JPH01217856A - Manufacture of electrode for molten carbonate fuel cell - Google Patents

Manufacture of electrode for molten carbonate fuel cell

Info

Publication number
JPH01217856A
JPH01217856A JP63042840A JP4284088A JPH01217856A JP H01217856 A JPH01217856 A JP H01217856A JP 63042840 A JP63042840 A JP 63042840A JP 4284088 A JP4284088 A JP 4284088A JP H01217856 A JPH01217856 A JP H01217856A
Authority
JP
Japan
Prior art keywords
battery
electrode
paper
positive electrode
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63042840A
Other languages
Japanese (ja)
Inventor
Akiyoshi Yamane
山根 朗義
Yuji Horii
堀井 雄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63042840A priority Critical patent/JPH01217856A/en
Publication of JPH01217856A publication Critical patent/JPH01217856A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/141Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers
    • H01M8/142Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers with matrix-supported or semi-solid matrix-reinforced electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To prevent breakage of electrode materials without complicating assemble operation by assembling paper-like sheets in a cell main body to form a cell, and burning out removable fibers in the paper-like sheets by heating the cell. CONSTITUTION:An electrolyte plate is interposed between a positive electrode forming paper-like sheet 1 and a negative electrode forming paper-like sheet 2 and a cell is assembled. To burn out the removable fibers in the paper-like sheets 1, 2, they are heated with heaters 7. A positive electrode side gas passage 5 is installed between the paper-like sheet 2 and a cell holder 4, and a negative electrode side gas passage 6 is installed between the paper-like sheet 2 and a cell holder 4. To burn out the removable fibers in the paper-like sheets 1, 2. A mixture of 70% air and 30% carbon dioxide is passed in the gas passages 5 and 6 in a flow rate of 1.0 Nl/min. and the cell is heated at 420 deg.C for 12 hours.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は溶融炭酸塩型燃料電池用電極の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing an electrode for a molten carbonate fuel cell.

(従来の技術) 燃料電池の中、発電効率が高く、貴金属触媒が不要であ
り、且つ天然ガスをはじめとする多くの燃料が利用でき
ることから、600−7009C程度で作動させる溶融
炭酸塩型燃料電池が注目されている。この電池は、溶融
炭酸塩を電解質として含む電解質板の片方の面に多孔質
の電子導電体からなる正極、もう一方の面に多孔質の電
子導電体からなる負極(燃料極)を接触させ、正極(酸
化極)に酸化剤ガスを、負極に燃料ガスを供給すること
により、電池反応を行わせるものである。
(Prior art) Among fuel cells, molten carbonate fuel cells operate at about 600-7009C because they have high power generation efficiency, do not require precious metal catalysts, and can use many fuels including natural gas. is attracting attention. This battery has a positive electrode made of a porous electronic conductor on one side of an electrolyte plate containing molten carbonate as an electrolyte, and a negative electrode (fuel electrode) made of a porous electronic conductor on the other side. A battery reaction is carried out by supplying an oxidant gas to the positive electrode (oxidizing electrode) and a fuel gas to the negative electrode.

従来、この溶融炭酸塩型燃料電池の負極は、Ni等の遷
移金属および/または遷移金属合金の多孔質焼結体が主
に使用され、この多孔質焼結体(負極)は、カーボニル
ニッケル等の粉末をソー)・状に成形した後、還元性雰
囲気中での加熱により、焼結して製されている。正極に
ついては、酸化ニンケル等の遷移金属の酸化物および/
または遷移金属合金の酸化物からなる多孔質焼結体が主
に使用され、この多孔質焼結体(正極)は、先ず負極と
ほぼ同様のNi等の多孔質焼結体を、還元性雰囲気中で
の加熱により作った後、この多孔質焼結体(正極)と上
記多孔質焼結体(負極)との間に電解質板を挟み込んで
電池本体に組み込み、ついで該電池内において多孔質焼
結体を酸化剤ガス雰囲気中で加熱することにより酸化し
て製されている。尚、この多孔質焼結体(正極)は、更
に電解質中のリチウムをドープさせることにより、電子
導電体として作用する正極となるものである。
Conventionally, a porous sintered body of a transition metal such as Ni and/or a transition metal alloy has been mainly used for the negative electrode of this molten carbonate fuel cell. It is manufactured by shaping the powder into a saw shape and then sintering it by heating in a reducing atmosphere. For the positive electrode, transition metal oxides such as nickel oxide and/or
Alternatively, a porous sintered body made of an oxide of a transition metal alloy is mainly used, and this porous sintered body (positive electrode) is first made of a porous sintered body of Ni or the like, which is almost the same as the negative electrode, in a reducing atmosphere. After the porous sintered body (positive electrode) and the above-mentioned porous sintered body (negative electrode) are inserted into the battery body, an electrolyte plate is inserted between the porous sintered body (positive electrode) and the porous sintered body (negative electrode). It is produced by oxidizing the solid by heating it in an oxidant gas atmosphere. This porous sintered body (positive electrode) is further doped with lithium in an electrolyte to become a positive electrode that acts as an electronic conductor.

(発明が解決しようとする課題) ところで、溶融炭酸塩型燃料電池の正極および負極は、
ガス拡散電極としての機能を有するものであるので、こ
の機能を充分発揮するために適度な多孔度を有し、かつ
薄い多孔体でなければならない。かような多孔体とした
とき、前記従来技術で作られる多孔質焼結体は、強度が
弱く、かつ脆い。そのため、この多孔質焼結体の間に電
解質板を挟み込んで電池本体に組み込んで電池とする際
、多孔質焼結体の破損が生じることが多いという問題点
がある。そこで、この破損を防止するため、多孔質焼結
体の間に電解質板を挟み込んだものを金網等で補強して
組み込んで、組み込み後金網等を取り外す方法も行われ
ているが、これらの操作は極めて複雑であるため、この
方法は製造工程が煩雑になるという問題点がある。また
、電池への組み込み前に焼結のために加熱し、冷却し、
電池への組み込み後電池運転のために再度加熱し昇温さ
れるので、加熱処理工程が断続しており、その工程の簡
略化が望まれる。
(Problems to be Solved by the Invention) By the way, the positive electrode and negative electrode of the molten carbonate fuel cell are as follows:
Since it has the function of a gas diffusion electrode, it must have an appropriate porosity and be a thin porous body in order to fully exhibit this function. When used as such a porous body, the porous sintered body produced by the conventional technique has low strength and is brittle. Therefore, when an electrolyte plate is inserted between the porous sintered bodies and assembled into a battery body to form a battery, there is a problem in that the porous sintered bodies are often damaged. Therefore, in order to prevent this damage, a method is used in which an electrolyte plate is sandwiched between porous sintered bodies, reinforced with wire mesh, etc., and the wire mesh, etc. is removed after assembly. Since this is extremely complicated, this method has the problem of complicating the manufacturing process. It is also heated and cooled for sintering before being incorporated into the battery.
After being incorporated into a battery, it is heated again to raise the temperature for battery operation, so the heat treatment process is intermittent, and simplification of this process is desired.

本発明はこの様な事情に着目してなされたものであって
、その目的は従来のものがもつ以上のような問題点を解
消し、電極材料を電解質板と共に電池本体に組み込んで
電池とする際の電極材料の破損を、その取り付は操作を
複雑にすることなく、防止し得る溶融炭酸塩型燃料電池
用電極の製造方法を提供しようとするものである。更に
、電極材料の取り付は以前における焼結工程を無くし、
電極の製造工程を簡略化することも本発明の課題とする
ものである。
The present invention was made in view of these circumstances, and its purpose is to solve the above-mentioned problems of the conventional ones, and to create a battery by incorporating the electrode material into the battery body together with the electrolyte plate. The object of the present invention is to provide a method for manufacturing an electrode for a molten carbonate fuel cell, which can prevent damage to the electrode material during installation without complicating the operation. Furthermore, the attachment of the electrode material eliminates the previous sintering process,
Another object of the present invention is to simplify the electrode manufacturing process.

(課題を解決するための手段) 上記の課題を達成するために、本発明は次のような構成
の溶融炭酸塩型燃料電池用電極の製造方法としている。
(Means for Solving the Problems) In order to achieve the above-mentioned problems, the present invention provides a method for manufacturing an electrode for a molten carbonate fuel cell having the following configuration.

すなわち、本発明は、溶融炭酸塩を電解質として含む電
解質板の片方の面に多孔質焼結体からなる正極、もう一
方の面に多孔質焼結体からなる負極を接触させ、正極に
酸化剤ガスを、負極に燃料ガスを供給することにより、
電池反応を行わせる溶融炭酸塩型燃料電池の電極を製造
する方法において、前記電極の少なくとも一方を、加熱
消失可能な消失性繊維に遷移金属粉末および/または遷
移金属合金粉末を抄き込みシート状抄造体にし、該抄造
体を電池本体に組み込んで電池とし、該電池を加熱処理
して該抄造体中の前記消失性繊維を消失させ、更に前記
遷移金属粉末および/または遷移金属合金粉末を焼結し
て製造することを特徴とする溶融炭酸塩型燃料電池用電
極の製造方法である。
That is, in the present invention, a positive electrode made of a porous sintered body is brought into contact with one side of an electrolyte plate containing molten carbonate as an electrolyte, and a negative electrode made of a porous sintered body is brought into contact with the other side, and an oxidizing agent is applied to the positive electrode. By supplying gas and fuel gas to the negative electrode,
In a method for manufacturing an electrode for a molten carbonate fuel cell that carries out a cell reaction, at least one of the electrodes is formed into a sheet by inserting a transition metal powder and/or a transition metal alloy powder into fugitive fibers that can be dissipated by heating. A paper product is formed, the paper product is incorporated into a battery body to form a battery, the battery is heat-treated to eliminate the fugitive fibers in the paper product, and the transition metal powder and/or transition metal alloy powder is sintered. This is a method for producing an electrode for a molten carbonate fuel cell.

(作 用) 本発明は、以上説明したように、先ず加熱消失可能な消
失性繊維(以降、加熱消失性繊維という)に遷移金属粉
末および/または遷移金属合金粉末(以降、金属粉末と
いう)を抄き込み、シート状抄造体を得るようにしてい
る。これは、例えば、木材パルプ等の加熱消失性繊維を
水等の液体溶媒中に分散させ、該分散液中にNi、 C
u、 Cr等の金属粉末を添加し、均質なスラリーを作
製し、前記金属粉末を消失性繊維に吸着させた状態で抄
紙し、乾燥することによって得ることができる。このよ
うにして得られる抄造体は、金属粉末だけでなく、繊維
を含有する複合材であるので、可撓性を有している。
(Function) As explained above, in the present invention, first, a transition metal powder and/or a transition metal alloy powder (hereinafter referred to as a metal powder) is added to a fugitive fiber that can be dissipated by heating (hereinafter referred to as a heat-dissipated fiber). This is done to obtain a sheet-like paper product. This method involves, for example, dispersing heat-disappearing fibers such as wood pulp in a liquid solvent such as water, and dispersing Ni, C, etc. in the dispersion.
It can be obtained by adding metal powder such as u, Cr, etc. to prepare a homogeneous slurry, making paper with the metal powder adsorbed to fugitive fibers, and drying. The paper product obtained in this manner is a composite material containing not only metal powder but also fibers, and therefore has flexibility.

次に、該抄造体を電池本体に組み込んで電池ととするよ
うにしている。これは該抄造体の間に電解質板を挟み込
んで電池本体に組み込むことにより行い得る。この時、
上記の如く抄造体は、可撓性を有しているので、抄造体
を破損することなく電池本体に組み込んで電池とするこ
とができる。
Next, the paper product is assembled into a battery main body to form a battery. This can be done by inserting an electrolyte plate between the paper products and incorporating them into the battery body. At this time,
As described above, since the paper product has flexibility, the paper product can be incorporated into a battery main body to form a battery without damaging the paper product.

従って、従来のように金網等で補強する必要がなくなり
、電池内への電極材料(抄造体)の組み込み時の操作が
簡単になる。
Therefore, there is no need for reinforcement with a wire mesh or the like as in the past, and the operation when incorporating the electrode material (paperwork) into the battery becomes easier.

次に、電池を加熱処理し、上記抄造体中の消失性繊維を
消失させ、更に金属粉末の焼結を行わせる。この処理に
より、抄造体において加熱消失性繊維の存在していた部
分が空隙として残り、更に金属粉末の焼結が行われ、抄
造体は多孔質焼結体になる。従って、加熱消失性繊維の
量の変化により、多孔度を調整でき、また、極めて多孔
度の高い多孔質焼結体を製し得る。尚、正極の多孔質焼
結体は、正極として機能させるために酸化物とする必要
があるが、そのためには焼結時、もしくは焼結後に酸化
剤ガス雰囲気中で加熱することにより酸化すればよい。
Next, the battery is heat-treated to eliminate the fugitive fibers in the paper product, and the metal powder is further sintered. Through this treatment, the portions of the papermaking body where heat-disappearing fibers were present remain as voids, and the metal powder is further sintered, so that the papermaking body becomes a porous sintered body. Therefore, by changing the amount of heat-disappearing fibers, the porosity can be adjusted, and a porous sintered body with extremely high porosity can be produced. In addition, the porous sintered body of the positive electrode needs to be made into an oxide in order to function as a positive electrode, but for this purpose, it can be oxidized by heating in an oxidant gas atmosphere during or after sintering. good.

上記電池の加熱処理は、電池運転開始前の保温時あるい
は昇温時の熱を利用して行い得る。従って、消失性繊維
の消失から焼結後の酸化までの一連の加熱処理工程を連
続して行うことができ、この一連の工程に続いて電池運
転ができる。一方、従来方法の場合は、電池への組み込
み前に焼結のために加熱し、冷却し、電池への組み込み
後電池運転のために再度加熱し昇温される。故に、本発
明は、電極の製造工程をも簡略化し得るものである。
The heat treatment of the battery can be performed using heat generated during heat retention or during temperature rise before the battery starts operating. Therefore, a series of heat treatment steps from disappearance of fugitive fibers to oxidation after sintering can be performed continuously, and battery operation can be performed following this series of steps. On the other hand, in the case of the conventional method, the material is heated for sintering and cooled before being incorporated into the battery, and after being incorporated into the battery, it is heated again to raise the temperature for battery operation. Therefore, the present invention can also simplify the electrode manufacturing process.

以上のように、本発明は、電極材料を電解質板と共に電
池本体に組み込んで電池とする際の電極材料の破損を、
その取り付は操作を複雑にすることなく、防止し得るよ
うになる。更に、電池への組み込み前における焼結工程
を無くし、焼結は電池運転開始前の保温時あるいは昇温
時の熱を利用し、一連の加熱処理工程の中で行い得るの
で、電極の製造工程を簡略化し得る。そして、電極材料
を薄<シても破損が生じず、また、多孔度を調整できる
ので、ガス拡散電極としての機能を充分発揮するために
必要な多孔度を有し、かつ薄い多孔体にしてなる溶融炭
酸塩型燃料電池用電極が得られる。
As described above, the present invention prevents damage to the electrode material when the electrode material is incorporated into the battery body together with the electrolyte plate to form a battery.
Its attachment can be prevented without complicating the operation. Furthermore, the sintering process before assembly into the battery can be eliminated, and sintering can be performed in a series of heat treatment processes using the heat generated during heat retention or temperature rise before the battery starts operating, thereby reducing the electrode manufacturing process. can be simplified. In addition, the electrode material can be made thin without causing damage, and the porosity can be adjusted, so it can be made into a thin porous body that has the porosity necessary to fully perform its function as a gas diffusion electrode. A molten carbonate fuel cell electrode is obtained.

本発明で使用する加熱消失性繊維は、前述の如く加熱に
より消失可能なものであれば種類の如何を問うものでな
く、木綿、麻、羊毛等の各種天然繊維、ナイロン、ポリ
エステル等の各種合成繊維、炭素繊維あるいはパルプ等
の全てを使用することができるが、金属粉末を効率良く
定着させる上で最も好ましいのは植物性天然繊維及びパ
ルプである。
The heat-disappearing fiber used in the present invention is not limited to any type as long as it can be dissipated by heating as described above, and includes various natural fibers such as cotton, linen, and wool, and various synthetic fibers such as nylon and polyester. All fibers, carbon fibers, pulps, etc. can be used, but vegetable natural fibers and pulps are most preferred for efficiently fixing the metal powder.

抄造体を得るには格別特殊な技術が要求される訳ではな
く、従来から一般に採用されている紙や繊維質ボード等
の製法に準じて実施すればよく、この場合消失性繊維へ
の定着率を高めるため、更にポリアクリルアミドの如き
凝集定着剤(助剤)を併用することが望まれる。
Obtaining a paper product does not require any special technology; it can be carried out in accordance with the conventional manufacturing method for paper, fiber board, etc. In this case, the fixation rate to fugitive fibers In order to increase this, it is desirable to further use a coagulating fixing agent (auxiliary agent) such as polyacrylamide.

電池への組み込み後の電池の加熱処理に関し、加熱消失
性繊維の消失及び金属粉末の焼結は、同じ温度で同時に
行ってもよいが、電極機能を最高度に発揮するガス拡散
電極とするためには、先ず、金属粉末の焼結が起こらず
、加熱消失性繊維が消失する温度及び雰囲気条件で加熱
して抄造体中における加熱消失性繊維を消失させた後、
金属粉末の焼結が起こる温度及び雰囲気条件で加熱して
金属粉末の焼結を行わせるのが望ましい。
Regarding the heat treatment of the battery after it is incorporated into the battery, the disappearance of heat-disappearing fibers and the sintering of the metal powder may be performed simultaneously at the same temperature, but in order to create a gas diffusion electrode that maximizes the electrode function. First, the heat-disappearing fibers in the paper product are heated at a temperature and atmosphere condition in which sintering of the metal powder does not occur and the heat-disappearing fibers disappear, and then,
It is desirable to sinter the metal powder by heating at a temperature and atmospheric condition that will cause sintering of the metal powder.

加熱消失性繊維を消失させる温度及び雰囲気条件に関し
、雰囲気としては、空気等の酸化性雰囲気の方が、消失
性繊維及び助剤の消失に対して効率的であり、又カーボ
ン生成による閉塞の恐れがないので好ましい、加熱温度
としては通常300’C以上、好ましくは400°C以
上がよい。
Regarding the temperature and atmospheric conditions for extinguishing heat-fusible fibers, an oxidizing atmosphere such as air is more efficient in eliminating the fugitive fibers and auxiliary agents, and also reduces the risk of clogging due to carbon formation. The heating temperature is usually 300°C or higher, preferably 400°C or higher.

尚、上記加熱消失性繊維を消失させる温度に関し、負極
側では、金属粉末が酸化されずに消失性繊維及び助剤の
みが消失するのが好ましいので、比較的低温を選択する
方が良い0例えば、Niの場合には420−430’C
以下であれば酸化が実質上起こらないので、400’C
前後が良い。但し、Ni、 Cu等の場合には、この時
酸化されても、後工程の焼結工程における還元性雰囲気
での加熱処理によって容易に還元されるので、430’
C以上の比較的高温を選択することができる。一方、正
極は一般にNiの酸化物(NiO)であるので、正極側
では、消失性繊維及び助剤の消失に重点をおいて高い加
熱温度を選択することも考えられるが、NiO粉末は難
焼結体であり、多孔質の焼結体を形成できないため、金
属粉末が酸化されずに消失性繊維及び助剤のみが消失す
る条件で加熱処理するのが好ま、しい。従って比較的低
温を選択する方が良い。例えば、負極と同様、Niの場
合には酸化が実質上起こらない400°C前後が良い。
Regarding the temperature at which the heat-disappearing fibers disappear, on the negative electrode side, it is preferable that only the fugitive fibers and the auxiliary agent disappear without oxidizing the metal powder, so it is better to select a relatively low temperature. , 420-430'C for Ni
If it is below 40'C, oxidation will not occur substantially.
The front and back are good. However, in the case of Ni, Cu, etc., even if they are oxidized at this time, they are easily reduced by heat treatment in a reducing atmosphere in the subsequent sintering process, so 430'
A relatively high temperature of C or higher can be selected. On the other hand, since the positive electrode is generally made of Ni oxide (NiO), it is possible to select a high heating temperature on the positive electrode side with emphasis on the disappearance of fugitive fibers and auxiliary agents, but NiO powder is difficult to burn. Since the metal powder is a solid body and a porous sintered body cannot be formed, it is preferable that the heat treatment is performed under conditions such that only the fugitive fibers and the auxiliary agent disappear without oxidizing the metal powder. Therefore, it is better to choose a relatively low temperature. For example, as with the negative electrode, in the case of Ni, the temperature is preferably around 400°C, at which oxidation does not substantially occur.

但し、Ni、 Cu等の場合には、この時酸化されても
、後工程の還元性雰囲気での加熱処理によって容易に還
元されるので、430’C以上の比較的高温を選択する
ことができる。また、上記加熱操作は、正極側と負極側
を同時に行うことが可能である。
However, in the case of Ni, Cu, etc., even if they are oxidized at this time, they are easily reduced by heat treatment in a reducing atmosphere in the subsequent process, so a relatively high temperature of 430'C or higher can be selected. . Moreover, the above heating operation can be performed simultaneously on the positive electrode side and the negative electrode side.

消失性繊維の消失後の金属粉末の焼結の温度及び雰囲気
条件に関し、負極側では、金属粉末が酸化されずに焼結
される必要があるので、還元性雰囲気で行うのが好まし
く、温度は通常600’C以上、11006C以下でよ
い。例えば、消失性繊維の消失後、電池運転時の燃料ガ
スの還元性雰囲気に切り換え、電池運転温度まで昇温し
で加熱すればよく、この操作によるのが便利である。一
方、正極側では、正極は一般にN−10であるので酸化
性雰囲気で処理しても良いが、より多孔度の高い焼結体
とするためには還元性雰囲気で焼結処理するのが好まし
い。例えば、消失性繊維の消失後、電池運転時の燃料ガ
スの雰囲気に切り換え、電池運転温度まで昇温しで加熱
するのが便利である。尚、正極としての電極機能を持た
せるには、焼結後に酸化する必要があるが、この酸化は
電池運転中に生じさせることができる。電池運転時、正
極側は酸化側ガスが供給されるからである。
Regarding the temperature and atmosphere conditions for sintering the metal powder after the fugitive fibers have disappeared, on the negative electrode side, the metal powder needs to be sintered without being oxidized, so it is preferable to sinter the metal powder in a reducing atmosphere, and the temperature is Generally, the temperature may be 600'C or more and 11006C or less. For example, after the fugitive fibers have disappeared, it is sufficient to switch to the reducing atmosphere of fuel gas during battery operation and heat the battery by raising the temperature to the battery operating temperature; this operation is convenient. On the other hand, on the positive electrode side, since the positive electrode is generally N-10, it may be treated in an oxidizing atmosphere, but in order to create a sintered body with higher porosity, it is preferable to sinter it in a reducing atmosphere. . For example, after the fugitive fibers have disappeared, it is convenient to switch to the fuel gas atmosphere during battery operation and heat the atmosphere to the battery operating temperature. Note that in order to have an electrode function as a positive electrode, it is necessary to oxidize after sintering, but this oxidation can be caused during battery operation. This is because oxidizing gas is supplied to the positive electrode side during battery operation.

上記の消失性繊維の消失、金属粉末の焼結、焼結後の酸
化という一連の処理、操作は、電池運転開始直前に、電
池作動温度の600−700°C以下の温度で連続して
行うのが、熱損失が少なく、また、電池運転開始時の昇
温時の熱を利用できるので、最も望ましい、このように
処理、操作することにより、熱経済性は従来の電極製造
方法の場合に比較して良くし得る。
The above-mentioned series of treatments and operations, including disappearance of the fugitive fibers, sintering of the metal powder, and oxidation after sintering, are performed continuously at a temperature below the battery operating temperature of 600-700°C immediately before the start of battery operation. This method is the most desirable because it has less heat loss and can utilize the heat generated when the temperature rises at the start of battery operation.By processing and operating in this way, the thermal economy is lower than that of conventional electrode manufacturing methods. It can be compared better.

電極材料を電解質板と共に電池本体に組み込んで電池と
する際、正極および負極のいずれにも抄造体を使用する
のが望ましいが、正極および負極のいずれか一方に多孔
質焼結体を使用することもできる。このいずれか一方に
多孔質焼結体を使用する場合であっても、従来の場合に
比較して電池本体への電極材料の組み込み時における電
極材料の破損が生じ難くなり、また、電極の製造工程を
簡略化し得る。
When the electrode material is incorporated into the battery body together with the electrolyte plate to form a battery, it is desirable to use a paper molded body for both the positive and negative electrodes, but it is preferable to use a porous sintered body for either the positive or negative electrode. You can also do it. Even if a porous sintered body is used for either of these, it is less likely that the electrode material will be damaged when it is assembled into the battery body than in the conventional case, and it will also be easier to manufacture the electrode. The process can be simplified.

(実施例) 本発明の実施例及び比較例(:従来法)を、金属粉末と
してNi粉末を用いた場合にηいて以下に説明する。
(Example) Examples and comparative examples (conventional method) of the present invention will be described below based on η when Ni powder is used as the metal powder.

災施M上 負極用電極材料として、ニッケル微粉末(インコ社製二
カルボニルNi−123)と直径10−20μmの木材
パルプを用いて常法により抄き込んで、前者:後者−7
:3(重量比)、厚み1 、5mmのシート状の負極用
抄造体を得た。これと同様の方法により、正極用抄造体
を得た。但し、正極用抄造体の厚みは1.0mmとした
Fine nickel powder (Dicarbonyl Ni-123 manufactured by Inco Co., Ltd.) and wood pulp with a diameter of 10 to 20 μm were used as electrode materials for the upper negative electrode in a conventional manner, and the former: the latter-7
:3 (weight ratio) and a thickness of 1.5 mm, a sheet-like paper product for a negative electrode was obtained. A positive electrode paper product was obtained by a method similar to this. However, the thickness of the positive electrode paper product was 1.0 mm.

一方、電解質として炭酸リチウムと炭酸カリウムとの共
晶塩を用い、その保持体としてアルミン酸リチウム粉末
を用い、これらを混合し、ホットプレス法によって成形
し、電解質板を製作した。
On the other hand, a eutectic salt of lithium carbonate and potassium carbonate was used as an electrolyte, and lithium aluminate powder was used as a holder for the electrolyte, and these were mixed and molded by hot pressing to produce an electrolyte plate.

次に、上記負極用抄造体及び正極用抄造体の間に、電解
質板を挟み込み、電池に組み込んだ後、負極用及び正極
用抄造体中の消失性繊維を消失させるために、ヒータに
より加熱処理を行った。この組み込み後の電池の断面図
を第1図に示す。尚、第1図に示すように、負極用抄造
体とセルホルダとの間及び正極用抄造体とセルホルダと
の間には、それぞれ負極側ガス流路及び正極側ガス流路
が形成されている。次に、負極用及び正極用抄造体中の
消失性繊維を消失させるために、負極側ガス流路及び正
極側ガス流路に、空気70χ、炭酸ガス30%の混合ガ
スを1.ONQ/minの流量で流しながら、このセル
を4208Cで12時間の加熱処理を行った。尚、炭酸
ガスは、必ずしも必要ではないが、加熱処理中における
電解質中の炭酸塩の蒸発量を減らすために添加したもの
である。
Next, an electrolyte plate is sandwiched between the negative electrode paper structure and the positive electrode paper structure, and after being assembled into a battery, heat treatment is performed using a heater in order to eliminate fugitive fibers in the negative electrode and positive electrode paper structures. I did it. A cross-sectional view of the battery after assembly is shown in FIG. As shown in FIG. 1, a negative electrode side gas flow path and a positive electrode side gas flow path are formed between the negative electrode paper product and the cell holder and between the positive electrode paper product and the cell holder, respectively. Next, in order to eliminate the fugitive fibers in the negative electrode and positive electrode paper products, 1. This cell was heat-treated at 4208C for 12 hours while flowing at a flow rate of ONQ/min. Although carbon dioxide gas is not necessarily necessary, it is added to reduce the amount of evaporation of carbonate in the electrolyte during heat treatment.

上記加熱処理後、負極側及び正極側ガス流路に流れるガ
スを、電池運転時の負極側燃料ガス(水素80χ、炭酸
ガス20%の混合ガス:還元性雰囲気)に切り換え、電
池運転温度の650°Cに昇温し、金属粉末の焼結を行
った。この焼結後、正極側についてはNiの酸化物にす
るために、正極側ガス流路に流れるガスを、電池運転時
の正極側酸化剤ガス(空気70χ、炭酸ガス30χの混
合ガス)に切り換え、Ni多孔質焼結体の酸化を行なっ
た。ついで、冷却することなく、650°Cでの発電試
験を行なった。
After the above heat treatment, the gas flowing in the negative electrode side and positive electrode side gas flow paths is switched to the negative electrode side fuel gas (mixed gas of 80% hydrogen and 20% carbon dioxide: reducing atmosphere) during battery operation, and the The temperature was raised to °C, and the metal powder was sintered. After this sintering, in order to make Ni oxide on the positive electrode side, the gas flowing in the positive electrode side gas flow path is switched to the positive electrode side oxidizing gas (mixed gas of 70x air and 30x carbon dioxide) during battery operation. , Ni porous sintered body was oxidized. Next, a power generation test was conducted at 650°C without cooling.

止較■土 負極として、実施例1で用いたのと同じニッケル微粉末
をカルボキシメチルセルロース2%と共に水に加えてス
ラリーとし、これをポリエステルシート上に広げ、ドク
ターブレードで均等な厚さとなるように展延した後乾燥
し、薄板状のシートとした。このシートをHg:100
χ、流量2Nl/minの還元性雰囲気中で10000
Cで30分間の加熱処理を行って厚み0.51mm、面
積100cm”、多孔度0.605のシート状のNi多
孔質焼結体を得た。これと同様の方法により、正極用の
Ni多孔質焼結体を得た。
As a negative electrode, the same fine nickel powder used in Example 1 was added to water together with 2% carboxymethyl cellulose to make a slurry, spread on a polyester sheet, and spread it to an even thickness using a doctor blade. After spreading, it was dried to form a thin sheet. This sheet has Hg: 100
χ, 10000 in a reducing atmosphere with a flow rate of 2Nl/min
A sheet-shaped Ni porous sintered body with a thickness of 0.51 mm, an area of 100 cm, and a porosity of 0.605 was obtained by heat treatment at C for 30 minutes. A quality sintered body was obtained.

但し、正極用の多孔質焼結体の厚みは0.68mm、面
積100cm”、多孔度0.743である。一方、実施
例1と同じ方法で、電解質板を製作した。
However, the thickness of the porous sintered body for the positive electrode was 0.68 mm, the area was 100 cm'', and the porosity was 0.743.Meanwhile, an electrolyte plate was manufactured in the same manner as in Example 1.

次に、上記頁捲用多孔質焼結体と正極用多孔質焼結体と
の間に、電解質板を挟み込み、電池に組み込んだ。この
設置状況は、第1図に示したものと同様である。
Next, an electrolyte plate was inserted between the porous sintered body for page turning and the porous sintered body for positive electrode, and the electrolyte plate was assembled into a battery. This installation situation is similar to that shown in FIG.

次に、正極用のNi多孔質焼結体をNiO多孔質焼結体
にするために、正極側ガス流路に、電池運転時の工種側
燃料ガス(空気7oz、炭酸ガス30χの混合ガス)を
、2.ONl/minの流量で流し、温度を電池運転温
度の650°Cに昇温してNi多孔質焼結体の酸化を行
った。ついで、負極側に電池運転時の負極側燃料ガス(
水素80″1.、炭酸ガス20χの混合ガス)を2.6
 NR1m1n (7)流量で流して、発電試験を行っ
た。
Next, in order to turn the Ni porous sintered body for the positive electrode into a NiO porous sintered body, a fuel gas (a mixed gas of 7 oz of air and 30 χ of carbon dioxide gas) on the side during battery operation is added to the gas flow path on the positive electrode side. 2. The Ni porous sintered body was oxidized by flowing at a flow rate of ONl/min and raising the temperature to 650°C, which is the battery operating temperature. Next, the negative electrode side fuel gas (
Mixed gas of hydrogen 80″1. and carbon dioxide gas 20χ) is 2.6
A power generation test was conducted by flowing at a flow rate of NR1m1n (7).

上記実施例1及び比較例1の発電試験結果の一例を第2
図に示す。この図において、Aが実施例1、Bが比較例
1の発電試験結果、即ち、出力電圧(E)と電流密度(
I4)との関係である。両者には、差異が認められず、
本発明の方法で作られたt掻は、従来の方法で作られた
電極と同等の電池性能が得られた。
An example of the power generation test results of Example 1 and Comparative Example 1 above is shown in the second example.
As shown in the figure. In this figure, A is the power generation test result of Example 1, and B is the power generation test result of Comparative Example 1, that is, the output voltage (E) and the current density (
This is the relationship with I4). No difference was found between the two,
The electrode made by the method of the present invention had a battery performance equivalent to that of the electrode made by the conventional method.

(発明の効果) 本発明の溶融炭酸塩型燃料電池用電極の製造方法は、電
極材料を電解質板と共に電池本体に組み込んで電池とす
る際の電極材料の破損を、その取り付は操作を複雑にす
ることなく、防止し得るものである。更に、電極材料を
電池本体に組み込んで電池とする前における焼結工程を
無(し、焼結は電池運転開始前の保温時あるいは昇温時
の熱を利用し、一連の加熱処理工程の中で行えるので、
電極の製造工程を簡略化し得るものである。
(Effects of the Invention) The method of manufacturing an electrode for a molten carbonate fuel cell of the present invention prevents damage to the electrode material when it is incorporated into a battery body together with an electrolyte plate to form a battery, and its installation is complicated. This can be prevented without causing harm. Furthermore, the sintering process before incorporating the electrode material into the battery body to form the battery is eliminated, and the sintering process is performed during a series of heat treatment processes by using the heat generated during warming or heating up before the battery starts operating. It can be done with
This allows the electrode manufacturing process to be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1に係る正極用抄造体、負極用抄造体
および電解質板が組み込まれた電池の断面図、第2図は
、出力電圧と電流密度との関係で示される発電試験結果
の一例を示す図である。 (1)−一一正掻用抄造体  (2)−−一負極用抄造
体(3)−m−電解質板    (4)−m−セルホル
ダ(5)−一一正極側ガス流路 (6)−一一負極側ガ
ス流路(7)−一一ヒータ      (8)−一一電
気炉A−−−−実施例1の発電試験結果 B−−−−比較例1の発電試験結果 (E)−m−出力電圧  (14)−m−電流密度特許
出願人 株式会社 神戸製鋼所 代 理 人 弁理士  金丸 章−
Figure 1 is a cross-sectional view of a battery in which the positive electrode fabric, negative electrode fabric, and electrolyte plate according to Example 1 are incorporated, and Figure 2 is the power generation test results shown in terms of the relationship between output voltage and current density. It is a figure showing an example. (1) - 11 Paper structure for positive electrode (2) - 1 Paper structure for negative electrode (3) - m - Electrolyte plate (4) - m - Cell holder (5) - 11 Positive electrode side gas flow path (6) -11 Negative electrode side gas flow path (7) -11 Heater (8) -11 Electric furnace A---- Power generation test result of Example 1 B---- Power generation test result of Comparative example 1 (E) -m-Output voltage (14)-m-Current density Patent applicant Kobe Steel Corporation Representative Patent attorney Akira Kanamaru-

Claims (1)

【特許請求の範囲】[Claims] (1)溶融炭酸塩を電解質として含む電解質板の片方の
面に多孔質焼結体からなる正極、もう一方の面に多孔質
焼結体からなる負極を接触させ、正極に酸化剤ガスを、
負極に燃料ガスを供給することにより、電池反応を行わ
せる溶融炭酸塩型燃料電池の電極を製造する方法におい
て、前記電極の少なくとも一方を、加熱消失可能な消失
性繊維に遷移金属粉末および/または遷移金属合金粉末
を抄き込みシート状抄造体にし、該抄造体を電池本体に
組み込んで電池とし、該電池を加熱処理して該抄造体中
の前記消失性繊維を消失させ、更に前記遷移金属粉末お
よび/または遷移金属合金粉末を焼結して製造すること
を特徴とする溶融炭酸塩型燃料電池用電極の製造方法。
(1) A positive electrode made of a porous sintered body is brought into contact with one side of an electrolyte plate containing molten carbonate as an electrolyte, and a negative electrode made of a porous sintered body is brought into contact with the other side, and an oxidizing gas is applied to the positive electrode.
In a method for manufacturing an electrode for a molten carbonate fuel cell in which a cell reaction is performed by supplying a fuel gas to a negative electrode, at least one of the electrodes is made of a fugitive fiber that can be dissipated by heating and a transition metal powder and/or A transition metal alloy powder is formed into a sheet-like paper product, the paper product is incorporated into a battery body to form a battery, the battery is heat-treated to eliminate the fugitive fibers in the paper product, and the transition metal A method for producing an electrode for a molten carbonate fuel cell, the method comprising producing an electrode for a molten carbonate fuel cell by sintering a powder and/or a transition metal alloy powder.
JP63042840A 1988-02-24 1988-02-24 Manufacture of electrode for molten carbonate fuel cell Pending JPH01217856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63042840A JPH01217856A (en) 1988-02-24 1988-02-24 Manufacture of electrode for molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63042840A JPH01217856A (en) 1988-02-24 1988-02-24 Manufacture of electrode for molten carbonate fuel cell

Publications (1)

Publication Number Publication Date
JPH01217856A true JPH01217856A (en) 1989-08-31

Family

ID=12647183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63042840A Pending JPH01217856A (en) 1988-02-24 1988-02-24 Manufacture of electrode for molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH01217856A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0473236A2 (en) * 1990-08-30 1992-03-04 Stichting Energieonderzoek Centrum Nederland(ECN) Tape suitable for use in fuel cells, electrode suitable for use in a fuel cell, method for sintering an electrode of this type and a fuel cell provided with an electrode of this type
US5589287A (en) * 1993-10-18 1996-12-31 Matsushita Electric Industrial Co., Ltd. Molten carbonate fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0473236A2 (en) * 1990-08-30 1992-03-04 Stichting Energieonderzoek Centrum Nederland(ECN) Tape suitable for use in fuel cells, electrode suitable for use in a fuel cell, method for sintering an electrode of this type and a fuel cell provided with an electrode of this type
US5356731A (en) * 1990-08-30 1994-10-18 Stichting Energieonderzoek Centrum Nederland Molten cabonate fuel cell with sintered LiCoO2 electrode
US5589287A (en) * 1993-10-18 1996-12-31 Matsushita Electric Industrial Co., Ltd. Molten carbonate fuel cell

Similar Documents

Publication Publication Date Title
JPH11204114A (en) Electrode material
WO2006109464A1 (en) Fuel cell and electrode material for fuel cell
JPH09274921A (en) Fuel electrode for solid electrolyte fuel cell
JPH01217856A (en) Manufacture of electrode for molten carbonate fuel cell
JP4781016B2 (en) Manufacturing method of gas diffusion electrode for fuel cell
JP5599029B2 (en) Gas diffusion layer for fuel cells
US4643955A (en) Molten carbonate fuel cell reduction of nickel deposits
JP4433518B2 (en) Solid polymer electrolyte fuel cell
JP2002216778A (en) Fuel cell electrode and its producing method and solid polymer electrolyte fuel cell
JPS63236262A (en) Fuel cell
WO2005008815A1 (en) Fuel cell, electrode material for fuel cell and method for producing same
JPH02822B2 (en)
JPS6014769A (en) Fuel cell
US3682709A (en) Process for improving nickel base,nonnoble metal fuel cell catalysts
JPH04215257A (en) Molten carbonate fuel cell
JPS6097558A (en) Molten carbonate fuel cell
JP4427929B2 (en) Solid oxide fuel cell with sealless structure
JPH0227661A (en) Electrode catalyst layer for fuel cell
JPH0745289A (en) Solid electrolyte fuel cell
JPH02295065A (en) Electrode for fuel cell
Antolini A new way of obtaining LixNi1− xO cathodes for molten-carbonate fuel cells
JPH0711962B2 (en) Method for manufacturing gas diffusion electrode
JPS63255304A (en) Production of porous metal sintered body
JPH067489B2 (en) Flexible water-repellent firing carbon substrate and its manufacturing method, fuel cell electrode and fuel cell
CN118060540A (en) Method for improving porosity of traditional Ni-based composite ceramic anode support