JPH01219101A - Iron powder for powder metallurgy and production thereof - Google Patents

Iron powder for powder metallurgy and production thereof

Info

Publication number
JPH01219101A
JPH01219101A JP63043934A JP4393488A JPH01219101A JP H01219101 A JPH01219101 A JP H01219101A JP 63043934 A JP63043934 A JP 63043934A JP 4393488 A JP4393488 A JP 4393488A JP H01219101 A JPH01219101 A JP H01219101A
Authority
JP
Japan
Prior art keywords
powder
lubricant
iron powder
alloying element
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63043934A
Other languages
Japanese (ja)
Inventor
Masaaki Sato
正昭 佐藤
Takehiko Hayami
早見 威彦
Hitoshi Sakuma
均 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63043934A priority Critical patent/JPH01219101A/en
Publication of JPH01219101A publication Critical patent/JPH01219101A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce iron powder for powder metallurgy causing no segregation of a component during handling and giving a homogeneous sintered product by uniformly mixing iron powder with alloying element powder and a lubricant in a specified ratio and heating the mixture to the m.p. of the lubricant or above. CONSTITUTION:88.7-99.6wt.% iron powder is uniformly mixed with 0.1-10wt.% alloying element powder and 0.3-1.3wt.% lubricant and the mixture is heated to the m.p. of the lubricant or above. Zinc stearate or lithium stearate may be used as the lubricant and graphite, Ni, Cr or Mo as the alloying element. The alloying element powder and the lubricant are uniformly dispersed and fixed on the surface of the iron powder to obtain iron powder for powder metallurgy causing no segregation of a component during handling and giving a homogeneous sintered product.

Description

【発明の詳細な説明】 [a梁上の利用分野] 本発明は取扱い時に成分偏析を生ずることがない、従っ
て均質な焼結製品を得ることのできる粉末冶金用鉄粉と
その製造方法に関するものである。
[Detailed description of the invention] [Field of application on a beam] The present invention relates to an iron powder for powder metallurgy that does not cause component segregation during handling and can therefore produce a homogeneous sintered product, and a method for producing the same. It is.

[従来の技術] 原料鉄粉を焼結して金属製品を製造する際には、合金化
元素を加えて物性の改善を図ることがある。たとえば強
度や硬さを高めるための炭素粉はその一例であり、その
他加圧成形時の摩擦抵抗を減少させる目的で潤滑剤を配
合添加している。
[Prior Art] When manufacturing metal products by sintering raw iron powder, alloying elements are sometimes added to improve physical properties. For example, carbon powder is used to increase strength and hardness, and lubricants are added to reduce frictional resistance during pressure molding.

このように主原料鉄粉及びその他の添加物粉粒体を配合
して焼結晶を製造する場合、配合物中における各成分の
均一分散は極めて重要であり、特に合金化元素の偏析は
焼結製品の寸法精度の低下を招いたり、硬さや強度およ
びその他特性のばらつきとなって現われるので、成分偏
析のない均一な混合原料が望まれている。ところが合金
化元素や潤滑剤は比重や粒度等が主原料鉄粉と異なるた
め、均一混合することは難しく、たとえ均一混合したも
のでもその後の取扱い時の振動や流動等によって分離・
偏析する傾向にある。
When producing sintered crystals by blending the main raw material iron powder and other additive powders in this way, uniform dispersion of each component in the blend is extremely important. A uniform mixed raw material free from component segregation is desired, as this may lead to a decrease in the dimensional accuracy of the product or to variations in hardness, strength, and other properties. However, since alloying elements and lubricants differ in specific gravity and particle size from the main raw material iron powder, it is difficult to mix them uniformly, and even if they are mixed uniformly, they may separate or separate due to vibrations and flow during subsequent handling.
They tend to segregate.

またこれらの配合物を金型に充填する際、比重の低い潤
滑剤や合金化元素成分の分離飛散がおこり作業環境の面
からも大きな問題となっていlご。
Furthermore, when filling molds with these compounds, lubricants with low specific gravity and alloying element components separate and scatter, which poses a major problem in terms of the working environment.

[発明が解決しようとする課題] 上記状況に鑑み本発明においては合金化元素が主原料鉄
粉中に均一に配合されており、また取扱い時に偏析を生
ずることがない様な粉末冶金用鉄粉とその製造方法につ
いて検討した。
[Problems to be Solved by the Invention] In view of the above circumstances, the present invention provides an iron powder for powder metallurgy in which alloying elements are uniformly blended into the main raw material iron powder and which does not cause segregation during handling. and its manufacturing method.

[課題を解決するための手段] 上記課題を解決することのできた本発明の粉末冶金用鉄
粉とは、潤滑剤0.3〜1.3%(重量%の意味、以下
同じ)、合金化元素粉0.1〜10%および残部鉄粉よ
りなり、鉄粉表面に合金化元素粉が固着しているもので
あり、該合金化元素粉が固着した鉄粉は潤滑剤OJ〜1
.3%9合金化元素粉0.1〜10%および残部鉄粉を
混合する工程および少なくとも潤滑剤の融点以上の温度
に加熱する工程を実施することにより得ることができる
[Means for Solving the Problems] The iron powder for powder metallurgy of the present invention that can solve the above problems includes a lubricant of 0.3 to 1.3% (meaning % by weight, the same applies hereinafter), alloying It is composed of 0.1 to 10% elemental powder and the balance iron powder, and the alloying element powder is adhered to the surface of the iron powder.The iron powder to which the alloying element powder is adhered is lubricant OJ~1.
.. It can be obtained by performing a step of mixing 0.1 to 10% of 3%9 alloying element powder and the balance iron powder, and a step of heating to a temperature at least equal to or higher than the melting point of the lubricant.

[作用コ 本発明においては潤滑剤0.3〜1.3%9合金化元素
粉0.1〜10%および残部鉄粉を混合し、且つ少なく
とも潤滑剤の融点以上の温度に加熱するが、それによっ
て潤滑剤が溶融し、潤滑剤が鉄粉に融着すると共にそれ
が接着剤として作用し、合金化元素粉が鉄粉に付着し固
定される。尚混合工程と加熱工程は混合後加熱、加熱後
混合並びに加熱・混合同時進行等任意の手順で実施する
ことができる。加熱後混合する場合は鉄粉のみ、あるい
は鉄粉と潤滑剤の混合体、または鉄粉と合金化元素粉の
混合体を加熱してから残りの成分を徐々に添加しつつ混
合するのが良く、加熱・混合同時進行は混合を開始しつ
つ徐々に温度を高めていくのが良い。
[Function] In the present invention, lubricant 0.3-1.3% 9 alloying element powder 0.1-10% and the balance iron powder are mixed and heated to a temperature at least equal to or higher than the melting point of the lubricant, As a result, the lubricant is melted, and the lubricant is fused to the iron powder and acts as an adhesive, so that the alloying element powder is attached and fixed to the iron powder. The mixing step and the heating step can be carried out in any desired manner, such as heating after mixing, mixing after heating, or simultaneous heating and mixing. When mixing after heating, it is best to heat only the iron powder, or a mixture of iron powder and lubricant, or a mixture of iron powder and alloying element powder, and then gradually add and mix the remaining ingredients. When heating and mixing are performed simultaneously, it is preferable to gradually increase the temperature while starting the mixing.

潤滑剤の配合量が0.3%未満では潤滑剤が加熱溶融し
ても鉄粉表面を完全にカバーできないため合金化元素粉
の固定が不完全となるとともに潤滑効果が少なく金型か
らの抜き圧が大きくなる(第5図参照)。また1、3%
を超えても付着度および抜き圧の向上効果が飽和に達す
ると共に潤滑剤含有の過多に基く加工時密度の低下をき
たす(第4図参照)。したがって潤滑剤配合量は0.3
〜1.3%とする。潤滑剤としてはステアリン酸亜鉛、
ステアリン酸リチウム、ステアリン酸鉛、ステアリン酸
カルシウム、ステアリン酸マグネシウム等粉末冶金用の
潤滑剤として通常用いられるものを用いることができる
If the amount of lubricant is less than 0.3%, even if the lubricant is heated and melted, it will not completely cover the surface of the iron powder, resulting in incomplete fixation of the alloying element powder, and the lubricating effect will be low, making it difficult to remove from the mold. The pressure increases (see Figure 5). Also 1.3%
Even if this value is exceeded, the effect of improving adhesion and evacuation pressure reaches saturation, and at the same time, the density during processing decreases due to excessive lubricant content (see FIG. 4). Therefore, the lubricant content is 0.3
~1.3%. Zinc stearate as a lubricant,
Lubricants commonly used as lubricants for powder metallurgy, such as lithium stearate, lead stearate, calcium stearate, and magnesium stearate, can be used.

合金化元素粉としては、黒鉛粉を初めとするCの他に、
Ni、Cr、Mo、V、W、Co。
As alloying element powders, in addition to C including graphite powder,
Ni, Cr, Mo, V, W, Co.

Cu、B、Tiおよびその他の合金化元素粉を挙げるこ
とができ、これらのうち1種以上を配合して目的の特性
を有する製品を得る。合金化元素粉の配合量は目的とす
る製品の特性および前記潤滑剤の配合量によっても多少
異なるが0.1〜10%とする。0.1%未満では配合
効果がなく、10%を超えて配合した場合潤滑剤による
付着率が低下し偏析防止の効果が低くなる。特に炭素鋼
を製造する際にはC源として黒鉛粉0.2〜1.5%配
合するのが好ましい。また合金化元素粉の粒径は鉄粉へ
付着させるという観点から20μm以下とするのが好ま
しい。
Cu, B, Ti and other alloying element powders may be mentioned, and one or more of these may be blended to obtain a product with desired properties. The blending amount of the alloying element powder varies somewhat depending on the characteristics of the intended product and the blending amount of the lubricant, but it is set at 0.1 to 10%. If it is less than 0.1%, there is no blending effect, and if it is blended in excess of 10%, the adhesion rate by the lubricant will decrease and the effect of preventing segregation will be reduced. In particular, when manufacturing carbon steel, it is preferable to mix 0.2 to 1.5% of graphite powder as a C source. Further, the particle size of the alloying element powder is preferably 20 μm or less from the viewpoint of adhesion to the iron powder.

加熱温度については、合金化元素粉および潤滑剤が鉄粉
表面に固着する温度、すなわち少な(とも潤滑剤が溶融
する温度以上に加熱する必要があり、潤滑剤が溶融する
ことによって両者が鉄粉表面に固着する。加熱温度が高
すぎると溶融潤滑剤の粘度が低下し過ぎて鉄粉の孔の内
部まで浸透してしまうため、鉄粉表面に存在してこそ発
揮される伺滑性が損われ摩擦が増加して抜き圧の増加や
圧粉体密度の低下となって現われる。但しその上限を一
律に定めることは実情に沿わず、たとえば潤滑剤として
ステアリン酸亜鉛を用いる場合には加熱温度はステアリ
ン酸亜鉛の融点(140℃)以上、融点+30℃(17
0℃)以下の温度範囲に加熱するのが好ましい(第1図
および第2図参照)。
Regarding the heating temperature, it is necessary to heat the alloying element powder and the lubricant to the temperature at which they stick to the surface of the iron powder, that is, the temperature at which the lubricant melts. It sticks to the surface. If the heating temperature is too high, the viscosity of the molten lubricant decreases too much and it penetrates into the pores of the iron powder, impairing the lubricity that can only be achieved when it exists on the surface of the iron powder. The cracking friction increases, resulting in an increase in the ejection pressure and a decrease in the density of the green compact.However, it is not practical to set a uniform upper limit for this.For example, when zinc stearate is used as a lubricant, the heating temperature is higher than the melting point of zinc stearate (140℃), melting point +30℃ (17℃)
It is preferable to heat to a temperature range below 0° C. (see FIGS. 1 and 2).

上記のように鉄粉表面に合金化元素粉および潤滑剤を固
着させた均一分散原料を用いると、ホッパー投入時や金
型充填時等における振動や流動等によって成分偏析が生
ずることがない。したがって均質な焼結製品を得ること
ができる。また当然なろくら合金化元素粉や潤滑剤が鉄
粉に固着しているので前記のような取扱い時における分
離飛散等の環境問題を生ずることはない。
When a uniformly dispersed raw material with alloying element powder and lubricant fixed to the surface of the iron powder is used as described above, component segregation will not occur due to vibrations, flow, etc. during charging into a hopper or filling a mold. Therefore, a homogeneous sintered product can be obtained. Furthermore, since the alloying element powder and lubricant are fixed to the iron powder, environmental problems such as separation and scattering during handling as described above will not occur.

[実施例] (1)ステアリン酸亜鉛(以下Zn−3tと記す)6.
0g、黒鉛粉3.0 gおよびアトマイズ鉄粉297g
を■型混合器で30分間混合したものを110〜190
℃(Zn−Stの融点−30℃〜融点+50℃)の温度
範囲の中から夫々設定された温度に加熱し、同温度で1
5分間保持して黒鉛粉およびZn−3tを鉄粉表面に固
着させ、冷却後未着の黒鉛粉およびZn−3tを風力分
離した。黒鉛粉およびZn−3tの鉄粉への付着量(黒
鉛とZn−5tの配合量に対する%)と加熱温度との関
係を第1図に示す。また同図に加熱温度と圧縮成形(5
t/am”)後の抜き圧の関係を示す。また第2図に加
熱温度と圧粉体密度(g/cm3)の関係を示す。
[Example] (1) Zinc stearate (hereinafter referred to as Zn-3t)6.
0g, graphite powder 3.0g and atomized iron powder 297g
110-190 after mixing for 30 minutes with a ■ type mixer.
℃ (melting point of Zn-St -30℃ to melting point +50℃).
The graphite powder and Zn-3t were held for 5 minutes to adhere to the surface of the iron powder, and after cooling, the unattached graphite powder and Zn-3t were separated by air. FIG. 1 shows the relationship between the amount of graphite powder and Zn-3t attached to the iron powder (% of the blended amount of graphite and Zn-5t) and the heating temperature. The figure also shows the heating temperature and compression molding (5
Fig. 2 shows the relationship between the heating temperature and the green compact density (g/cm3).

第1図および第2図から明らかなように少なくともZn
−3tの融点以上に加熱すれば付着量が良好となること
がわかる。また加熱温度が高すぎると抜き圧が高くなる
とともに圧粉体密度も低下するので加熱温度が高すぎる
ことは良くない。即ち加熱温度はZn−3tの融点以上
融点+30℃以下、好ましくは融点+10℃以上融点+
20℃以下が良いことがわかる。
As is clear from FIGS. 1 and 2, at least Zn
It can be seen that the amount of adhesion becomes good when heated above the melting point of -3t. Furthermore, if the heating temperature is too high, the ejection pressure will increase and the green compact density will also decrease, so it is not good that the heating temperature is too high. That is, the heating temperature is above the melting point of Zn-3t and below the melting point +30°C, preferably above the melting point +10°C and below the melting point +
It can be seen that 20°C or lower is good.

(2)次にZn−3tの配合量を変えて前記(1)と同
様にして黒鉛粉およびZn−3t付着鉄粉を得た。第3
図に黒鉛粉およびZn−3tの付着量とZn−3t配合
量の関係を、第4図に圧粉体密度とZn−3t配合量の
関係を、第5図に抜き圧とZn−3t配合量の関係をそ
れぞれ示す。
(2) Next, graphite powder and Zn-3t-adhered iron powder were obtained in the same manner as in (1) above by changing the blending amount of Zn-3t. Third
Figure 4 shows the relationship between the adhesion amount of graphite powder and Zn-3t and the Zn-3t content, Figure 4 shows the relationship between the green compact density and the Zn-3t content, and Figure 5 shows the relationship between the extraction pressure and the Zn-3t content. The relationship between quantities is shown.

第3図、第4図および第5図から明らかなようにZn−
5tの配合量が多いほど付着量は高くなり、抜き圧は低
くなるが、圧粉体密度が低下するのでZn−3t配合量
は0.3〜1.3%にするのが良い。
As is clear from FIGS. 3, 4 and 5, Zn-
The larger the amount of Zn-3t mixed, the higher the adhesion amount and the lower the extraction pressure, but the density of the green compact decreases, so the amount of Zn-3t mixed is preferably 0.3 to 1.3%.

(3) Z n −S t 8 g 、黒鉛粉10gお
よびアトマイズ鉄粉990gを■型混合器で30分間混
合した後160℃に加熱し同温度で15分間保持し、冷
却して本発明の粉末冶金用鉄粉を製造した。得られた粉
末冶金用鉄粉を成形圧St/cm2.焼結温度1150
℃(Axガス中)で加圧成形して焼結体を得た。また比
較のために同配合で混合のみのものを製造し、これを同
条件で加圧成形して焼結体を得た。第6図に焼結体の硬
さとそのばらつきを示す。第6図から明らかなように比
較例に比べ本発明例による硬さのばらつきは%以下と小
さく、最初と最後のばらつきも小さくなっている。これ
は黒鉛粉の偏析が少なくなったためである。
(3) 8 g of Z n -S t , 10 g of graphite powder, and 990 g of atomized iron powder were mixed in a ■-type mixer for 30 minutes, then heated to 160°C, held at the same temperature for 15 minutes, and cooled to obtain the powder of the present invention. Manufactured iron powder for metallurgy. The obtained iron powder for powder metallurgy was subjected to a compacting pressure St/cm2. Sintering temperature 1150
A sintered body was obtained by pressure molding at °C (in Ax gas). For comparison, a product with the same composition and only mixing was manufactured, and this was pressure-molded under the same conditions to obtain a sintered body. Figure 6 shows the hardness of the sintered body and its variation. As is clear from FIG. 6, the variation in hardness according to the example of the present invention is smaller than that of the comparative example, at less than %, and the variation between the beginning and the end is also small. This is due to less segregation of graphite powder.

(4)2〜8%N i 、 0.5〜5%Cu、0.3
〜3%MO91%Zn−5t、0.5%Gr、残部アト
マイズ鉄粉(1000g)を■型混合器で30分間混合
後、160℃に加熱し同温度で15分間保持し冷却した
時の合金化元素粉の添加量と付着率の関係を第7図に示
す。図から明らかな様に合金化元素粉の添加量が10%
以上になると、潤滑剤による合金化元素粉の付着率が低
くなるため偏析防止の効果が薄くなる。
(4) 2-8% Ni, 0.5-5% Cu, 0.3
~3%MO91%Zn-5t, 0.5%Gr, balance atomized iron powder (1000g) was mixed in a type mixer for 30 minutes, heated to 160℃, kept at the same temperature for 15 minutes, and cooled. FIG. 7 shows the relationship between the amount of chemical element powder added and the adhesion rate. As is clear from the figure, the amount of alloying element powder added is 10%.
If it exceeds the above range, the rate of adhesion of the alloying element powder by the lubricant becomes low, and the effect of preventing segregation becomes weak.

(5)添加合金化元素粉の偏析低下を確認するため、2
%N i 、 0.5%Mo、0.5%Gr(黒鉛)、
1%Zn−3t、残部アトマイズ鉄粉を配合し、■型混
合器で30分間混合後、160tに加熱し同温度に15
分間保持後、成形圧5t/cm2.Axガス雰囲気中1
150℃で10φ×55”(cm)に焼結した。得られ
た焼結体の引張試験結果を第1表に示す。また比較のた
めZn−5tを添加しないものを同様に加圧成形して焼
結体を得た。結果を第1表に併記する。
(5) To confirm the reduction in segregation of the added alloying element powder, 2
%N i , 0.5%Mo, 0.5%Gr (graphite),
Blend 1% Zn-3t and the balance with atomized iron powder, mix for 30 minutes in a type mixer, heat to 160t, and keep at the same temperature for 15 minutes.
After holding for a minute, the molding pressure was 5t/cm2. In Ax gas atmosphere 1
It was sintered to a size of 10φ x 55" (cm) at 150°C. The tensile test results of the obtained sintered body are shown in Table 1. For comparison, a piece without Zn-5t was similarly pressure-formed. A sintered body was obtained.The results are also listed in Table 1.

本発明例は合金化元素粉の偏析が少なく、ばらつきも%
以下となっており、強度の弱い部分が減少するため全体
の強度は高くなっている。
In the example of the present invention, there is less segregation of alloying element powder, and the variation is also %.
The overall strength is increased because the weaker parts are reduced.

[発明の効果コ 本発明は以上のように構成されているので本発明方法に
よって製造した本発明粉末冶金用鉄粉は取扱い時に成分
偏析をおこさず、これを用いると均質な焼結晶を得るこ
とができる。また作業環境の改善を図ることができる。
[Effects of the invention] Since the present invention is constructed as described above, the iron powder for powder metallurgy of the present invention produced by the method of the present invention does not cause component segregation during handling, and when used, homogeneous sintered crystals can be obtained. Can be done. It is also possible to improve the working environment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鉄粉への黒鉛粉およびZn−3tの付着度と加
熱温度、抜き圧と加熱温度の関係を示す図、第2図は圧
粉体密度および加熱温度の関係を示す図、第3図は鉄粉
への黒鉛粉およびZn−5tの付着度とZn−3t配合
量の関係を示す図、第4図は圧粉体密度とZn−3t配
合量の関係を示す図、第5図は抜き圧とZn−3t配合
量の関係を示す図、第6図は焼結体の硬さとそのばらつ
きを示す図、第7図は合金化元素粉添加量と付着率を示
す図である。 黒鉛粉およびZn−5t付着度(%] ; −日ン寸 圧粉体密/l(g/CF11”) (at  5t/z
2)黒鉛粉およびZ n−3t f、t’ 7?? /
x (%)0   0    CCC0 第5図 Zn−5t配合量(う) ;硼隈 昧)
Figure 1 is a diagram showing the relationship between the degree of adhesion of graphite powder and Zn-3t to iron powder and heating temperature, and the extraction pressure and heating temperature. Figure 2 is a diagram showing the relationship between green compact density and heating temperature. Figure 3 is a diagram showing the relationship between the degree of adhesion of graphite powder and Zn-5t to iron powder and the amount of Zn-3t mixed, Figure 4 is a diagram showing the relationship between the green compact density and the amount of Zn-3t mixed, and Figure 5 The figure shows the relationship between extraction pressure and Zn-3t content, Figure 6 shows the hardness of the sintered body and its variation, and Figure 7 shows the amount of alloying element powder added and the adhesion rate. . Graphite powder and Zn-5t adhesion degree (%); -day compact powder density/l (g/CF11”) (at 5t/z
2) Graphite powder and Z n-3t f, t' 7? ? /
x (%) 0 0 CCC0 Figure 5 Zn-5t blending amount (u) ; Kankuma Mei)

Claims (2)

【特許請求の範囲】[Claims] (1)潤滑剤0.3〜1.3%(重量%の意味、以下同
じ)、合金化元素粉0.1〜10%および残部鉄粉より
なり、鉄粉表面に合金化元素粉が固着していることを特
徴とする粉末冶金用鉄粉。
(1) Consisting of 0.3 to 1.3% lubricant (meaning of weight %, the same applies hereinafter), 0.1 to 10% alloying element powder, and the balance iron powder, and the alloying element powder adheres to the surface of the iron powder. Iron powder for powder metallurgy.
(2)潤滑剤0.3〜1.3%、合金化元素粉0.1〜
10%および鉄粉88.7〜99.6%を均一に混合す
る工程及び少なくとも、潤滑剤の融点以上の温度に加熱
する工程を含むことを特徴とする粉末冶金用鉄粉の製造
方法。
(2) Lubricant 0.3~1.3%, alloying element powder 0.1~
A method for producing iron powder for powder metallurgy, comprising the steps of uniformly mixing 10% and 88.7 to 99.6% of iron powder, and heating to at least a temperature equal to or higher than the melting point of a lubricant.
JP63043934A 1988-02-25 1988-02-25 Iron powder for powder metallurgy and production thereof Pending JPH01219101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63043934A JPH01219101A (en) 1988-02-25 1988-02-25 Iron powder for powder metallurgy and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63043934A JPH01219101A (en) 1988-02-25 1988-02-25 Iron powder for powder metallurgy and production thereof

Publications (1)

Publication Number Publication Date
JPH01219101A true JPH01219101A (en) 1989-09-01

Family

ID=12677521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63043934A Pending JPH01219101A (en) 1988-02-25 1988-02-25 Iron powder for powder metallurgy and production thereof

Country Status (1)

Country Link
JP (1) JPH01219101A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976215A (en) * 1997-08-29 1999-11-02 Kawasaki Steel Corporation Iron-based powder mixture for powder metallurgy and process for preparing the same
US6436166B2 (en) 1999-09-09 2002-08-20 Höganäs Ab Powder composition
US6533836B2 (en) 2000-07-07 2003-03-18 Kawasaki Steel Corporation Iron-based powders for powder metallurgy
WO2009035119A1 (en) 2007-09-14 2009-03-19 Jfe Steel Corporation Iron-based powder for powder metallurgy
WO2009075042A1 (en) 2007-12-13 2009-06-18 Jfe Steel Corporation Iron based powder for powder metallurgy
JP2009263697A (en) * 2008-04-23 2009-11-12 Jfe Steel Corp Method for manufacturing sintered steel
JP2010007175A (en) * 2008-05-27 2010-01-14 Jfe Steel Corp Iron-based powdery mixture for powder metallurgy
JP2010031349A (en) * 2008-06-27 2010-02-12 Jfe Steel Corp Iron-based powdery mixture for powder metallurgy
WO2012060452A1 (en) 2010-11-04 2012-05-10 アイダエンジニアリング株式会社 High density molding method and high density molding device for mixed powder
WO2013154146A1 (en) 2012-04-12 2013-10-17 アイダエンジニアリング株式会社 High-density molding device and high-density molding method for mixed powder
WO2013154145A1 (en) 2012-04-12 2013-10-17 アイダエンジニアリング株式会社 High-density molding device and high-density molding method for mixed powder
WO2013161747A1 (en) 2012-04-23 2013-10-31 アイダエンジニアリング株式会社 Device for high-density molding and method for high-density molding of mixed powder, and high-density three-layer-structured powder compact
WO2013161744A1 (en) 2012-04-23 2013-10-31 アイダエンジニアリング株式会社 Device for high-density molding and method for high-density molding of mixed powder
WO2013161746A1 (en) 2012-04-23 2013-10-31 アイダエンジニアリング株式会社 Device for high-density molding and method for high-density molding of mixed powder
WO2013161745A1 (en) 2012-04-23 2013-10-31 アイダエンジニアリング株式会社 Device for high-density molding and method for high-density molding of mixed powder
US9149869B2 (en) 2010-11-22 2015-10-06 Kobe Steel, Ltd. Mixed powder for powder metallurgy and process for producing same
US9352393B2 (en) 2012-12-28 2016-05-31 Jfe Steel Corporation Iron-based powder for powder metallurgy
JP2016207711A (en) * 2015-04-16 2016-12-08 株式会社ジェイテクト Manufacturing method of magnet and magnet
CN106270483A (en) * 2016-08-16 2017-01-04 合肥波林新材料股份有限公司 A kind of iron-based molding compound preparation method
KR20170010829A (en) 2014-05-29 2017-02-01 가부시키가이샤 고베 세이코쇼 Mixed powder for powder metallurgy
JP2017045926A (en) * 2015-08-28 2017-03-02 トヨタ自動車株式会社 Manufacturing method for dust core
US9815114B2 (en) 2013-03-13 2017-11-14 Toyota Jidosha Kabushiki Kaisha Powder for molding, lubricant-concentrated powder and method for producing metal member
US9868153B2 (en) 2010-11-09 2018-01-16 Kobe Steel, Ltd. Mixed powder for powder metallurgy and manufacturing method thereof
JP2019125622A (en) * 2018-01-12 2019-07-25 トヨタ自動車株式会社 Method for manufacturing powder-compact magnetic core

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976215A (en) * 1997-08-29 1999-11-02 Kawasaki Steel Corporation Iron-based powder mixture for powder metallurgy and process for preparing the same
US6436166B2 (en) 1999-09-09 2002-08-20 Höganäs Ab Powder composition
CN100360264C (en) * 1999-09-09 2008-01-09 赫加奈斯公司 Powder composition comprising aggregates of iron powder and addditives and flow agent and process for its preparation
US6533836B2 (en) 2000-07-07 2003-03-18 Kawasaki Steel Corporation Iron-based powders for powder metallurgy
WO2009035119A1 (en) 2007-09-14 2009-03-19 Jfe Steel Corporation Iron-based powder for powder metallurgy
JP2010053440A (en) * 2007-09-14 2010-03-11 Jfe Steel Corp Iron-based powder for powder metallurgy
US7867314B2 (en) 2007-09-14 2011-01-11 Jfe Steel Corporation Iron-based powder for powder metallurgy
WO2009075042A1 (en) 2007-12-13 2009-06-18 Jfe Steel Corporation Iron based powder for powder metallurgy
US8747516B2 (en) 2007-12-13 2014-06-10 Jfe Steel Corporation Iron-based powder for powder metallurgy
JP2009263697A (en) * 2008-04-23 2009-11-12 Jfe Steel Corp Method for manufacturing sintered steel
JP2010007175A (en) * 2008-05-27 2010-01-14 Jfe Steel Corp Iron-based powdery mixture for powder metallurgy
JP2010031349A (en) * 2008-06-27 2010-02-12 Jfe Steel Corp Iron-based powdery mixture for powder metallurgy
WO2012060452A1 (en) 2010-11-04 2012-05-10 アイダエンジニアリング株式会社 High density molding method and high density molding device for mixed powder
US9868153B2 (en) 2010-11-09 2018-01-16 Kobe Steel, Ltd. Mixed powder for powder metallurgy and manufacturing method thereof
US9149869B2 (en) 2010-11-22 2015-10-06 Kobe Steel, Ltd. Mixed powder for powder metallurgy and process for producing same
WO2013154146A1 (en) 2012-04-12 2013-10-17 アイダエンジニアリング株式会社 High-density molding device and high-density molding method for mixed powder
WO2013154145A1 (en) 2012-04-12 2013-10-17 アイダエンジニアリング株式会社 High-density molding device and high-density molding method for mixed powder
WO2013161747A1 (en) 2012-04-23 2013-10-31 アイダエンジニアリング株式会社 Device for high-density molding and method for high-density molding of mixed powder, and high-density three-layer-structured powder compact
WO2013161745A1 (en) 2012-04-23 2013-10-31 アイダエンジニアリング株式会社 Device for high-density molding and method for high-density molding of mixed powder
WO2013161746A1 (en) 2012-04-23 2013-10-31 アイダエンジニアリング株式会社 Device for high-density molding and method for high-density molding of mixed powder
WO2013161744A1 (en) 2012-04-23 2013-10-31 アイダエンジニアリング株式会社 Device for high-density molding and method for high-density molding of mixed powder
US9352393B2 (en) 2012-12-28 2016-05-31 Jfe Steel Corporation Iron-based powder for powder metallurgy
US9815114B2 (en) 2013-03-13 2017-11-14 Toyota Jidosha Kabushiki Kaisha Powder for molding, lubricant-concentrated powder and method for producing metal member
KR20170010829A (en) 2014-05-29 2017-02-01 가부시키가이샤 고베 세이코쇼 Mixed powder for powder metallurgy
JP2016207711A (en) * 2015-04-16 2016-12-08 株式会社ジェイテクト Manufacturing method of magnet and magnet
JP2017045926A (en) * 2015-08-28 2017-03-02 トヨタ自動車株式会社 Manufacturing method for dust core
CN106270483A (en) * 2016-08-16 2017-01-04 合肥波林新材料股份有限公司 A kind of iron-based molding compound preparation method
JP2019125622A (en) * 2018-01-12 2019-07-25 トヨタ自動車株式会社 Method for manufacturing powder-compact magnetic core

Similar Documents

Publication Publication Date Title
JPH01219101A (en) Iron powder for powder metallurgy and production thereof
US4483905A (en) Homogeneous iron based powder mixtures free of segregation
RU2245218C2 (en) Powder composition containing aggregated particles of iron powder, additives and fluidity enhancing matter, method of preparing such composition
JP3315982B2 (en) Powder mixture and method for producing the same
EP0310115B2 (en) Iron base powder mixture and method
JPH0432122B2 (en)
US3836355A (en) Steel powder containing phosphorus
JP2010265454A (en) Lubricant combination and process for preparing the same
US3652261A (en) Iron powder infiltrant
CA2382717C (en) Lubricant composite and process for the preparation thereof
US5286275A (en) Powder mixture for powder metallurgy and binder therefor
US5926686A (en) Sintered products having improved density
CA1331526C (en) Iron base powder mixture and method
JPS6149375B2 (en)
RU2690127C1 (en) Method of producing powder mixture, which is ready for pressing of metallurgical parts
US3128172A (en) Non-spherical cupreous powder
CA2277556C (en) Lubricated aluminum powder agglomerates having improved flowability
JPS6354056B2 (en)
JP2778410B2 (en) Anti-segregation mixed powder for powder metallurgy
US2253476A (en) Metal alloys and method of making composite alloys of definite compositions therefrom
RU2692002C1 (en) Method of producing complex-alloyed powder mixture, ready for molding
JPH08143901A (en) Alloy powder for powder metallurgy having high flowability and its production
US20230128986A1 (en) Iron-Based Mixed Powder and Method for Manufacturing the Same
JPS596339A (en) Preparation of aluminum alloy
JP2021188072A (en) Iron-based mixture for powder metallurgy, molded body, and sintered body