JPH01222409A - Manufacture of needle-like magnetic iron-oxide particle and powder - Google Patents

Manufacture of needle-like magnetic iron-oxide particle and powder

Info

Publication number
JPH01222409A
JPH01222409A JP63048386A JP4838688A JPH01222409A JP H01222409 A JPH01222409 A JP H01222409A JP 63048386 A JP63048386 A JP 63048386A JP 4838688 A JP4838688 A JP 4838688A JP H01222409 A JPH01222409 A JP H01222409A
Authority
JP
Japan
Prior art keywords
particles
needle
grains
aqueous suspension
hematite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63048386A
Other languages
Japanese (ja)
Inventor
Harumi Kurokawa
晴己 黒川
Tatsuya Nakamura
龍哉 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP63048386A priority Critical patent/JPH01222409A/en
Publication of JPH01222409A publication Critical patent/JPH01222409A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain the title powder, having no empty holes at all on the surface and inside particles, which are formed in high density substantially, also having symmetrical particles and no dendrite particles mingled therein by a method wherein the needle-like hematite particles of symmetrical particle size having no dendrite grains mingled therein, are directly grown from an aqueous solution. CONSTITUTION:The aqueous suspension of pH8 or above is formed by adding an alkaline aqueous solution into the aqueous suspension containing beta-FeOOH, then after the phosphorus compound of 0.1-2.0atomic% in P-conversion against the Fe (III) contained in the suspension is added to the aqueous suspension of pH7 or below containing beta-FeOOH, obtained by adding hydrochloric acid to the aqueous suspension, a hydrothermal treatment is conducted thereon at the temperature range of 100-130 deg.C, and needle-like hematite grains are grown. The needle-like magnetic grains are obtained by conducting a reduction by heating on the needle-like hematite grains in a reducing gas atmosphere, or the needle-like maghemite grains are formed by conducting an oxidizing work. As a result, no empty holes are formed inside the grains, the grains are formed in high density substantially, and symmetrical grain size and the needle-like hematite grains having no mingled dendrite particles can be grown directly from an aqueous solution.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、高密度記録用磁性酸化鉄粒子粉末として好適
である粒子表面並びに粒子内部に空孔が存在しておらず
、実質的に高密度であって、且つ、粒度が均斉で樹枝状
粒子が混在していない計状磁性酸化鉄粒子粉末の製造法
に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention has no pores on the surface or inside of the particles, which are suitable as magnetic iron oxide particles for high-density recording. The present invention relates to a method for producing scale-shaped magnetic iron oxide particles having a uniform density and uniform particle size and not containing dendritic particles.

〔従来の技術〕[Conventional technology]

近年、磁気記録再生用機器の長時間記録化、小型軽量化
が進むにつれて、磁気記録媒体の高性能化、高密度記録
化の要求が高まってきている。
BACKGROUND ART In recent years, as magnetic recording and reproducing equipment has become longer recording time and has become smaller and lighter, demands for higher performance and higher density recording of magnetic recording media have been increasing.

磁気記録媒体の高性能化、高記録密度化の為には、残留
磁束密度Brの向上が必要である。磁気記録媒体の残留
磁束密度Brは、磁性酸化鉄粒子粉末のビークル中での
分散性、塗膜中での配向性及び充填性に依存している。
In order to improve the performance and recording density of magnetic recording media, it is necessary to improve the residual magnetic flux density Br. The residual magnetic flux density Br of the magnetic recording medium depends on the dispersibility of the magnetic iron oxide particles in the vehicle, the orientation and filling properties in the coating film.

そして、ビークル中での分散性、塗膜中での配向性及び
充填性を向上させるためには、ビークル中に分散させる
磁性酸化鉄粒子粉末の粒子表面並びに粒子内部に空孔が
存在しておらず実質的に高密度であって、且つ、粒度が
均斉で樹枝状粒子が混在していない粒子が要求される。
In order to improve the dispersibility in the vehicle, the orientation and filling properties in the coating film, it is necessary to prevent the presence of pores on the surface and inside of the magnetic iron oxide particles to be dispersed in the vehicle. Particles are required to have substantially high density, uniform particle size, and no dendritic particles.

現在、磁気記録用磁性粒子粉末として主に針状晶マグネ
タイト粒子粉末または、針状晶マグヘマイト粒子粉末が
用いられている。これらは一般に、第一鉄塩水溶液とア
ルカリとを反応させて得られる水酸化第一鉄粒子を含む
pHl1以上のコロイド水溶液を空気酸化しく通常、「
湿式反応」と呼ばれている。)で得られる針状α−Fe
ooH粒子を、空気中300°C付近で加熱、脱水して
ヘマタイト粒子となし、更に、水素等還元性ガス中30
0〜400℃で還元して針状マグネタイト粒子とし、ま
たは次いでこれを、空気中200〜300°Cで酸化し
て針状マグヘマイト粒子とすることにより得られている
Currently, acicular magnetite particles or acicular maghemite particles are mainly used as magnetic particles for magnetic recording. These methods generally involve air oxidation of a colloidal aqueous solution containing ferrous hydroxide particles obtained by reacting a ferrous salt aqueous solution with an alkali and having a pH of 1 or more.
It is called "wet reaction". ) Acicular α-Fe obtained by
The ooH particles are heated and dehydrated in air at around 300°C to form hematite particles, and then heated in a reducing gas such as hydrogen at 30°C.
It is obtained by reducing it to acicular magnetite particles at 0 to 400°C, or by oxidizing it in air at 200 to 300°C to form acicular maghemite particles.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

粒子表面並びに粒子内部に空孔が存在しておらず実質的
に高密度であって、且つ、粒度が均斉で樹枝状粒子が混
在していない磁性酸化鉄粒子粉末は、現在量も要求され
ているところであるが、出発原料である針状ゲータイト
粒子を製造する前述の公知方法により得られた粒子粉末
は、樹枝状粒子が混在しており、また粒度から言えば、
均斉な粒度を有した粒子であるとは言い難く、咳針状ゲ
ータイト粒子を出発原料として用い、還元、酸化して得
られた磁性酸化鉄粒子粉末もまた、樹枝状粒子が混在し
ており、また粒度から言えば、均斉な粒度を有した粒子
であるとは言い難いものである。
There is a current demand for magnetic iron oxide particle powder that has no pores on the particle surface or inside the particle, has a substantially high density, has a uniform particle size, and does not contain dendritic particles. However, the particle powder obtained by the above-mentioned known method for producing acicular goethite particles as a starting material contains dendritic particles, and in terms of particle size,
It is difficult to say that the particles have a uniform particle size, and the magnetic iron oxide particles obtained by reducing and oxidizing needle-like goethite particles as a starting material also contain dendritic particles. Furthermore, in terms of particle size, it is difficult to say that the particles have a uniform particle size.

また、このゲータイト粒子粉末を出発原料として常法に
より磁性酸化鉄粒子粉末を得た場合、ゲータイト粒子を
加熱脱水して得られるヘマタイト粒子は脱水により、粒
子表面並びに粒子内部に多数の空孔を生じ、次いで、該
ヘマタイト粒子を還元、又は、必要により更に酸化して
得られるマグネイト粒子又はマグヘマイト粒子もまた粒
子表面並びに粒子内部に多数の空孔が分布していること
が観察される。
In addition, when magnetic iron oxide particles are obtained using the goethite particles as a starting material by a conventional method, the hematite particles obtained by heating and dehydrating the goethite particles have many pores on the particle surface and inside the particles due to dehydration. Then, it is observed that the magnetite particles or maghemite particles obtained by reducing or further oxidizing the hematite particles also have a large number of pores distributed on the particle surface and inside the particle.

このように、粒子表面並びに粒子内部に多数の空孔を有
する磁性酸化鉄粒子粉末は、ビークル中での分散が悪い
ものである。
As described above, magnetic iron oxide particles having a large number of pores on the particle surface and inside the particles have poor dispersion in a vehicle.

磁性酸化鉄粒子の粒子表面並びに粒子内部に発生した空
孔をなくする試みは、例えば特公昭38−26156号
公報及び粉体および粉末冶金協会昭和43年度春季大会
講演概要集2−6に記載の通り、従来からなされてはい
るが、いずれの方法も、粒子表面並びに粒子内部に発生
した空孔をなくする為に高温で加熱する必要があり、そ
の結果、粒子及び粒子相互間で焼結が生起し、これを還
元、酸化して得られた磁性酸化鉄粒子粉末は、磁性塗料
を製造スル際ノビ−クル中への分散が悪くなるという欠
点があった。
Attempts to eliminate pores generated on the surface and inside of magnetic iron oxide particles have been made, for example, as described in Japanese Patent Publication No. 38-26156 and 2-6 of the Abstracts of Presentations at the 1960 Spring Conference of the Powder and Powder Metallurgy Association. Both methods require heating at high temperatures to eliminate pores generated on the particle surface and inside the particles, and as a result, sintering occurs between the particles and between the particles. The magnetic iron oxide particles obtained by reducing and oxidizing the magnetic iron oxide particles have a disadvantage in that they are difficult to disperse into the novehicle during production of the magnetic paint.

一方、磁性酸化鉄粒子の粒子表面並びに粒子内部に一旦
発生した空孔をなくする方法ではなく、粒子表面並びに
粒子内部に空孔のない粒子を出発原料として磁性酸化鉄
粒子を得る方法も試みられている。
On the other hand, instead of the method of eliminating the pores once generated on the particle surface and inside of the magnetic iron oxide particles, a method of obtaining magnetic iron oxide particles using particles without pores on the particle surface and inside the particles as a starting material has also been attempted. ing.

この方法は、例えば、特公昭55−22416号公報、
特公昭55−4694号公報、特開昭57−92527
号公報及び特開昭51−8193号公報に記載のように
水溶液中から直接針状晶へマクイト粒子を生成させ、該
針状晶へマクイト粒子を出発原料として還元、酸化する
ことにより針状晶磁性酸化鉄粒子を得る方法である。
This method is disclosed in, for example, Japanese Patent Publication No. 55-22416,
Japanese Patent Publication No. 55-4694, Japanese Patent Publication No. 57-92527
As described in Japanese Patent Application Publication No. 51-8193, maquito particles are directly formed into needle-like crystals from an aqueous solution, and the maquito particles are reduced and oxidized to the needle-like crystals as a starting material to form the needle-like crystals. This is a method for obtaining magnetic iron oxide particles.

即ち、粒子表面並びに粒子内部の空孔は、前述した通り
、針状晶ゲータイト粒子を加熱脱水して針状晶へマクイ
ト粒子とする際の脱水により発生するものであるから、
水溶液中から直接針状晶ヘマタイトを生成させれば、脱
水工程を省略することができ、従って、粒子表面並びに
粒子内部に空孔の全くない針状晶へマクイト粒子を得る
ことができ、該へマクイト粒子を出発原料として還元、
酸化して得られた針状晶磁性酸化鉄粒子もまた粒子表面
並びに粒子内部に空孔が全くないものとなる。
That is, as mentioned above, the pores on the particle surface and inside the particles are generated by dehydration when acicular goethite particles are heated and dehydrated to convert them into acicular crystals into maquito particles.
If acicular hematite crystals are directly generated from an aqueous solution, the dehydration step can be omitted, and therefore maquito particles can be obtained as acicular crystals with no pores on the particle surface or inside the particles. Reducing maquito particles as a starting material,
The acicular crystal magnetic iron oxide particles obtained by oxidation also have no pores on the particle surface or inside the particle.

上述したところから明らかな通り、粒子表面並びに粒子
内部に空孔が全く存在しておらず実質的に高密度であっ
て、且つ、粒子が均斉で樹枝状粒子が混在していない計
状磁性酸化鉄粒子粉末を得る為には、粒子が均斉で樹枝
状粒子が混在していない針状ヘマタイト粒子を水溶液中
から直接生成させる方法が強(要望されているのである
As is clear from the above, there are no pores on the particle surface or inside the particle, and the particle is substantially dense, and the particle is uniform and does not contain dendritic particles. In order to obtain iron particle powder, there is a strong demand for a method in which acicular hematite particles, which are uniform and do not contain dendritic particles, are directly produced from an aqueous solution.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明者は、粒度が均斉で樹枝状粒子が混在していない
針状ヘマタイト粒子を水溶液中から直接生成させる方法
について種々検討を重ねた結果、本発明に到達したので
ある。
The present inventor has arrived at the present invention as a result of various studies on a method for directly producing acicular hematite particles having a uniform particle size and no dendritic particles mixed therein from an aqueous solution.

即ち、本発明は、β−Fe001を含む水懸濁液にアル
カリ性水溶液を添加してpH8以上の水性懸濁液とし、
次いで、該水性懸濁液に塩酸を添加して得られた前記β
−FeOOIIを含むp117以下の水性懸濁液に、当
該懸濁液中のFe(2)に対しP換算で0.1〜2,0
原子%のリン化合物を添加した後、]00〜130°C
の温度範囲で水熱処理することにより、針状ヘマタイト
粒子を生成させ、該針状ヘマタイト粒子を還元性ガス中
で加熱還元して針状マグネタイト粒子とするか、又は、
更に酸化して針状マグヘマイト粒子とすることよりなる
針状磁性酸化鉄粒子からなる磁性酸化鉄粒子粉末の製造
法である。
That is, the present invention adds an alkaline aqueous solution to an aqueous suspension containing β-Fe001 to form an aqueous suspension with a pH of 8 or more,
Next, the above β obtained by adding hydrochloric acid to the aqueous suspension
- In an aqueous suspension containing FeOOII with p117 or less, 0.1 to 2,0 in terms of P is added to Fe(2) in the suspension.
After adding atomic% of phosphorus compound]00-130°C
Acicular hematite particles are generated by hydrothermal treatment in a temperature range of
This is a method for producing magnetic iron oxide particle powder consisting of acicular magnetic iron oxide particles, which is further oxidized to form acicular maghemite particles.

〔作  用〕[For production]

先ず、本発明において最も重要な点は、β−FeOOH
含む水懸濁液にアルカリ性水溶液を添加してpH8以上
の水性懸濁液とし、次いで、該水性懸濁液に塩酸を添加
して得られた前記β−Fe0011を含むpl!7以下
の水性懸濁液に、当該懸濁液中のFe@に対しP換算で
0.1〜2.0原子%のリン化合物を添加した後、10
0〜130℃の温度範囲で水熱処理した場合には、粒子
内部に空孔が存在しておらず、実質的に高密度であって
、且つ、粒度が均斉で樹枝状粒子が混在していない針状
ヘマタイト粒子を水溶液中から直接生成させることがで
き、該針状ヘマタイト粒子を加熱還元して得られる針状
マグネタイト粒子及び必要により更に加熱酸化して得ら
れる針状マグヘマイト粒子もまた、出発原料である針状
へ7タイト粒子の粒子形状を保持継承していることによ
って、粒子内部に空孔が存在しておらず、実質的に高密
度であって、且つ、粒度が均斉で樹枝状粒子が混在して
いない針状粒子であるという事実である。
First, the most important point in the present invention is that β-FeOOH
An alkaline aqueous solution is added to an aqueous suspension containing the β-Fe0011 to obtain an aqueous suspension having a pH of 8 or more, and then hydrochloric acid is added to the aqueous suspension. After adding a phosphorus compound of 0.1 to 2.0 atom % in terms of P to Fe@ in the suspension to an aqueous suspension of 7 or less,
When hydrothermally treated at a temperature range of 0 to 130°C, there are no pores inside the particles, the particles are substantially dense, the particle size is uniform, and dendritic particles are not mixed. Acicular hematite particles can be produced directly from an aqueous solution, and acicular magnetite particles obtained by heating and reducing the acicular hematite particles and acicular maghemite particles obtained by further heating and oxidizing the acicular hematite particles if necessary can also be used as starting materials. By retaining and inheriting the particle shape of 7 tight particles to the needle-like shape, there are no pores inside the particles, and the particles are substantially high-density, uniform in particle size, and dendritic particles. This is the fact that they are acicular particles that are not mixed together.

本発明において針状ヘマタイト粒子が生成する理由につ
いて、本発明者は、後出の比較例に示す通り、リン化合
物を添加しない場合には、等方的なヘマタイト粒子が生
成することから、リン化合物が生成するヘマタイト粒子
の粒子形態に関与しているものと考えている。
As for the reason why acicular hematite particles are generated in the present invention, the present inventors believe that, as shown in the comparative example below, isotropic hematite particles are generated when a phosphorus compound is not added. We believe that this is related to the particle morphology of the hematite particles produced.

本発明においては、p118以との水性懸濁液をpH7
以下の水性懸濁液とする為に使用する酸として塩酸を使
用した場合には、ヘマタイト粒子を生成させることがで
きるが、塩酸以外の酸、例えば、硫酸、酢酸、燐酸等を
使用する場合にはヘマタイト粒子を生成させることがで
きない。
In the present invention, an aqueous suspension with pH 7 or higher is used.
When hydrochloric acid is used as the acid used to form the aqueous suspension described below, hematite particles can be generated, but when using acids other than hydrochloric acid, such as sulfuric acid, acetic acid, phosphoric acid, etc. cannot produce hematite particles.

次に、本発明実施にあたっての諸条件について述べる。Next, various conditions for implementing the present invention will be described.

本発明においては、鉄原料としてβ−FeOOHを使用
することが必要である。β−FeOO1lは、塩化第二
鉄水溶液を加熱処理して加水分解する方法、塩化第一鉄
水溶液に酸素含有ガスを通気して酸化反応を行う方法等
により得ることができ、不定形、針状、紡錘状等いかな
る粒子形態のものでも使用することができる。
In the present invention, it is necessary to use β-FeOOH as the iron raw material. β-FeOO1l can be obtained by a method of heating and hydrolyzing a ferric chloride aqueous solution, a method of conducting an oxidation reaction by passing an oxygen-containing gas through a ferrous chloride aqueous solution, etc. , spindle-shaped, etc. particles can be used.

本発明において、β−FeOOHを含む水懸濁液のpH
は高々6.0程度であり、当該水懸濁液にアルカリ性水
溶液を添加することによりpH8以上とする。
In the present invention, the pH of an aqueous suspension containing β-FeOOH
is about 6.0 at most, and the pH is adjusted to 8 or higher by adding an alkaline aqueous solution to the aqueous suspension.

本発明におけるアルカリ性水溶液としては、水酸化ナト
リウム、水酸化カリウム、アンモニア水等を使用するこ
とができる。アルカリ性水溶液添加後の水性懸濁液のp
Hが8以下の場合には、ヘマタイトとβ−Fe00Hの
混合物が生成する。
As the alkaline aqueous solution in the present invention, sodium hydroxide, potassium hydroxide, aqueous ammonia, etc. can be used. p of aqueous suspension after addition of alkaline aqueous solution
When H is 8 or less, a mixture of hematite and β-Fe00H is produced.

本発明において、pH8以上の水性懸濁液をρ117以
下の水性懸濁液にする為には、塩酸を使用することが必
要である。塩酸添加後の水性懸濁液のpHが7以上であ
る場合には、100〜130℃の温度領域においてはβ
−FeOO1lが安定して生成する為ヘマタイト粒子が
生成しない。
In the present invention, it is necessary to use hydrochloric acid in order to turn an aqueous suspension with a pH of 8 or more into an aqueous suspension with a pH of 117 or less. If the pH of the aqueous suspension after addition of hydrochloric acid is 7 or more, β
- Hematite particles are not generated because 1l of FeOO is generated stably.

本発明においては、β−Fe0011を含む水懸濁液の
濃度が1.0 mol/j!程度の高濃度であってもヘ
マタイト粒子を生成することが可能である。1.0 +
*ol/1以上の場合にもヘマタイト粒子は生成するが
、粒度が不均斉となる。
In the present invention, the concentration of the aqueous suspension containing β-Fe0011 is 1.0 mol/j! It is possible to produce hematite particles even at moderately high concentrations. 1.0 +
*Although hematite particles are generated when ol/1 or more, the particle size becomes asymmetric.

本発明におけるリン化合物としては、メタリン酸、次亜
リン酸、亜リン酸、正リン酸、ピロリン酸及びこれ等の
基環無機のリン化合物を用いることができる。
As the phosphorus compound in the present invention, metaphosphoric acid, hypophosphorous acid, phosphorous acid, orthophosphoric acid, pyrophosphoric acid, and cyclic inorganic phosphorus compounds such as these can be used.

リン化合物の添加量は、懸濁液中のFe@に対し、P換
算で0.1〜2.0原子%である。0.1原子%以下で
ある場合には、本発明の目的とする針状ヘマタイト粒子
を得ることができない。2.0原子%以上である場合に
も、針状ヘマタイトが生成するが、反応に長時間を要す
る。
The amount of the phosphorus compound added is 0.1 to 2.0 at% in terms of P based on Fe@ in the suspension. If it is less than 0.1 atomic %, the acicular hematite particles that are the object of the present invention cannot be obtained. If the content is 2.0 at % or more, acicular hematite is produced, but the reaction takes a long time.

本発明における反応温度は、100〜130℃である。The reaction temperature in the present invention is 100 to 130°C.

100℃以下である場合には、β−Fe00Hの溶解が
十分に進行しない為ヘマタイト粒子が生成しない。13
0°C以上である場合にもヘマタイト粒子は生成するが
、高圧容器等特殊な装置を必要とする為、工業的、経済
的ではない。
If the temperature is 100° C. or lower, the dissolution of β-Fe00H does not proceed sufficiently, so that hematite particles are not generated. 13
Although hematite particles are generated when the temperature is 0°C or higher, this is not industrially or economically viable because special equipment such as a high-pressure container is required.

本発明における還元性ガス中における加熱還元処理及び
酸化処理は常法により行うことができる。
The heating reduction treatment and oxidation treatment in a reducing gas in the present invention can be performed by conventional methods.

また、出発原料であるヘマタイト粒子は、加熱処理に先
立って通常行われるSt、 AI、 P化合物等の焼結
防止効果を有する物質によってあらかじめ被覆処理して
おくことにより、より分散性の優れた磁性酸化鉄粒子粉
末を得ることができる。
In addition, the hematite particles, which are the starting material, are coated in advance with a substance that has a sintering prevention effect, such as St, AI, or P compounds, which is usually carried out prior to heat treatment, to create magnetic properties with better dispersibility. Iron oxide particle powder can be obtained.

〔実施例〕〔Example〕

次に、実施例並びに比較例により本発明を説明する。 Next, the present invention will be explained with reference to Examples and Comparative Examples.

尚、以下の実施例における粒子の平均径は、電子顕微鏡
写真から測定した数値の平均値であり、比表面積はBE
T法により測定した値である。
In addition, the average diameter of particles in the following examples is the average value of numerical values measured from electron micrographs, and the specific surface area is BE
This is a value measured by the T method.

実施例1 O,4mol/j!のβ−Fe008粒子(比表面積5
Flrrf/g)を含むpH5,5の水懸濁液500t
a IlにNaOH水溶液を添加してpH9,0の水性
懸濁液を得た。
Example 1 O,4mol/j! β-Fe008 particles (specific surface area 5
500 t of pH 5.5 water suspension containing Flrrf/g)
a NaOH aqueous solution was added to Il to obtain an aqueous suspension with pH 9.0.

ト記水性懸濁液にIC!水溶液を添加して得られたβ−
Fe008粒子を含むpH2,0の水性懸濁液に、正リ
ンPa O,20g (Fe@に対しP換算で1.0原
子%に該当する。)を添加した後、密閉容器中に入れ、
125°Cで15時間水熱処理して赤褐色沈澱を生成さ
せた。赤褐色沈澱を水洗、濾過、乾燥して得られた粒子
粉末は、図1に示すX線回折に示す通り、ヘマタイトで
あり、図2に示す電子顕微鏡写真(x 20.00G)
から明らかな通り、平均粒子径が0.8μ−である実質
的に高密度な針状粒子であり、粒度が均斉で樹枝状粒子
が混在しておらず、且つ、個々の粒子が独立した粒子で
あった。
IC for aqueous suspension! β- obtained by adding aqueous solution
After adding 20 g of orthophosphorus Pa O (corresponding to 1.0 atomic % in terms of P to Fe@) to an aqueous suspension containing Fe008 particles at pH 2.0, it was placed in a closed container,
Hydrothermal treatment at 125°C for 15 hours produced a reddish brown precipitate. The particles obtained by washing the reddish brown precipitate with water, filtration, and drying were hematite as shown in the X-ray diffraction shown in Figure 1, and the electron micrograph (x 20.00G) shown in Figure 2.
As is clear from the above, the particles are substantially dense acicular particles with an average particle size of 0.8 μ-, the particle size is uniform, dendritic particles are not mixed, and each particle is independent. Met.

上記へ、マタイト粒子粉末70gをII!、のレトルト
還元容器中に投入し、駆動回転させなから1!□ガスを
毎分1iの割合で通気し、還元温度350°Cで還元し
てマグネタイト粒子粉末を得た。得られたマグネタイト
粒子粉末は、電子顕微鏡観察の結果、平均粒子径が0.
7μmである実質的に高密度な針状粒子であり、粒度が
均斉で樹枝状粒子が混在しておらず、且つ、個々の粒子
が独立した粒子であった。また、磁気測定の結果、保磁
力Hcは3040e、飽和磁化σ3は89.2 emu
/gであった。
To the above, add 70g of matite particle powder II! , put it in the retort reduction container and drive it to rotate.1! □Gas was passed through the reactor at a rate of 1 i per minute, and the material was reduced at a reduction temperature of 350°C to obtain magnetite particle powder. As a result of electron microscopic observation, the obtained magnetite particles had an average particle diameter of 0.
The particles were acicular particles with a substantially high density of 7 μm, the particle size was uniform, dendritic particles were not mixed, and each particle was an independent particle. In addition, as a result of magnetic measurement, the coercive force Hc is 3040e, and the saturation magnetization σ3 is 89.2 emu.
/g.

と記マグネタイト粒子粉末70gを空気中300°Cで
60分間酸化してマグヘマイト粒子粉末を得た。
Magnetite particles (70 g) were oxidized in air at 300° C. for 60 minutes to obtain maghemite particles.

得られたマグヘマイト粒子粉末は、電子顕微鏡観察の結
果、平均粒子径0.7μmである実質的に高密度な針状
粒子であり、粒度が均斉で樹枝状粒子が混在しておらず
、且つ、個々の粒子が独立した粒子であった。また、磁
気測定の結果、保磁力+1cは2950e、飽和磁化σ
sは82.3 emu/gであった。
As a result of electron microscopy observation, the obtained maghemite particles were found to be substantially high-density acicular particles with an average particle diameter of 0.7 μm, the particle size was uniform, no dendritic particles were mixed, and Each particle was an independent particle. Also, as a result of magnetic measurement, the coercive force +1c is 2950e, and the saturation magnetization σ
s was 82.3 emu/g.

実施例2 0.5 mol/j!のβ−Fe008粒子(比表面積
+1On?/g)を含むpos、oの水懸濁液500m
 lにNIl、OH水溶液を添加してpH8,5の水性
懸濁液を得た。
Example 2 0.5 mol/j! 500 m of water suspension of pos, o containing β-Fe008 particles (specific surface area +1 On?/g)
An aqueous solution of NIl and OH was added to the solution to obtain an aqueous suspension having a pH of 8.5.

ト記水性懸濁液にHCI水溶液を添加して得られたβ−
Fe0011粒子を含むput、sの水性懸濁液に、正
リン酸0.1258(Fe @に対しP換算で0.5原
子%に該当する。)を添加した後、密閉容器中に入れ、
125℃で15時間水熱処理して赤褐色沈澱を生成させ
た。赤褐色沈澱を水洗、濾過、乾燥して得られた粒子粉
末は、X線回折の結果ヘマタイトであり、図5に示す電
子顕微鏡写真(x 20.000)から明らかな通り、
平均粒子径が0.5μ−である実質的に高密度な針状粒
子であり、粒度が均斉で樹枝状粒子が混在しておらず、
且つ、個々の粒子が独立した粒子であった。
β- obtained by adding HCI aqueous solution to the above aqueous suspension
After adding 0.1258 atomic % of orthophosphoric acid (corresponding to 0.5 atomic % in terms of P to Fe@) to an aqueous suspension of put, s containing Fe0011 particles, put it in a closed container,
Hydrothermal treatment at 125° C. for 15 hours produced a reddish brown precipitate. The particles obtained by washing the reddish-brown precipitate with water, filtering, and drying were found to be hematite as a result of X-ray diffraction, as is clear from the electron micrograph (x 20,000) shown in Figure 5.
Substantially dense acicular particles with an average particle diameter of 0.5 μ-, uniform particle size, and no dendritic particles mixed.
Moreover, each particle was an independent particle.

上記ヘマタイト粒子粉末70gを11のレトルト還元容
器中に投入し、駆動回転させなからH!ガスを毎分11
の割合で通気し、還元温度350℃で還元してマグネタ
イト粒子粉末を得た。得られたマグネタイト粒子粉末は
、電子顕微鏡観察の結果、平均粒子径が0.4μmであ
る実質的に高密度な針状粒子であり、粒度が均斉で樹枝
状粒子が混在しておらず、且つ、個々の粒子が独立した
粒子であった。また、磁気測定の結果、保磁力Hcは2
550s、飽和磁化σSは88.8 emu/gであっ
た。
Put 70g of the above hematite particle powder into the retort reduction container No. 11, drive and rotate it, and then H! 11 gas per minute
The mixture was aerated at a rate of 350° C. and reduced at a reduction temperature of 350° C. to obtain magnetite particle powder. As a result of electron microscopy observation, the obtained magnetite particles were found to be substantially dense acicular particles with an average particle diameter of 0.4 μm, uniform particle size, no dendritic particles mixed, and , each particle was an independent particle. Also, as a result of magnetic measurement, the coercive force Hc is 2
550 s, the saturation magnetization σS was 88.8 emu/g.

ト記マグネタイト粒子粉末70gを空気中300°Cで
60分間酸化してマグヘマイト粒子粉末を得た。
Magnetite particles (70 g) were oxidized in air at 300° C. for 60 minutes to obtain maghemite particles.

得られたマグヘマイト粒子粉末は、電子顕微鏡観察の結
果、平均粒子径0.4μmである実質的に高密度な針状
粒子であり、粒度が均斉で樹枝状粒子が混在しておらず
、且つ、個々の粒子が独立した粒子であった。また、磁
気測定の結果、保磁力11cは2310e、 iii!
和磁化σsはflo、2 emu/gであった。
As a result of electron microscopic observation, the obtained maghemite particles were found to be substantially high-density acicular particles with an average particle size of 0.4 μm, the particle size was uniform, no dendritic particles were mixed, and, Each particle was an independent particle. Also, as a result of magnetic measurement, the coercive force 11c is 2310e, iii!
The sum magnetization σs was flo, 2 emu/g.

比較例1 正リン酸を添加しなかった以外は、実施例1と同様に水
熱処理して赤褐色沈澱を生成させた。
Comparative Example 1 A reddish-brown precipitate was produced by hydrothermal treatment in the same manner as in Example 1, except that orthophosphoric acid was not added.

赤褐色沈澱を水洗、濾過、乾燥して得られた粒子粉末は
、図4に示すX線回折及び図5に示す電子顕微鏡写真(
X20,000)から明らかな通り、平均粒径が0.3
μ−の等方的粒子であった。
The particles obtained by washing the reddish-brown precipitate with water, filtration, and drying showed the X-ray diffraction shown in Figure 4 and the electron micrograph shown in Figure 5 (
As is clear from X20,000), the average particle size is 0.3
They were μ-isotropic particles.

比較例2 0.2 mo1/ffiのβ−Fe0011粒子(比表
面積180 rrr/g)を含むpH,7の水懸濁液5
00s eをMail水溶液及びMCl水溶液を用いて
pH311整することなく、そのまま密閉容器中に入れ
、実施例1と同様に水熱処理して黄褐色沈澱を生成させ
た。
Comparative Example 2 Water suspension 5 at pH 7 containing 0.2 mo1/ffi β-Fe0011 particles (specific surface area 180 rrr/g)
00se was put into a sealed container as it was without adjusting the pH to 311 using a Mail aqueous solution and an MCl aqueous solution, and was hydrothermally treated in the same manner as in Example 1 to generate a yellow brown precipitate.

黄褐色沈澱を水洗、p遇、乾燥して得られた粒子粉末は
、X線回折の結果及び図6に示す電子顕微鏡写% (x
 20.00G)から明らかな通り、β−FeOOHの
ままであった。
The particles obtained by washing the yellowish brown precipitate with water, plating, and drying showed the results of X-ray diffraction and the electron micrograph shown in Figure 6 (x
20.00G), it remained β-FeOOH.

比較例3 NaO)l水溶液を添加してpH6,8の水性懸濁液と
した以外は実施例1と同様に水熱処理して茶褐色沈澱を
生成させた。茶褐色沈澱を水洗、枦遇、乾燥して得られ
た粒子粉末は、XIJ1回折の結果及び図7の電子顕微
鏡写真(x20.000)から明らかな通り、β−Fe
00Hとヘマタイトの混合物であった。
Comparative Example 3 A brown precipitate was produced by hydrothermal treatment in the same manner as in Example 1, except that an aqueous NaO)l solution was added to obtain an aqueous suspension with a pH of 6.8. As is clear from the results of XIJ1 diffraction and the electron micrograph (x20,000) in FIG.
It was a mixture of 00H and hematite.

比較例4 MCl水溶液を添加してβ−FeOOH含むpH7,5
の水性懸濁液とした以外は、実施例1と同様に水熱処理
して黄褐色沈澱を生成させた。黄褐色沈澱を水洗、枦遇
、乾燥して得られた粒子粉末は、X線  。
Comparative Example 4 pH 7.5 containing β-FeOOH by adding MCl aqueous solution
A yellowish brown precipitate was produced by hydrothermal treatment in the same manner as in Example 1, except that an aqueous suspension was prepared. The yellow-brown precipitate was washed with water, dried, and the resulting powder particles were exposed to X-rays.

回折の結果及び図8に示す電子顕微鏡写真(X 50゜
000)から明らかな通り、β−FeOOHのままであ
った。
As is clear from the diffraction results and the electron micrograph (X 50°000) shown in FIG. 8, it remained β-FeOOH.

比較例5 水熱処理の温度を95℃とした以外は、実施例1と同様
にして黄褐色沈澱を生成させた。黄褐色沈澱を水洗、濾
過、乾燥して得られた粒子粉末は、図9に示すX線回折
及び図10に示す電子w4微繞写真(x50,000)
から明らかな通り、β−FeOOHのままであった。
Comparative Example 5 A yellow brown precipitate was produced in the same manner as in Example 1, except that the temperature of the hydrothermal treatment was 95°C. The particles obtained by washing the yellow brown precipitate with water, filtering, and drying showed the X-ray diffraction shown in Figure 9 and the electron W4 micrograph (x50,000) shown in Figure 10.
As is clear from this, it remained β-FeOOH.

〔発明の効果〕〔Effect of the invention〕

本発明における計状磁性酸化鉄粒子粉末の製造法によれ
ば、前出実施例に示した通り、粒子表面並びに粒子内部
に空孔が存在しておらず実質的に高密度であって、且つ
、粒度が均斉で樹枝状粒子が混在していない針状磁性酸
化鉄粒子からなる計状磁性酸化鉄粒子粉末を得ることが
できるので、高性能、高密度記録用磁性酸化鉄粒子粉末
とじて好適なものである。
According to the method for producing the scale-shaped magnetic iron oxide particles of the present invention, as shown in the previous example, the particles have substantially high density with no pores on the particle surface or inside the particles, and Since it is possible to obtain a scale-shaped magnetic iron oxide particle powder consisting of acicular magnetic iron oxide particles with uniform particle size and no dendritic particles, it is suitable as a magnetic iron oxide particle powder for high-performance, high-density recording. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

図1、図4及び図9はいずれもX線回折図であり、図4
は実施例1で得られたヘマタイト粒子粉末、図8は、比
較例1で得られたヘマタイト粒子粉末、図9は比較例5
で得られたβ−PeOOI(粒子粉末である。 図2、図3、図5乃至図8及び図10は、いずれも電子
顕微鏡写真であり、図2、図3及び図5はそれぞれ一実
施例1、実施例2及び比較例]で得られた針状ヘマタイ
ト粒子粉末、図6、図8及び図10はそれぞれ、比較例
2及び比較例4及び比較例5で得られたβ−FeOOH
粒子粉末、図7は、ヘマタイトとβ−Fe00Hとの混
合物粒子粉末である。
Figures 1, 4, and 9 are all X-ray diffraction diagrams, and Figure 4
8 is the hematite particle powder obtained in Example 1, FIG. 8 is the hematite particle powder obtained in Comparative Example 1, and FIG. 9 is the hematite particle powder obtained in Comparative Example 5.
β-PeOOI (particle powder) obtained in . 1, Example 2 and Comparative Example], FIGS. 6, 8 and 10 are β-FeOOH obtained in Comparative Example 2, Comparative Example 4 and Comparative Example 5, respectively.
The particle powder shown in FIG. 7 is a mixture particle powder of hematite and β-Fe00H.

Claims (1)

【特許請求の範囲】[Claims] (1)β−FeOOHを含む水懸濁液にアルカリ性水溶
液を添加してpH8以上の水性懸濁液とし、次いで、該
水性懸濁液に塩酸を添加して得られた前記β−FeOO
H含むpH7以下の水性懸濁液に、当該懸濁液中のFe
(III)に対しP換算で0.1〜2.0原子%のリン化
合物を添加した後、100〜130℃の温度範囲で水熱
処理することにより、針状ヘマタイト粒子を生成させ、
該針状ヘマタイト粒子を還元性ガス中で加熱還元して、
計状マグネタイト粒子とするか、又は、更に酸化して、
針状マグヘマイト粒子とすることを特徴とする計状磁性
酸化鉄粒子粉末の製造法。
(1) The β-FeOOH obtained by adding an alkaline aqueous solution to an aqueous suspension containing β-FeOOH to obtain an aqueous suspension with a pH of 8 or higher, and then adding hydrochloric acid to the aqueous suspension.
Fe in the suspension is added to an aqueous suspension containing H at pH 7 or less.
After adding 0.1 to 2.0 atom % of a phosphorus compound in terms of P to (III), hydrothermal treatment is performed in a temperature range of 100 to 130°C to generate acicular hematite particles,
The acicular hematite particles are heated and reduced in a reducing gas,
into scale-shaped magnetite particles, or further oxidize,
A method for producing a scale-shaped magnetic iron oxide particle powder characterized by forming needle-shaped maghemite particles.
JP63048386A 1988-02-29 1988-02-29 Manufacture of needle-like magnetic iron-oxide particle and powder Pending JPH01222409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63048386A JPH01222409A (en) 1988-02-29 1988-02-29 Manufacture of needle-like magnetic iron-oxide particle and powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63048386A JPH01222409A (en) 1988-02-29 1988-02-29 Manufacture of needle-like magnetic iron-oxide particle and powder

Publications (1)

Publication Number Publication Date
JPH01222409A true JPH01222409A (en) 1989-09-05

Family

ID=12801865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63048386A Pending JPH01222409A (en) 1988-02-29 1988-02-29 Manufacture of needle-like magnetic iron-oxide particle and powder

Country Status (1)

Country Link
JP (1) JPH01222409A (en)

Similar Documents

Publication Publication Date Title
JPS5853688B2 (en) Method for producing acicular alloy magnetic particle powder mainly composed of Fe-Mg
JPS62216919A (en) Manufacture of needle-like alpha-fe203
JP3428351B2 (en) Spindle-shaped metal magnetic particles containing iron as a main component and method for producing the same
JPH0585487B2 (en)
GB1589355A (en) Acicular cobalt magnetic iron oxide and its manufacture
JPH01222409A (en) Manufacture of needle-like magnetic iron-oxide particle and powder
JPH10226520A (en) Hydrate iron oxide and production of ferromagnetic iron oxide
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JPS63162535A (en) Production of powdery acicular hematite particle
JPH107420A (en) Granule of cobalt-coated needle-shaped magnetic oxide of iron
JP3087778B2 (en) Method for producing acicular goethite particle powder
JP2931182B2 (en) Method for producing acicular γ-FeOOH
JP3092649B2 (en) Method for producing spindle-shaped metal magnetic particles containing iron as a main component
JP3166809B2 (en) Method for producing acicular magnetic iron oxide particles
JPH0629143B2 (en) Manufacturing method of spheroidal hematite particles
JPS63140005A (en) Production of fine ferromagnetic metal particle powder
JPS5921364B2 (en) Method for producing acicular Fe-Zn alloy magnetic particle powder
JPH0635326B2 (en) Method for producing particles containing iron carbide
JPS5891102A (en) Production of magnetic particle powder of needle crystal alloy
JPH028303A (en) Manufacture of acicular metal magnetic granular powder containing iron as main component
JPS5951498B2 (en) Method for producing acicular α-FeOOH particle powder
JPH0518766B2 (en)
JPS62128931A (en) Production of magnetic iron oxide grain powder having spindle type
JPH0463208A (en) Manufacture of metal magnetic powder
JPS5950607B2 (en) Method for producing acicular magnetic iron oxide particles