JPH01220216A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH01220216A
JPH01220216A JP4727188A JP4727188A JPH01220216A JP H01220216 A JPH01220216 A JP H01220216A JP 4727188 A JP4727188 A JP 4727188A JP 4727188 A JP4727188 A JP 4727188A JP H01220216 A JPH01220216 A JP H01220216A
Authority
JP
Japan
Prior art keywords
magnetic layer
magnetic
thickness direction
substrate
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4727188A
Other languages
Japanese (ja)
Inventor
Tadashi Yasunaga
正 安永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP4727188A priority Critical patent/JPH01220216A/en
Publication of JPH01220216A publication Critical patent/JPH01220216A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the corrosion resistance and whetherability of a thin magnetic metallic film layer and the electromagnetic conversion characteristics thereof by maximizing the ratio of the nitrogen atoms in the thickness direction of the thin magnetic metallic film layer to the iron atoms therein near the central part in the thickness direction. CONSTITUTION:The central flow of an ion beam 25 is directed approximately perpendicularly to a substrate 11 on a backing plate 22 and the max. ion current density is applied to the central part in the film forming region on the substrate 1. The ratio of the nitrogen atoms in the thickness direction over the entire part of the magnetic layer to the iron atoms therein exhibits the distribution pattern of the peak shape in which the max. value e3 is exhibited near d3-d5 of the central part and the min. value e1 or e2 exists near d1 of the surface of the magnetic layer or near d7 of the substrate 1. The nitrogen contained in the magnetic layer over the entire part thereof is, by element per cent, 2-30atom.%, more preferably 4-20atom.%, more particularly preferably 5-15atom.%. The corrosion resistance and weatherability are low when the content of the nitrogen is lower than the above-mentioned range. The saturation magnetic flux density and coercive force are low when the content exceeds the above-mentioned range. All of the corrosion resistance, weatherability and electromagnetic conversion characteristics of the magnetic layer are thereby improved.

Description

【発明の詳細な説明】 (発明の分野) 本発明は、金属薄膜磁性層を有する磁気記録媒体に関し
、特に、金属薄膜磁性層の耐蝕性、耐候性及び電磁変換
特性が改良された磁気記録媒体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention relates to a magnetic recording medium having a thin metal magnetic layer, and particularly to a magnetic recording medium in which the corrosion resistance, weather resistance, and electromagnetic conversion characteristics of the thin metal magnetic layer are improved. It is related to.

(従来技術とその問題点) 従来、代表的な磁気記録媒体としては、強磁性粉末をバ
インダ中に分散し、それを非磁性基体上に塗着、乾燥さ
せた、所謂、塗布型媒体(バインダ型媒体とも言う)が
挙げられるが、その媒体は次のような問題を抱えている
(Prior art and its problems) Conventionally, typical magnetic recording media have been so-called coated media (binder (also referred to as type media), but these media have the following problems.

即ち、バインダを含有するため磁束密度を大きくするこ
とが困難であり、磁性層の薄膜化(例えば、0.7μm
)と均一な膜厚を図ることも塗布技術上の限界があるた
め、近年要望が高まっている/、9μm以下の記録波長
における高密度記録に適する電磁変換特性を付与せしめ
ることが困難になってきた。
That is, since it contains a binder, it is difficult to increase the magnetic flux density, and it is difficult to make the magnetic layer thinner (for example, 0.7 μm).
) Due to the limitations of coating technology in achieving a uniform film thickness, the demand has been increasing in recent years.It has become difficult to provide electromagnetic conversion characteristics suitable for high-density recording at recording wavelengths of 9 μm or less. Ta.

これに対し、金属薄膜磁性層を、真空蒸着法、イオンブ
レーティング法、スパッタリング法等のドライプロセス
で基体上に設ける、所謂、金属薄膜型媒体(非・5イン
ダ型媒体とも言う。)の開発によって、バインダ等の非
磁性成分を排除し、強磁性化合物を主成分とする前記金
属薄膜磁性層が、従来の塗布型媒体では得られない、均
一、薄層かつ高磁束密度を以って、高密度記録な容易に
した。
In response to this, the development of so-called metal thin film media (also referred to as non-5-inder media), in which a metal thin film magnetic layer is provided on a substrate using a dry process such as vacuum evaporation, ion blating, or sputtering. By eliminating non-magnetic components such as binders, the metal thin film magnetic layer containing a ferromagnetic compound as a main component has a uniform, thin layer and high magnetic flux density that cannot be obtained with conventional coated media. High-density recording made easy.

しかしながら、前記金属薄膜型媒体の磁性層は、主とし
てFe%Co、Ni等の金属から成り、これらの元素は
化学的安定性に欠け、耐蝕性や耐候性が前記塗布型媒体
に比べ劣っていた。
However, the magnetic layer of the metal thin film type medium is mainly composed of metals such as Fe%Co and Ni, and these elements lack chemical stability and are inferior in corrosion resistance and weather resistance compared to the coated type medium. .

この欠点を解消するために、種々の提案がなされ、特に
、特開昭to−z3rot号公報に開示されたように、
金属薄膜磁性層の表面をイオンブレーティング法により
窒化処理を施す方法や特開昭タ!−3030≠号公報に
開示されたように、スパッタリング法により前記磁性層
表面に窒化ケイ素膜を設ける方法、あるいは特開昭1s
−tr4co3号公報に開示されたように、前記磁性層
を窒素ガス等を含む雰囲気中での放電にさらして、その
表面に非磁性保護層を形成する方法が効果的なものであ
る。
In order to eliminate this drawback, various proposals have been made;
A method of nitriding the surface of a metal thin film magnetic layer using the ion blating method and JP-A-Shota! A method of forming a silicon nitride film on the surface of the magnetic layer by a sputtering method as disclosed in Publication No. 3030≠, or
As disclosed in the tr4co3 publication, an effective method is to expose the magnetic layer to discharge in an atmosphere containing nitrogen gas or the like to form a nonmagnetic protective layer on the surface thereof.

しかし、これらの方法は前記磁性層の表面に窒化物の層
を設けたことにより、電磁変換特性が低下してしまう欠
点があり、ヨーロッパ特許第1r32を号、特開昭タタ
ーr’ytoり号、特開昭6O−23ttti号、特開
昭61−!μ023号、等の各公報に開示されている窒
化鉄、鉄と窒化鉄、又は酸化窒化鉄(FeNxOy)か
ら成る金属薄膜磁性層をもってしても、変調ノイズが大
きくなると言う電磁変換特性上の欠点が残されていた。
However, these methods have the disadvantage that the electromagnetic conversion characteristics deteriorate due to the provision of a nitride layer on the surface of the magnetic layer. , JP-A-6O-23ttti, JP-A-61-! Even with the metal thin film magnetic layer made of iron nitride, iron and iron nitride, or iron oxynitride (FeNxOy) disclosed in publications such as μ023, there is a drawback in electromagnetic conversion characteristics that modulation noise increases. was left behind.

一方、前記磁性層を窒化鉄で構成させかつその窒素含有
比率を表面近傍で最大にするもの←特開昭t /−61
1020号公報)や逆に基体側近傍で最大にするもの(
%開昭&/−!r≠02/号公報)も提案されているが
、これらの媒体も前述した変調ノイズが太き(なってし
まう欠点を有していた。
On the other hand, the magnetic layer is composed of iron nitride, and the nitrogen content ratio is maximized near the surface←Unexamined Japanese Patent Application Publication No. 2003-120001/-61
1020 Publication) or conversely, the one that maximizes near the base side (
% Kaisho &/-! r≠02/publication) has also been proposed, but these media also have the drawback that the modulation noise described above becomes thick.

(発明の目的) 本発明は、前述した従来技術の欠点即ち金属薄膜磁性層
の耐蝕性と耐候性を増すと、その電磁変換特性が低下し
てしまうことを解消し、高密度記録が容易な磁気記録媒
体を提供することを目的とするものである。
(Objective of the Invention) The present invention solves the above-mentioned drawbacks of the prior art, namely, that increasing the corrosion resistance and weather resistance of a metal thin film magnetic layer causes a decrease in its electromagnetic conversion characteristics, and facilitates high-density recording. The purpose is to provide a magnetic recording medium.

(目的を達成するだめの手段) 本発明のかかる目的は、非磁性基体上に窒化鉄あるいは
酸化窒化鉄を主成分とする金属薄膜磁性層を設けて成る
磁気記録媒体において、前記金属薄膜磁性層の厚さ方向
における窒素原子の鉄原子に対する比率が、該厚さ方向
の中央部近傍で最大となることを特徴とする磁気記録媒
体によって達成される。
(Means for Achieving the Object) The object of the present invention is to provide a magnetic recording medium comprising a metal thin film magnetic layer containing iron nitride or iron oxynitride as a main component on a non-magnetic substrate. This is achieved by a magnetic recording medium characterized in that the ratio of nitrogen atoms to iron atoms in the thickness direction is maximum near the center in the thickness direction.

以下く、添付した図面を参照して本発明媒体の一実施態
様を詳述する。先ず、本発明媒体の層構成を概説する。
Hereinafter, one embodiment of the medium of the present invention will be described in detail with reference to the accompanying drawings. First, the layer structure of the medium of the present invention will be outlined.

第1図において、本発明媒体は、非磁性基体l上に金属
薄膜磁性層2を層設し、更にその表面に摩擦係数を下げ
、媒体の走行安定性と耐久性を付与するための潤滑層3
を設げている。
In FIG. 1, the medium of the present invention has a metal thin film magnetic layer 2 layered on a non-magnetic substrate 1, and a lubricating layer on the surface of the magnetic layer 2 for lowering the coefficient of friction and imparting running stability and durability to the medium. 3
has been established.

又、前記基体lの裏側には媒体の走行安定性を付与する
だめのバック層μが設けられている。
Further, a back layer μ is provided on the back side of the base 1 to provide running stability of the medium.

なお、前記金属薄膜磁性層コは、純鉄(α−Fe)、窒
化鉄(Fe2〜3N、Fe4N、Fe6N)、酸化鉄(
FeOx)あるいはそれらの混合体、更に必要に応じて
Co、Cr5Ni、Ti。
The metal thin film magnetic layer is made of pure iron (α-Fe), iron nitride (Fe2-3N, Fe4N, Fe6N), iron oxide (
FeOx) or a mixture thereof, and if necessary, Co, Cr5Ni, and Ti.

At等を含有して、真空蒸着法、イオンブレーティング
法、スパッタリング法、等のドライブロセ基体I上に成
膜されたものである。
The film contains At and the like and is formed on a dry broceive substrate I using a vacuum evaporation method, an ion blating method, a sputtering method, or the like.

又、前記非磁性基体lは、ポリエチレンテレフタレート
、ポリイミド、ポリアミド、ポリ塩化ビニル、三酢酸セ
ルロース、ポリカーボネート、等のプラスチックフィル
ムから成っている。
The nonmagnetic substrate 1 is made of a plastic film such as polyethylene terephthalate, polyimide, polyamide, polyvinyl chloride, cellulose triacetate, polycarbonate, or the like.

前記潤滑層3は、通常、炭素数が12乃至trの脂肪酸
、該脂肪酸金属塩、シリコーンオイル、脂肪酸エステル
、等を0.!乃至20■/m の量で塗着されたもので
ある。
The lubricating layer 3 usually contains a fatty acid having 12 to tr carbon atoms, a fatty acid metal salt, a silicone oil, a fatty acid ester, or the like. ! The coating was applied in an amount of 20 to 20 μm/m 2 .

又、前記バック層μは、通常、カーホ゛ンブラック、炭
酸カルシウム、酸化チタン、等の微粉末をバインダー中
に分散させた組成物を塗着して成るものである。
The back layer μ is usually formed by coating a composition in which fine powders of carbon black, calcium carbonate, titanium oxide, etc. are dispersed in a binder.

次に、第2図に示した本発明媒体の製造装置を参照して
その製法について述べる。
Next, the manufacturing method will be described with reference to the apparatus for manufacturing the medium of the present invention shown in FIG.

先ず、真空槽io内の真空度をIQ   乃至1O−7
Torrになるように真空ポンプ(図示せず)を起動さ
せ、排気口//から槽内の空気を排出した後、比較的長
尺の非磁性基体!(例えば、ポリエチレンテレフタレー
トフィルム)を、その原反ロール13から繰り出し、複
数本のガイドローラlψによって形成される走行路に沿
って巻取ロール/りへ一定速度で連続的に移送させなが
ら、ハース/4内の純鉄17を該ノ・−ス16の近傍に
配設したフィラメント/rによって発生した電子ビーム
lりにより加熱、蒸発させる。
First, the degree of vacuum in the vacuum chamber io is from IQ to 1O-7.
After starting the vacuum pump (not shown) so that the pressure becomes Torr and exhausting the air in the tank from the exhaust port, a relatively long non-magnetic substrate is removed! (For example, polyethylene terephthalate film) is unwound from the raw roll 13 and continuously transferred at a constant speed to the take-up roll/roll along the running path formed by the plurality of guide rollers lψ. The pure iron 17 in 4 is heated and evaporated by the electron beam generated by the filament /r placed near the nose 16.

蒸発した前記純鉄17は蒸気流コθとなってその一部は
マスク21により上昇、拡散運動が遮断されるが他の大
部分は前記マスク21の開口部12を通過して前記走行
路の一部を構成する支持板2コの傾斜面上に沿って移動
する前記基体lの表面に近接して行(。
The evaporated pure iron 17 becomes a vapor flow θ, and a part of it rises by the mask 21 and its diffusion movement is blocked, but most of the other part passes through the opening 12 of the mask 21 and flows along the traveling path. A row (.

前記基体lの表面に近接した前記蒸気流20の鉄原子は
、イオン銃−23から引き出された窒素ガスのイオン・
中性高速粒子、励起分子、原子等が混在するイオンビー
ム2夕に照射されて、それらと反応して窒化鉄を主体と
する金属薄膜磁性層コが前記基体lの表面に形成される
The iron atoms in the vapor stream 20 that are close to the surface of the base 1 are ionized by nitrogen gas ions extracted from the ion gun 23.
It is irradiated with an ion beam containing a mixture of neutral high-velocity particles, excited molecules, atoms, etc., and reacts with them to form a metal thin film magnetic layer mainly composed of iron nitride on the surface of the substrate 1.

なお、前記イオン銃23は後部の導入口2≠から窒素ガ
スを導入し、その内部でプラズマを発生させ、前記イオ
ンビーム2夕を外部に引き出すもので、カウフマン型あ
るいはフリーマン型イオン銃が広く用いられている。
The ion gun 23 introduces nitrogen gas from the rear introduction port 2≠, generates plasma inside it, and extracts the ion beam 2 to the outside. Kaufman type or Freeman type ion guns are widely used. It is being

又、前記イオンビーム2よの中心流は、前記マスク21
の開口部12の中心線26を通って前記支持板ココ上の
基体/に略垂直に向けられているので、前記基体l上の
成膜領域の中央部が最大のイオン電流密度が与えられ、
第3図に示したように、前記磁性層コ全体の厚さ方向に
おける窒素原子の鉄原子に対する比率は、その中央部近
傍d3〜d5で最大値e3を示し、最小値e1又はe2
は前記磁性層コの表面近傍d1又は前記基体lの近傍d
7に存在する山型の分布パターンを呈することになる。
Further, the central flow of the ion beam 2 is directed to the mask 21.
is oriented substantially perpendicularly to the substrate on the support plate through the center line 26 of the opening 12, so that the maximum ion current density is applied to the center of the film forming area on the substrate.
As shown in FIG. 3, the ratio of nitrogen atoms to iron atoms in the thickness direction of the entire magnetic layer has a maximum value e3 in the vicinity of the central portion d3 to d5, and a minimum value e1 or e2.
is the vicinity d1 of the surface of the magnetic layer 1 or the vicinity d of the base 1
This results in the mountain-shaped distribution pattern that exists in No. 7.

なお、第3図の窒素原子含有ノターンは、オージェ電子
分光法により磁性層の厚さ方向に電子線でエツチングし
ながら元素分布を測定したとぎに得られるものである。
The nitrogen atom-containing noturns shown in FIG. 3 are obtained by measuring the elemental distribution while etching the magnetic layer with an electron beam in the thickness direction using Auger electron spectroscopy.

なお、第3図の横軸の各点は前記点d1からd7までの
間を6等分したときの各区分点を示している。
Note that each point on the horizontal axis in FIG. 3 indicates a dividing point when the area from the points d1 to d7 is divided into six equal parts.

前述したような方法で窒化鉄の磁性膜を種々の条件で形
成し、各特性について評価を行った結果、次のような結
論が得られた。
As a result of forming iron nitride magnetic films under various conditions using the method described above and evaluating each characteristic, the following conclusions were obtained.

−l、 前記磁性層コの全体に含まれる窒素は元素百分
率で2原子%乃至30原子%、望ましくは4L原子%乃
至20原子%、特に!原子う乃至l!原子%が望ましい
-1, Nitrogen contained in the entire magnetic layer is in an elemental percentage of 2 atomic % to 30 atomic %, preferably 4L atomic % to 20 atomic %, especially! Atomic u-no-l! Atomic % is preferable.

窒素の含有量が前述した数値よりも少ないと耐蝕性と耐
候性が低下する一方、多いと飽和磁束密度(Bm)、抗
磁力(He)が低下してしまう。
If the nitrogen content is less than the above-mentioned value, the corrosion resistance and weather resistance will decrease, while if it is higher than the above value, the saturation magnetic flux density (Bm) and coercive force (He) will decrease.

−λ、 第3図における最大値e3と最小値e1又はe
2との差は鉄原子に対する窒素原子の比率で、2原子%
以上、望ましくはl原子%以上である。
-λ, maximum value e3 and minimum value e1 or e in Fig. 3
The difference from 2 is the ratio of nitrogen atoms to iron atoms, which is 2 atomic%.
The content is desirably 1 atomic % or more.

その差が小さいと変調ノイズが小さ(ならない。If the difference is small, the modulation noise will be small (or not).

−3,前記最小値e1又はe2はコ原子%以上が好まし
く、望ましくは4c原子%以上である。
-3, the minimum value e1 or e2 is preferably coatom % or more, and desirably 4c atom% or more.

この最小値e1又はe2が小さいと、耐蝕性と耐候性が
劣化する。
If this minimum value e1 or e2 is small, corrosion resistance and weather resistance will deteriorate.

一層、 第2図において、酸素導入口27より前記開口
部12に向けて酸素ガスを導入し、前記磁性層コ中に構
成原子として酸素を含有させると、抗磁力(Hc)が大
きくなり、耐久性も増すが、含有量を増すと飽和磁束密
度(Bm)が低下してしまうので、酸素の含有比率は元
素百分率で2原子%乃至3θ原子%、望ましくは!原子
%乃至コO原子%である。
Further, in FIG. 2, when oxygen gas is introduced from the oxygen inlet 27 toward the opening 12 and oxygen is contained as a constituent atom in the magnetic layer, the coercive force (Hc) increases and the durability increases. However, increasing the content lowers the saturation magnetic flux density (Bm), so the content ratio of oxygen should be between 2 atomic % and 3θ atomic % in terms of element percentage! atomic % to CoO atomic %.

(発明の効果) 本発明の窒素のイオンビームを成膜領域の中心でそのイ
オン電流密度が最大になる様に分布させたので、磁性膜
中の窒素原子の分布がその厚さ方向での最大値が中央部
近傍に存在し、その結果、磁性層の耐蝕性、耐候性及び
電磁変換特性が揃って良化される。
(Effects of the Invention) Since the nitrogen ion beam of the present invention is distributed so that its ion current density is maximized at the center of the film forming region, the distribution of nitrogen atoms in the magnetic film is maximized in the thickness direction. As a result, the corrosion resistance, weather resistance, and electromagnetic conversion characteristics of the magnetic layer are all improved.

以上、記述した本発明媒体の新規な効果を実施例と比較
例によって一層明確に示す。
The novel effects of the medium of the present invention described above will be more clearly demonstrated through Examples and Comparative Examples.

(実施例−l) 第2図に示した装置を用い、真空度を一旦!。(Example-l) Use the device shown in Figure 2 to establish the degree of vacuum! .

Oxl’   Torrにした後、窒素ガスを導入して
真空度Y/、rxto   Torrして、純度タタ、
り%の鉄を電子ビームにより加熱、蒸発させた。
After setting the temperature to Oxl' Torr, introduce nitrogen gas and increase the vacuum degree to Y/, rxto Torr, and reduce the purity to
% of iron was heated and evaporated by an electron beam.

蒸発速度は蒸着膜が60A/秒となる。!、つに電子ビ
ームのパワーを調節した。
The evaporation rate of the deposited film is 60 A/sec. ! First, the power of the electron beam was adjusted.

同時に巾t00mm厚さ13μmのポリエチレンテレフ
タレートフィルムをμθcICに保ってコooo人の膜
厚となるようにその移送速度を定め、前記鉄の蒸発流の
入射角を6タ0に設定した。
At the same time, a polyethylene terephthalate film having a width of t00 mm and a thickness of 13 μm was maintained at μθcIC, the transport speed was determined so as to have a film thickness of 100 mm, and the incident angle of the evaporated iron flow was set at 600 mm.

又、矩形状のs ommx / oommの口径を有す
るカウフマン型イオン銃を第μ図の曲線■に示したイオ
ン電流密度分布となるようにイオン銃の加速電圧をro
oVとし、放電室のグロー条件を設定して、前記蒸発流
の鉄原子にイオンビームを照射し、金属薄膜磁性層を形
成した。なお、マスクの開口部は巾デomm、長さto
mmとした。
In addition, the accelerating voltage of the ion gun was set to ro so that the ion current density distribution of a rectangular Kaufmann type ion gun with a diameter of sommx/oomm would be as shown by the curve
oV and glow conditions in the discharge chamber were set to irradiate the iron atoms in the evaporated flow with an ion beam to form a metal thin film magnetic layer. The opening of the mask has a width of 0 mm and a length of
mm.

(実施例−コ) 実施例−7と同じ装置を用い、真空度を一旦、/、0x
10−5Tortにした後、酸素ガスを導入して真空度
’13.OX/ 0−5Torrとし、更に、窒素ガス
を導入して真空度を/、j×10−’Torrとした。
(Example-7) Using the same equipment as in Example-7, the degree of vacuum was once changed to /, 0x.
After setting the pressure to 10-5 Tort, oxygen gas was introduced and the vacuum level was set to '13. OX/ was set to 0-5 Torr, and nitrogen gas was further introduced to set the degree of vacuum to /,j×10-'Torr.

イオン電流密度分布は第μ図の曲線■となるように、イ
オン銃の加速電圧なrooVとし、放電室のグロー条件
を設定した以外は実施例−lと同じ条件で磁性膜を形成
した。
A magnetic film was formed under the same conditions as in Example 1, except that the acceleration voltage of the ion gun was set to rooV and the glow conditions of the discharge chamber were set so that the ion current density distribution was as shown by curve 2 in Figure μ.

(比較例−l) イオン電流密度が第μ図の曲線■となるように、イオン
銃の加速電圧を2jO■として放電室のグロー条件を設
定した以外は、実施例−lと同じ条件で磁性層を形成し
た。
(Comparative Example-l) The magnetic field was heated under the same conditions as in Example-l, except that the acceleration voltage of the ion gun was set to 2jO■ and the glow conditions of the discharge chamber were set so that the ion current density became the curve ■ in Figure μ. formed a layer.

(比較例−2) イオン電流密度分布が第μ図の曲線■となるように、イ
オン銃の加速電圧を、2jOVとし、放電室のグロー条
件を設定した以外は実施例−1と同じ条件で磁性層を形
成した。
(Comparative Example-2) The same conditions as Example-1 were used, except that the acceleration voltage of the ion gun was set to 2jOV and the glow conditions of the discharge chamber were set so that the ion current density distribution became the curve ■ in Figure μ. A magnetic layer was formed.

実施例−l、−2、比較例−7、−2によって得られた
試料中の鉄、窒素、酸素の各原子について膜厚方向の分
布を測定した結果は第5図乃至第r図の通りであった。
The results of measuring the distribution of iron, nitrogen, and oxygen atoms in the film thickness direction in the samples obtained in Examples-l and -2 and Comparative Examples-7 and -2 are as shown in Figures 5 to R. Met.

(比較例−3) 実施例−1において、イオン銃の位置を基体搬送方向に
沿って下方に平行移動した。その他の条件は実施例−1
と同一の条件で成膜を行った。
(Comparative Example-3) In Example-1, the position of the ion gun was translated downward along the substrate transport direction. Other conditions are Example-1
Film formation was performed under the same conditions as .

(比較例−4c) 実施例−7において、イオン銃位置を基体搬送方向に沿
って上方に平行移動した。その他の条件は、実施例−l
と同一の条件で成膜した。
(Comparative Example-4c) In Example-7, the ion gun position was translated upward along the substrate transport direction. Other conditions are Example-1
The film was formed under the same conditions as .

比較例−3、−μによって得られた試料中の鉄、窒素、
酸素の各原子についての膜厚方向の分布を測定した結果
は、第2図乃至第1O図の通りであった。
Comparative Example-3, iron, nitrogen in the sample obtained by -μ,
The results of measuring the distribution of each oxygen atom in the film thickness direction are shown in FIGS. 2 to 1O.

次に、以上のようにして得られた蒸着原反にパック層を
塗設し、さらに磁性層の表面には、ミリスチン酸を10
m97m  となるようMEKの溶液にして塗布した。
Next, a pack layer was applied to the vapor-deposited original fabric obtained in the above manner, and the surface of the magnetic layer was further coated with 10% of myristic acid.
It was coated as a solution of MEK so that the thickness was 97 m.

次いでrミリ巾に裁断し、rミリビデオ用カセットに組
込み電磁変換特性を測定した。
Next, it was cut into r mm width and incorporated into an r mm video cassette, and the electromagnetic conversion characteristics were measured.

測定は、富士写真フィルム製FUJIX−J’M4−A
Fを改造し、さらにヒューレットノ署ツカード社製スイ
クトロアナライザー3.flrjAを用いてCN比を求
めた。なお、キャリヤー周波数は6MHzノイズ周波数
は2 M Hzである。その結果を第7表に示す。
Measurement was done using Fuji Photo Film FUJIX-J'M4-A.
Modified the F, and added a Suictro Analyzer 3. manufactured by Hewlett-Packard Corporation. The CN ratio was determined using flrjA. Note that the carrier frequency is 6 MHz and the noise frequency is 2 MHz. The results are shown in Table 7.

実施例のサンプルは比較例のサンプルに比較し【、出力
が大きく、かつノイズも低くなっており、CN比を大き
くでき、高特性であることが分る。
It can be seen that the sample of the example has a larger output and lower noise than the sample of the comparative example, can increase the CN ratio, and has high characteristics.

第1表Table 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図・・・・・・本発明の磁気記録媒体の層構成の一
例。 第2図・・・・・・本発明の磁気記録媒体の製造装置の
一例。 第3図・・・・・・本発明の磁気記録媒体の金属薄膜磁
性層の厚さ方向における窒素原子の 分布。 第μ図・・・・・・第2図の製造装置の成膜部分におけ
るイオン電流密度の分布。 第を図乃至第1Q図・・・・・・本発明の実施例、比較
例における金属薄膜磁性層の厚さ方 向における窒素原子、鉄原子、酸素 原子の分布。 l:非磁性基体    2=金属薄膜磁性層12:マス
クの開口部 17:純鉄 20:蒸気流     22二支持板 23:イオン銃    2j=イオンビ一ム第!図乃至
第1Q図の図中におげろ曲線N。 Fe及びOは夫々窒素原子、鉄原子及び酸素原子の膜厚
方向における含有率を示す。 特許出願人 富士写真フィルム株式会社第1図 第2図 第5図 第6図 第7図 「ρ 第8図
FIG. 1: An example of the layer structure of the magnetic recording medium of the present invention. FIG. 2: An example of a magnetic recording medium manufacturing apparatus according to the present invention. FIG. 3: Distribution of nitrogen atoms in the thickness direction of the metal thin film magnetic layer of the magnetic recording medium of the present invention. Figure μ: Distribution of ion current density in the film forming part of the manufacturing apparatus shown in Figure 2. Figures 1 to 1Q: Distribution of nitrogen atoms, iron atoms, and oxygen atoms in the thickness direction of the metal thin film magnetic layer in Examples and Comparative Examples of the present invention. 1: Non-magnetic substrate 2 = Metal thin film magnetic layer 12: Mask opening 17: Pure iron 20: Vapor flow 22 Support plate 23: Ion gun 2j = Ion beam 1st! There is a curve N in the figures from Figures to Figures 1Q. Fe and O indicate the content of nitrogen atoms, iron atoms, and oxygen atoms in the film thickness direction, respectively. Patent applicant: Fuji Photo Film Co., Ltd. Figure 1 Figure 2 Figure 5 Figure 6 Figure 7 "ρ Figure 8

Claims (1)

【特許請求の範囲】[Claims] 非磁性基体上に窒化鉄あるいは酸化窒化鉄を主成分とす
る金属薄膜磁性層を設けて成る磁気記録媒体において、
前記金属薄膜磁性層の厚さ方向における窒素原子の鉄原
子に対する比率が、該厚さ方向の中央部近傍で最大とな
ることを特徴とする磁気記録媒体。
In a magnetic recording medium comprising a metal thin film magnetic layer mainly composed of iron nitride or iron oxynitride on a non-magnetic substrate,
A magnetic recording medium characterized in that the ratio of nitrogen atoms to iron atoms in the thickness direction of the metal thin film magnetic layer is maximum near the center in the thickness direction.
JP4727188A 1988-02-29 1988-02-29 Magnetic recording medium Pending JPH01220216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4727188A JPH01220216A (en) 1988-02-29 1988-02-29 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4727188A JPH01220216A (en) 1988-02-29 1988-02-29 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH01220216A true JPH01220216A (en) 1989-09-01

Family

ID=12770629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4727188A Pending JPH01220216A (en) 1988-02-29 1988-02-29 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH01220216A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5426006A (en) * 1993-04-16 1995-06-20 Sandia Corporation Structural micro-porous carbon anode for rechargeable lithium-ion batteries
US5510212A (en) * 1993-01-13 1996-04-23 Delnick; Frank M. Structural micro-porous carbon anode for rechargeable lithium ion batteries

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5510212A (en) * 1993-01-13 1996-04-23 Delnick; Frank M. Structural micro-porous carbon anode for rechargeable lithium ion batteries
US5426006A (en) * 1993-04-16 1995-06-20 Sandia Corporation Structural micro-porous carbon anode for rechargeable lithium-ion batteries

Similar Documents

Publication Publication Date Title
JPS5961105A (en) Magnetic recording medium
US4521481A (en) Magnetic recording medium
US4673610A (en) Magnetic recording medium having iron nitride recording layer
JPS6153770B2 (en)
US4990361A (en) Method for producing magnetic recording medium
US4873154A (en) Magnetic recording medium containing Fe, Co, N and O
JPS63152017A (en) Magnetic recording medium
JPH01220216A (en) Magnetic recording medium
JPH0219524B2 (en)
JPH01224913A (en) Magnetic recording medium
JPS58100232A (en) Manufacture of magnetic recording medium
JPH061541B2 (en) Magnetic recording medium
JPH09198642A (en) Magnetic recording medium
JPH09198643A (en) Magnetic recording medium
JPH09198646A (en) Magnetic recording medium
JPH04221419A (en) Magnetic recording medium
JPH09204634A (en) Magnetic recording medium
JPH04238109A (en) Magnetic recording medium
JPH09204632A (en) Magnetic recording medium
JPH09198647A (en) Magnetic recording medium
JPH09198644A (en) Magnetic recording medium
JPH09204637A (en) Magnetic recording medium
JPH07105047B2 (en) Method of manufacturing magnetic recording medium
JPH0969437A (en) Magnetic recording medium
JPH08102054A (en) Production of magnetic recording medium and production device therefor