンシン
グすればよく、フレーク等の発生の心配がない等、本発
明方法は他にも工業化が容易である等の特徴を存する。
In addition, the inside of the reaction vessel can be cleaned by introducing oxygen or hydrogen into the atmosphere and ansing it with high-frequency plasma, and there is no need to worry about the generation of flakes, etc., and the method of the present invention is easy to industrialize. It has the following characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】 1、支持体上の光導電層の一部または全部にセレン半導
体が設けられ、該セレン半導体上にアモルファスまたは
微結晶構造を有するアモルファスの炭素または炭素を主
成分とする被膜が設けられたことを特徴とする感光体。 2、特許請求の範囲第1項において、炭素または炭素を
主成分とする被膜は0.1〜5μmの厚さを有し、水素
またはハロゲン元素が添加されて設けられたことを特徴
とする感光体。 3、ホイスラーモード共鳴またはグロー放電法を用いた
気相法により、支持体上にセレン半導体を一部または全
部の光導電層用として設けた被形成面上に炭素または炭
素を主成分とする被膜を耐摩耗層として形成することを
特徴とする感光体作製方法。
[Scope of Claims] 1. A selenium semiconductor is provided on part or all of a photoconductive layer on a support, and an amorphous carbon having an amorphous or microcrystalline structure or a coating mainly composed of carbon is provided on the selenium semiconductor. A photoreceptor characterized by being provided with. 2. A photosensitive material according to claim 1, characterized in that carbon or a coating mainly composed of carbon has a thickness of 0.1 to 5 μm and is provided with hydrogen or a halogen element added thereto. body. 3. Carbon or a film mainly composed of carbon is formed on the surface on which a selenium semiconductor is provided for part or all of the photoconductive layer on a support by a vapor phase method using Heusler mode resonance or glow discharge method. A method for producing a photoreceptor, characterized in that it is formed as a wear-resistant layer.
JP5446588A 1988-03-08 1988-03-08 Photoconductor production method Expired - Fee Related JP2807790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5446588A JP2807790B2 (en) 1988-03-08 1988-03-08 Photoconductor production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5446588A JP2807790B2 (en) 1988-03-08 1988-03-08 Photoconductor production method

Publications (2)

Publication Number Publication Date
JPH01227160A true JPH01227160A (en) 1989-09-11
JP2807790B2 JP2807790B2 (en) 1998-10-08

Family

ID=12971419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5446588A Expired - Fee Related JP2807790B2 (en) 1988-03-08 1988-03-08 Photoconductor production method

Country Status (1)

Country Link
JP (1) JP2807790B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03273259A (en) * 1990-03-22 1991-12-04 Matsushita Electric Ind Co Ltd Photosensitive drum
US5656406A (en) * 1994-01-11 1997-08-12 Ricoh Company, Ltd. Electrophotographic photoconductor with amorphous carbon overlayer
US6440864B1 (en) 2000-06-30 2002-08-27 Applied Materials Inc. Substrate cleaning process
US6692903B2 (en) 2000-12-13 2004-02-17 Applied Materials, Inc Substrate cleaning apparatus and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03273259A (en) * 1990-03-22 1991-12-04 Matsushita Electric Ind Co Ltd Photosensitive drum
US5656406A (en) * 1994-01-11 1997-08-12 Ricoh Company, Ltd. Electrophotographic photoconductor with amorphous carbon overlayer
US6440864B1 (en) 2000-06-30 2002-08-27 Applied Materials Inc. Substrate cleaning process
US6692903B2 (en) 2000-12-13 2004-02-17 Applied Materials, Inc Substrate cleaning apparatus and method

Also Published As

Publication number Publication date
JP2807790B2 (en) 1998-10-08

Similar Documents

Publication Publication Date Title
US4973494A (en) Microwave enhanced CVD method for depositing a boron nitride and carbon
US7125588B2 (en) Pulsed plasma CVD method for forming a film
US4935303A (en) Novel diamond-like carbon film and process for the production thereof
KR930003605B1 (en) Microwave enhanced cvd method for coating plastic articles with carbon films and its products
JPS6232157B2 (en)
JPH0387372A (en) Formation of deposited film
WO2004083486A1 (en) Method and apparatus for plasma cdv by use of ultrashort wave
JPS60195094A (en) Production of diamond thin film
JP4095205B2 (en) Deposited film forming method
JPH01227160A (en) Photosensitive body and production thereof
JPS60195092A (en) Method and apparatus for production of carbon thin film
JP3406936B2 (en) Plasma CVD method using ultrashort wave and plasma CVD apparatus
US5270029A (en) Carbon substance and its manufacturing method
JPH01189658A (en) Photosensitive body and production thereof
JP3010199B2 (en) Photoconductor
JPH04118884A (en) Solid discharge element
Ali et al. Role of surface pre-treatment in the CVD of diamond films on copper
JP2967898B2 (en) Manufacturing method of organic photoreceptor
JPH06280022A (en) Production of organic photosensitive material
JPH06280021A (en) Production of photosensitive material
JPH0420985B2 (en)
JP2772643B2 (en) Coating method
KR970001005B1 (en) Wear resistant components coated with a diamond particle dispersed hard ceramic films and its synthesis methods
JPH06158323A (en) Method for synthesizing hard carbon coating film in vapor phase
JP3190100B2 (en) Carbon material production equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees