JPH01225730A - Method for recovering ruthenium from ruthenium resistant body - Google Patents

Method for recovering ruthenium from ruthenium resistant body

Info

Publication number
JPH01225730A
JPH01225730A JP5030488A JP5030488A JPH01225730A JP H01225730 A JPH01225730 A JP H01225730A JP 5030488 A JP5030488 A JP 5030488A JP 5030488 A JP5030488 A JP 5030488A JP H01225730 A JPH01225730 A JP H01225730A
Authority
JP
Japan
Prior art keywords
ruthenium
chloride
metal oxide
oxide
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5030488A
Other languages
Japanese (ja)
Inventor
Toru Shoji
亨 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP5030488A priority Critical patent/JPH01225730A/en
Publication of JPH01225730A publication Critical patent/JPH01225730A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To separate and recover Ru at good efficiency by heating base metal oxide coating mixture of Ru oxide and glass under existence of carbon, flowing chlorine gas and volatilizing and separating these as chloride. CONSTITUTION:The recovery material 1 of substrate coating the mixture of RuO2 and metal oxide of lead glass, etc., on the ceramic substrate, and carbon powder are charged into a chloridizing vessel 4, and the vessel 4 is heated with an electric furnace 2 at about 300-1,200 deg.C. By flowing the chlorine gas from a chlorine gas introducing pipe 3, the carbon is fluidized and RuO2 and the metal oxide are changed into the chloride and volatilized. These are collected with BaCl2, etc., packed in a complex salt forming agent layer 5 of the chloride. BaCl2 is extracted and it is dissolved with water and reduced with sodium borohydride, etc. By this method, Ru can be recovered from Ru resistant body at high yield.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明の方法は、反応部分においてルテニウム酸化物と
金属酸化物(ガラス)との混合物の被覆の塩化物化反応
を行い、揮発してくるルテニウム塩化物と被覆金属酸化
物の塩化物を塩化物の錯塩形成剤で捕集回収することに
よるルテニウムの回収方法に係るものである。
Detailed Description of the Invention (Industrial Field of Application) The method of the present invention involves carrying out a chloride reaction of a coating of a mixture of ruthenium oxide and metal oxide (glass) in a reaction part, and removing the ruthenium that volatilizes. This invention relates to a method for recovering ruthenium by collecting and recovering chloride and chloride of a coated metal oxide using a chloride complex salt forming agent.

(従来技術とその問題点) アルミナ、シリカ、ムライト、コージェライト、フォル
ステライト、ジルコニア等の金属酸化物基体上にルテニ
ウム酸化物と金属酸化物(ガラス)との混合被覆を設け
た抵抗体が電子工業分野で大量に使用されている。
(Prior art and its problems) A resistor with a mixed coating of ruthenium oxide and metal oxide (glass) on a metal oxide substrate such as alumina, silica, mullite, cordierite, forsterite, zirconia, etc. Used in large quantities in the industrial field.

このような材料が、製造工程での不良や、部品、装置等
の寿命による交換で大量に発生する。
A large amount of such materials is generated due to defects in the manufacturing process or replacement due to the end of the lifespan of parts, equipment, etc.

これを回収し有効利用することは工業上重要である。It is industrially important to collect and effectively utilize this.

従来の方法としては、塩酸、硝酸、アルカリなどの溶解
法があるが、ルテニウム酸化物がガラスと混合され被覆
されているので、これらの方法では溶解することが不可
能である。
Conventional methods include dissolving with hydrochloric acid, nitric acid, alkali, etc., but since ruthenium oxide is mixed with glass and coated, it is impossible to dissolve with these methods.

また塩化揮発法においてもルテニウム塩化物の捕集法と
して活性炭吸着捕集や、スクラバによる洗浄捕集などが
あるが、活性炭吸着は、温度を下げて捕集する必要があ
るばかりでなく、捕集後の処理が面倒であるという問題
があり、スクラバ洗浄法では乾式法で生成する無水塩化
ルテニウムは、酸、アルカリに対して難溶であるため大
量の洗浄液を濾過しなければならないことや、洗浄液中
に溶は出した少々のルテニウム塩化物を回収しなければ
ならない等の問題に加え、塩素ガスを再利用するために
は、塩素ガス乾燥工程を設ける必要があった。
In addition, in the chloride volatilization method, there are activated carbon adsorption collection and cleaning collection using a scrubber as methods for collecting ruthenium chloride, but activated carbon adsorption not only requires lowering the temperature to collect the ruthenium chloride. There is a problem that post-processing is troublesome, and in the scrubber cleaning method, the anhydrous ruthenium chloride produced by the dry method is poorly soluble in acids and alkalis, so a large amount of cleaning solution must be filtered, and the cleaning solution In addition to problems such as the need to recover a small amount of ruthenium chloride that had dissolved into it, it was necessary to provide a chlorine gas drying process in order to reuse the chlorine gas.

(発明の目的) 本発明は叙上の事情に鑑みなされたもので、その目的は
ルテニウム酸化物と金属酸化物(ガラス)との混合物の
被覆をした、基体金属酸化物(ルテニウム抵抗体)より
ルテニウムを簡便かつ効率良く回収する方法を提供する
ことにある。
(Object of the Invention) The present invention was made in view of the above-mentioned circumstances, and its purpose is to provide a base metal oxide (ruthenium resistor) coated with a mixture of ruthenium oxide and metal oxide (glass). An object of the present invention is to provide a method for simply and efficiently recovering ruthenium.

(発明の構成) 本発明は、ルテニウムを回収する方法において、ルテニ
ウム酸化物と金属酸化物(ガラス)との混合物を被覆し
た基体金属酸化物(ルテニウム抵抗体)をカーボンの存
在下で加熱しながら塩素ガスを流すか、又は加熱しなが
ら塩素と還元性ガスとの混合ガスを流すことによりルテ
ニウム酸化物と金属酸化物(ガラス)を塩化物にして揮
発させる。
(Structure of the Invention) The present invention provides a method for recovering ruthenium, in which a base metal oxide (ruthenium resistor) coated with a mixture of ruthenium oxide and a metal oxide (glass) is heated in the presence of carbon. Ruthenium oxide and metal oxide (glass) are converted into chloride and volatilized by flowing chlorine gas or flowing a mixed gas of chlorine and reducing gas while heating.

ルテニウム抵抗体に使用される基体金属酸化物はα−ア
ルミナ、ムライト、コージェライト等の緻密で表面の平
滑なものが使用され塩化物化反応を起こしにくいもので
あり、塩化物となって移動しない。
The base metal oxide used in the ruthenium resistor is a dense and smooth surface material such as α-alumina, mullite, cordierite, etc., which is difficult to cause a chloride reaction and does not migrate as chloride.

反応部の温度は300℃以上が好ましい。The temperature of the reaction section is preferably 300°C or higher.

これはこの温度以下になるとルテニウム酸化物と金属酸
化物(ガラス)との混合物の被覆の塩化物化ならびにル
テニウム塩化物の揮発が良好に行えなくなる為である。
This is because, below this temperature, the coating of the mixture of ruthenium oxide and metal oxide (glass) cannot be converted into chloride and the ruthenium chloride cannot be evaporated well.

又、1200℃よりも高い温度ではルテニウム塩化物が
金属ルテニウムと塩素とに解離してしまい揮発効率が大
きく低下する。
Further, at a temperature higher than 1200° C., ruthenium chloride dissociates into metal ruthenium and chlorine, resulting in a significant decrease in volatilization efficiency.

反応はカーボンの流動した状態で行う事がより好ましい
It is more preferable to carry out the reaction in a state where carbon is fluid.

これはルテニウム酸化物と金属酸化物(ガラス)との混
合物の被覆の塩化物化反応がこの被覆とカーボンと塩素
ガスの接触部で行われる為、カーボンを流動した状態に
することで全面にカーボンが接触するため反応が良好に
進行する。
This is because the chloride reaction of the coating of a mixture of ruthenium oxide and metal oxide (glass) takes place at the contact point between this coating, carbon, and chlorine gas, so by keeping the carbon in a fluidized state, carbon is formed over the entire surface. Because of the contact, the reaction progresses well.

また塩素と還元性ガスとの混合ガスでも全面、反応が良
好に進行する。揮発してくるルテニウム塩化物と金属酸
化物(ガラス)の塩化物は、塩化物の錯塩形成剤によっ
て捕集される。
Furthermore, the reaction proceeds favorably across the entire surface even with a mixed gas of chlorine and reducing gas. The volatilized ruthenium chloride and metal oxide (glass) chloride are collected by a chloride complex forming agent.

塩化物の錯塩形成剤を用いる理由は、塩化物は、塩素雰
囲気中で変質がないことと、錯塩を形成することにより
ルテニウム塩化物の捕集効率は他のものと比べ飛躍的に
良いものとなる。
The reason for using a chloride complex salt forming agent is that chloride does not deteriorate in a chlorine atmosphere, and that by forming a complex salt, the collection efficiency of ruthenium chloride is dramatically better than other agents. Become.

又、これにより形成されたルテニウム塩化物錯塩は、水
溶性であるという副次的効果も持っている。
The ruthenium chloride complex salt thus formed also has the secondary effect of being water-soluble.

なお塩化物の錯塩形成剤の代表的なものは以下の通りで
ある。
Note that typical chloride complex salt forming agents are as follows.

塩化ナトリウム  (NaC/)  融点 800”C
塩化カリウム    (KCj)    //  77
6℃塩化カルシウム  (CalJ、)   //  
772℃塩化マグネシウム (、Mg1Jz)   ”
  712℃塩化バリウム   (BaCZz)  〃
962℃塩化ストロンチウム(SrlJz)   ” 
 873℃(実施例1) α−アルミナのセラミック基板に酸化ルテニウム(Ru
ng)と鉛ガラスの混合物を被覆した基板(Ru (0
,64wt%))500g、カーボン粉末1 kglを
図に示す如く塩化物化容器4中に入れ、電気炉2により
塩化物化容器4を900℃に加熱し、塩素ガスを塩素ガ
ス導入管3から5ffi/min流ずことにより、カー
ボンを流動させ、ルテニウム酸化物および金属酸化物(
ガラス)を塩化物にして揮発させ、それを塩化物の錯塩
形成剤層5に充填した塩化バリウム(BaCfz)によ
り捕捉した。
Sodium chloride (NaC/) Melting point 800"C
Potassium chloride (KCj) // 77
6℃ Calcium chloride (CalJ,) //
772℃ Magnesium chloride (, Mg1Jz)
712℃ Barium chloride (BaCZz)
962℃ Strontium Chloride (SrlJz)”
873°C (Example 1) Ruthenium oxide (Ru
ng) and a substrate coated with a mixture of lead glass (Ru (0
, 64wt%)) and 1 kgl of carbon powder were placed in the chloride container 4 as shown in the figure, the chloride container 4 was heated to 900°C by the electric furnace 2, and chlorine gas was introduced from the chlorine gas introduction pipe 3 at 5ffi/ ruthenium oxide and metal oxide (
(glass) was converted into chloride and volatilized, which was captured by barium chloride (BaCfz) filled in the chloride complex forming agent layer 5.

これを3時間続けた後、塩化バリウムを取り出し水で溶
解し水素化ホウ素ナトリウムで還元し、ルテニウムを回
収したところ回収率は93%であった。
After this continued for 3 hours, barium chloride was taken out, dissolved in water, and reduced with sodium borohydride to recover ruthenium, with a recovery rate of 93%.

(実施例2) コージェライトのセラミック(円筒状)に酸化ルテニウ
ム(Rung)と鉛ガラスの混合物を被覆したルテニウ
ム抵抗体(Ru (0,76wt%))500gを6N
塩酸により端部の金属を除去し、残ったセラミック部と
カーボン粉末700g、1を図に示す如く塩化物化容器
4中に入れ、電気炉2により塩化物化容器4を850℃
に加熱し、塩素ガスを塩素ガス導入管3から5f/mi
n流すことにより、カーボンを流動させ、ルテニウム酸
化物および金属酸化物(ガラス)を塩化物にして揮発さ
せ、それを塩化物の錯塩形成剤層5に充填した塩化カリ
ウム(KCf)により捕捉した。
(Example 2) 500 g of a ruthenium resistor (Ru (0.76 wt%)) made of cordierite ceramic (cylindrical) coated with a mixture of ruthenium oxide (Rung) and lead glass was 6N
The metal at the end was removed with hydrochloric acid, and the remaining ceramic part and 700 g of carbon powder 1 were placed in a chloride container 4 as shown in the figure, and the chloride container 4 was heated to 850°C in an electric furnace 2.
5 f/mi from the chlorine gas introduction pipe 3.
By flowing carbon, the ruthenium oxide and metal oxide (glass) were converted into chloride and volatilized, which was captured by potassium chloride (KCf) filled in the chloride complex forming agent layer 5.

これを3時間続けた後、塩化カリウムを取り出し水で溶
解し水素化ホウ素ナトリウムで還元し、ルテニウムを回
収したところ回収率は91%であった。
After continuing this for 3 hours, potassium chloride was taken out, dissolved in water, and reduced with sodium borohydride to recover ruthenium, with a recovery rate of 91%.

(実施例3) α−アルミナのセラミック基板に酸化ルテニウム(Ru
O□)と鉛ガラスの混合物を被覆した基板(Ru (0
,64wt%))500g、lを図に示す如く塩化物化
容器4中に入れ、電気炉2により塩化物化容器4を80
0℃に加熱し、塩素ガスと一酸化炭素 (20%)の混合ガスを導入管3から3ffi/min
流すことにより、ルテニウム酸化物および金属酸化物(
ガラス)を塩化物にして揮発させ、それを塩化物の錯塩
形成剤層5に充填した塩化ストロンチウム(SrC1z
)により捕捉した。
(Example 3) Ruthenium oxide (Ru) was applied to an α-alumina ceramic substrate.
A substrate coated with a mixture of lead glass (Ru (0
, 64wt%)) was placed in the chloride container 4 as shown in the figure, and the chloride container 4 was heated to 80% by weight using the electric furnace 2.
Heat to 0°C and feed a mixed gas of chlorine gas and carbon monoxide (20%) from the inlet pipe 3 at 3ffi/min.
By flowing, ruthenium oxide and metal oxide (
Strontium chloride (SrC1z
) was captured by

これを4時間続けた後、塩化ストロンチウムを取り出し
水で溶解し水素化ホウ素ナトリウムで還元し、ルテニウ
ムを回収したところ回収率は90%であった。
After this was continued for 4 hours, strontium chloride was taken out, dissolved in water, and reduced with sodium borohydride to recover ruthenium, with a recovery rate of 90%.

(従来例1) α−アルミナのセラミ・レフ基板に酸化ルテニウム(R
uO□)と鉛ガラスの混合物を被覆した基板(Ru (
0,64wt%))500gを6N塩酸溶液21に2昼
夜浸した。
(Conventional example 1) Ruthenium oxide (R
A substrate coated with a mixture of uO□) and lead glass (Ru(
0.64 wt%))) was immersed in 6N hydrochloric acid solution 21 for two days and nights.

この塩酸を取り出し分析したところ、ルテニウム濃度は
25.3ppmでありほとんどルテニウムは溶は出さな
かった。
When this hydrochloric acid was taken out and analyzed, the ruthenium concentration was 25.3 ppm, and almost no ruthenium was dissolved.

(従来例2) α−アルミナのセラミック基板に酸化ルテニウム(Ru
O□)と鉛ガラスの混合物を被覆した基板(Ru (0
,64wt%)3500gを12%水酸化ナトリウム溶
液(NaOH)−15%次亜塩素酸ナトリウム溶液(N
aCI!、O)1 : 6の溶液2.11で8時間浸出
した。
(Conventional Example 2) Ruthenium oxide (Ru
A substrate coated with a mixture of lead glass (Ru (0
, 64 wt%) was added to 12% sodium hydroxide solution (NaOH) - 15% sodium hypochlorite solution (N
aCI! , O) 1:6 solution 2.11 for 8 hours.

その後この液を取り出し分析したところルテニウムは未
検出であった。
When this liquid was then taken out and analyzed, ruthenium was not detected.

(発明の効果) 以上詳述のように本発明によれば従来に比し、効率良く
ルテニウムを分離回収でき、経済的にしかも短時間で回
収することができるという効果がある。
(Effects of the Invention) As described in detail above, the present invention has the effect that ruthenium can be separated and recovered more efficiently than in the past, and can be recovered economically and in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の回収方法を示す概略図である。 出願人  田中貴金属工業株式会社 The figure is a schematic diagram showing the recovery method of the present invention. Applicant: Tanaka Kikinzoku Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】 1、ルテニウム酸化物と金属酸化物(ガラス)との混合
物を被覆した金属酸化物の回収物を、カーボンの存在下
で、加熱しながら塩素ガスを流すか、又は加熱しながら
塩素と還元性ガスの混合ガスを流すことにより、ルテニ
ウム酸化物と金属酸化物(ガラス)を塩化物にして揮発
分離することを特徴とするルテニウム抵抗体からルテニ
ウムを回収する方法。2、揮発したルテニウム塩化物を
塩化物の錯塩形成剤で捕集することを特徴とする請求項
1記載のルテニウム抵抗体からルテニウムを回収する方
法。 3、ルテニウム酸化物と金属酸化物(ガラス)を塩化物
にする反応をカーボンの流動した状態で行うことを特徴
とする請求項1記載のルテニウム抵抗体からルテニウム
を回収する方法。 4、加熱温度が300〜1200℃であることを特徴と
する請求項1乃至3に記載のルテニウム抵抗体からルテ
ニウムを回収する方法。 5、錯塩形成剤の温度が、その融点以下であることを特
徴とする請求項2乃至4に記載のルテニウム抵抗体から
ルテニウムを回収する方法。
[Claims] 1. A recovered metal oxide coated with a mixture of ruthenium oxide and metal oxide (glass) is heated in the presence of carbon while flowing chlorine gas or heated. A method for recovering ruthenium from a ruthenium resistor, characterized in that ruthenium oxide and metal oxide (glass) are converted into chloride and separated by volatilization by flowing a mixed gas of chlorine and reducing gas. 2. The method for recovering ruthenium from a ruthenium resistor according to claim 1, characterized in that the volatilized ruthenium chloride is collected with a chloride complex salt forming agent. 3. The method for recovering ruthenium from a ruthenium resistor according to claim 1, characterized in that the reaction of converting ruthenium oxide and metal oxide (glass) into chlorides is carried out in a state where carbon is fluid. 4. A method for recovering ruthenium from a ruthenium resistor according to any one of claims 1 to 3, characterized in that the heating temperature is 300 to 1200°C. 5. The method for recovering ruthenium from a ruthenium resistor according to any one of claims 2 to 4, wherein the temperature of the complex salt forming agent is below its melting point.
JP5030488A 1988-03-03 1988-03-03 Method for recovering ruthenium from ruthenium resistant body Pending JPH01225730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5030488A JPH01225730A (en) 1988-03-03 1988-03-03 Method for recovering ruthenium from ruthenium resistant body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5030488A JPH01225730A (en) 1988-03-03 1988-03-03 Method for recovering ruthenium from ruthenium resistant body

Publications (1)

Publication Number Publication Date
JPH01225730A true JPH01225730A (en) 1989-09-08

Family

ID=12855156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5030488A Pending JPH01225730A (en) 1988-03-03 1988-03-03 Method for recovering ruthenium from ruthenium resistant body

Country Status (1)

Country Link
JP (1) JPH01225730A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215999A (en) * 2009-03-19 2010-09-30 Eco-System Recycling Co Ltd Method for concentrating ruthenium and method for recovering the same
JP2010222595A (en) * 2009-03-19 2010-10-07 Eco-System Recycling Co Ltd Method for recovering ruthenium
WO2012111542A1 (en) 2011-02-18 2012-08-23 三菱瓦斯化学株式会社 Method for collection of ruthenium or ruthenium compound
CN107419103A (en) * 2017-07-21 2017-12-01 浙江师范大学 A kind of recycling processing method of discarded piezo-resistance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215999A (en) * 2009-03-19 2010-09-30 Eco-System Recycling Co Ltd Method for concentrating ruthenium and method for recovering the same
JP2010222595A (en) * 2009-03-19 2010-10-07 Eco-System Recycling Co Ltd Method for recovering ruthenium
WO2012111542A1 (en) 2011-02-18 2012-08-23 三菱瓦斯化学株式会社 Method for collection of ruthenium or ruthenium compound
KR20140007437A (en) 2011-02-18 2014-01-17 미츠비시 가스 가가쿠 가부시키가이샤 Method for collection of ruthenium or ruthenium compound
US8940257B2 (en) 2011-02-18 2015-01-27 Mitsubishi Gas Chemical Company, Inc. Method for collection of ruthenium or ruthenium compound
CN107419103A (en) * 2017-07-21 2017-12-01 浙江师范大学 A kind of recycling processing method of discarded piezo-resistance

Similar Documents

Publication Publication Date Title
JP6523346B2 (en) Method of recovering platinum group metals from used catalysts
TWI388670B (en) Separation of rhodium with platinum and / or palladium
JPH01225730A (en) Method for recovering ruthenium from ruthenium resistant body
JP3943564B2 (en) Method for chlorinating Se-containing materials
JPH0438826B2 (en)
JPS6261538B2 (en)
JPS6254849B2 (en)
JPH01234531A (en) Method of recovering platinum group metal
JPH0765121B2 (en) How to reduce precious metals
TWI621714B (en) Valuable metal recycling method
JPH01142037A (en) Method for recovering platinum metal
JPH01142036A (en) Method for recovering platinum metal
JPH01142038A (en) Method for recovering au
JPH0524207B2 (en)
JPH01142040A (en) Method for recovering ru
JPS62256929A (en) Method for recovering platinum group element from spent catalyst
JPH04304328A (en) Method for segregating noble metal
BR112019008429B1 (en) METHOD FOR RECOVERY OF PLATINUM GROUP METALS FROM USED CATALYST
JP6908845B2 (en) Manufacturing method of gas generator for detecting fluorine-containing compound gas
JPH01234532A (en) Method for recovering platinum group metal
JPH0657610B2 (en) How to recover Ru
JP2022123879A (en) Method for recovering platinum group metal
NO134331B (en)
JPH0822748B2 (en) Method for producing rhodium chloride
JPH01230729A (en) Method for recovering of ruthenium from ruthenium resistor