JPH01217008A - ポリ塩化ビニル系樹脂の光塩素化方法 - Google Patents

ポリ塩化ビニル系樹脂の光塩素化方法

Info

Publication number
JPH01217008A
JPH01217008A JP4482688A JP4482688A JPH01217008A JP H01217008 A JPH01217008 A JP H01217008A JP 4482688 A JP4482688 A JP 4482688A JP 4482688 A JP4482688 A JP 4482688A JP H01217008 A JPH01217008 A JP H01217008A
Authority
JP
Japan
Prior art keywords
chlorine
polyvinyl chloride
light
seconds
based resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4482688A
Other languages
English (en)
Inventor
Takashi Wachi
和地 俊
Hiroshi Oshima
浩 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP4482688A priority Critical patent/JPH01217008A/ja
Publication of JPH01217008A publication Critical patent/JPH01217008A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation
    • C08F8/22Halogenation by reaction with free halogens

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はポリ塩化ビニル系樹脂(以下、pvcと略記す
る)の光塩素化方法に関し、更に詳しくは、塩素化ポリ
塩化ビニル系樹脂(以下、cpvCと略記する)を製造
する際に、光を用いてpvCの塩素化反応を行う方法に
関するものである。
〔従来技術と問題点〕
pvcを塩素化したcpvcは、耐熱性が高く、その他
の性質にも優れているので、工業的に広く使用されてい
る。
PvCを塩素化する工業的方法としては、固体状のPv
C粒子を気相か、あるいは水に23して塩素と接触させ
る不均一系の反応を行うのが一般的である。また、クロ
ロホルム等を添加してト■C粒子を膨潤させたり、二塩
化エタン等の溶媒にpvcを溶解させて塩素化反応を行
うこともできる。しかし乍ら、膨潤剤や溶媒を用いる方
法は、これらの分離除去が困難で少量が残留するために
、工業的には一般的でない、水にpvc粒子を懸濁させ
る方法は、装置内の流動や分散が良好で温度制御や光照
射等が容易である。
この塩素化反応は、光照射条件下で行われる。
光照射を行う場合には、多数の光源を撹拌槽式反応器中
に浸漬する方法(特公昭43−5890)、外部循環流
路に光照射部分を設けて外側から光照射する方法(特公
昭46−17128)などが促案されている。光源とし
ては水銀灯、タングステンランプ、蛍光灯など、可視光
線または紫外線が用いられている。また、1秒当たりl
−120パルスで脈動する光源を用いる方法(特開昭5
9−58007)も知られている。
この様な方法によって塩素化されたPvCは、耐候性、
耐火炎性、耐薬品性の優れた汎用樹脂であり、また熱変
形温度が原料pvcに比べて2〇−50度も高くなり1
00℃以上の高温下でも使用できるので、給湯配管など
のパイプ類、電気製品をはじめとする多くの用途が開け
ている。
上記の様な方法で従来から製造されているCPVCには
、いくつかの優れた特性はあるものの、熱安定性や加工
性において難点がある。CPVCはガラス転移点温度が
高いので、それをシートやパイプなどに成形する際には
PvCよりも高い温度で加工しなければならない、cp
vcは、成形品の種類によって押出し成形、カレンダー
ロール、熱プレス、射出成形等によって成形加工される
が、いずれの場合にも加工時の溶融ポリマーの流動性が
問題となる。流動性が悪い場合には、混練時の気泡が抜
けずに残留したり、混練が不十分で成形品の仕上がりが
劣ったりする。そこで、流動性を高めるため高温で加工
すると、cpvcの成形品に熱着色が発生するという問
題が生じる。特に条件の厳しい射出成形等においては、
熱安定性の悪いcpvcの場合は樹脂の焼けが生じたり
する。
この熱着色は、高温における熱分解によってもたらされ
ると考えられている。
cpvcの熱安定性や加工性の問題は、後述する塩素含
有率の不均一性と大きな関係があるものと考えられる。
即ち、cpvcは塩素化率の増大に伴ってガラス転移点
温度が高くなるのであるが、塩素含有率の不均一性が著
しい場合には、平均値に比べて著しく塩素含有量が多く
ガラス転移点温度の高い成分が含まれているので、加工
時における溶融ポリマーの流動性が悪くなって成形品の
仕上がりが悪くなったり、また流動性を高めるためには
加工温度を高くせざるを得す、この場合には上記の如き
熱着色等の問題を生じる。また、塩素含有率の不均一性
が著しい場合にはcpvC中に未反応のPVCが残存し
ていて、これが高温加工の際に脱塩酸反応などの熱劣化
を起こして成形品の着色や強度低下などの問題を惹き起
こす。
cpvcの塩素含有率の不均一性は、pvc粒子に塩素
が溶解して反応する際に、粒子の中心部に比べて外側部
分の方が、また大きな粒子よりも小さな粒子の方がより
速やかに塩素化されることに起因する。即ち、pvc樹
脂相における塩素の拡散速度が著しく低いので粒子の外
側部分に比べて中心部への塩素供給が少なくなって、反
応率の不均一分布が生じるのである。
一方、溶媒や膨潤剤を用いて塩素化したcpvCは塩素
含有率が比較的均一である。cpvcの塩素の結合状態
についてのNMR法による観測結果によれば、溶液法に
よるcpvcに比べて、水懸濁法や気相法によるcpv
cでは塩素が不均一に分布していることが報告されてい
る(にomoroski。
R,A、  et  at、:  Macromole
cules、  Vol、18.  No、6+p、1
257−1265(1985) ) 、これは固体状の
樹脂相に比べて、溶液状態や膨潤状態の樹脂相において
は塩素の拡散速度が高いことによるものと考えられる。
クロロホルムで膨潤させた場合は、膨潤剤を用いないc
pvcに比較し、熱的な脱塩酸反応速度が遅いことや成
形品の機械的特性が優れていることが報告されている(
Ajroldi、 G、 et al、H^dv。
Che+m、Scr、、N99.p、119437  
(1971))。
しかし乍ら、溶媒や膨潤剤を用いて塩素化したcpvc
は溶媒や膨潤剤を分離除去することが容易でなく、それ
らが製品のcpvc中に残留するため、用途が限定され
て好ましくない。
〔発明が解決しようとする問題点〕
本発明者らは、以上に述べた点に着目して、塩素がr’
vc粒子に溶解して拡散輸送される速度及び光反応によ
って消費される速度について定量的な研究を行った結果
、以下の点を明らかにした。
PVC樹脂相における塩素の拡散は極めて遅いが、pv
cの光照射による塩素化の化学反応速度は比較的高いの
で、従来から用いられている多数の光源を撹拌槽式反応
器中に浸漬する方法(特公昭43−5890)をはじめ
とする反応条件下では、塩素の樹脂相における拡散が全
体の速度を支配することになる。従って、樹脂相の外表
面付近は溶解した塩素と速やかに反応するが、樹脂相の
内部は速やかには反応せず、塩素化反応率即ち塩素含有
率が不均一になる。
本発明者らは、これらの知見に基づき、溶媒や膨潤剤を
用いることなく、従来法に比べて塩素含有率がより均一
で優れた物性を有するcpvcを製造する方法を鋭意研
究した結果、本発明を完成させた。
〔問題点を解決するための手段〕
即ら、本発明は、pvcと塩素を光の照射下に反応させ
てcpvcを製造するにあたり、光遮断と光照射とを交
互に繰り返すことを特徴とするPVCの光塩素化方法を
内容とするものである。
この方法によれば、光を遮断して化学反応を停止した状
態で樹脂相へ塩素を溶解させ、続いて光を照射して樹脂
相に溶解している塩素を反応させるので、連続的に光を
照射する場合に比べて塩素化反応率を均一にすることが
できる。この場合、PVCの塩素化反応によって費やさ
れる塩素量に比べて高分子樹脂相へ物理的に溶解して保
持される塩素量は著しく少ないので、光遮断と光照射の
操作は交互に繰り返して行う。この操作に関する原理的
な研究によって、即ち高分子樹脂相への塩素溶解及び光
塩素化速度を把握して、本発明における光遮断と光照射
の時間の好ましい条件を選定することができる。
尚、従来法のうちで外部循環流路に光照射部分を設けて
外側から光照射する方法(特公昭46−17128)は
、光照射の装置構造の改良を主な狙いとしており、光照
射部分に塩素を供給して光反応と同時に塩素の溶解拡散
を行うとともに光遮断部分での塩素の溶解拡散が充分に
達成される滞留時間を確保していないために、本発明に
よってもたらされる塩素化反応率均一化の効果は得られ
ない。また、従来法のうちで1秒当たりl−120パル
スで脈動する光源を用いる方法(特開昭59−5800
7)は、1パルス当たりの光遮断時間が短く塩素の溶解
拡散に対する寄与が極めて小さいために、本発明によっ
てもたらされる塩素化反応率均一化の効果は得られない
本発明によって塩素化することができる原料樹脂は、塊
状重合、乳化重合、懸濁重合等の公知の種々の方法で得
られる粒子状のPVCである。原料PvCの組成として
は、塩化ビニルの単独重合体あるいはエチレンとの共重
合体などであり、またこれらの各種の重合度のものを用
いることができる0反応系に照射する光源としては、紫
外から可視領域の波長の光を用い、例えば水根ランプな
どを使うことができる。本発明の光塩素化反応は、原料
PvCに塩素ガスを接触させる気相法にも、また塩素を
溶解した水中に原料PVCを懸濁させる水懸濁法にも適
用し得る。
本発明の最大の特徴は、反応系に対して光遮断と光照射
とを交互に繰り返すことである。これを実施する具体的
手段としては、光源ランプの点灯と消灯を繰り返す方法
、ランプの光を遮るフィルターや遮光板を用いてその移
動を繰り返す方法、ランプの位置を繰り返し移動させる
方法、流通式や外部循環式反応器に樹脂粒子を流通させ
、その装置の一箇所以上において光を照射する方法とが
ある。
本発明により、例えば平均粒子径が10μm〜500μ
mで空隙率0.05 cc/ g 〜0.5 cc/ 
gである原料pvcを本発明によって光塩素化する場合
には、一回あたりの光照射時間を10−”秒〜10秒に
することが好ましい、一回あたりの光照射時間が10−
6秒より短いと、ラジカル連鎖機構によって進行すると
されている光塩素化反応におけるラジカルの励起に必要
な時間に達せず、また10秒より長くなると連続的な光
照射の状態に近くなり、本発明の目的とする塩素化反応
率の均一化を充分に達成することができない、また、こ
の場合に、一回あたりの光遮断時間は50秒〜1000
秒にすることが好ましい、一回あたの光遮断時間が短か
すぎると塩素化反応率の均一化が不充分となり、また長
すぎる場合には時間の無駄となり、生産性が低下する。
また、平均粒子径が10μm〜500μmで空隙率0.
05cc/g〜0.5cc/gである原料pvcを塩素
を溶解した水中に懸濁して管式反応器内に流通させ、そ
の流路に光照射部分を設けて光塩素化を行う場合には、
光源ランプを連続して点灯状態に保ち、反応器の一箇所
の光照射部分を粒子懸濁液が通過する平均i!Il過時
間が10−h秒〜10秒になるようにし、一箇所の光遮
断部分での平均滞留時間が50秒〜1000秒になるよ
うにすることが好ましい、なお、ここでいう管式反応器
とは、管状の容器であって、これに反応流体を通過させ
る間に所定の反応を行わせるものである。
尚、本発明において、平均粒子径はCoulLarEl
ectronics、  Inc、  製 r  Co
ulLer−counter、  modelTaz 
Jにより測定した。
空隙率は水銀圧入法で測定し、測定装置としては、Mi
crometrics In5trusent、 Co
rp、製r PoreSizer 9300Jを使用し
た。
原料pvcを塩素水中に懸濁させて管式反応器で光塩素
化する場合について、更に詳細に実施態様を説明する。
管式反応器の流路の入口から出口に向けて原料pvcの
懸濁液が通過する間に光遮断と光照射を繰り返して塩素
化反応を完結する方法もあるが、その他に流路が閉じた
ループを設け、懸、a液をその流路内に連続的に流通、
循環させる方法もある。
後者の場合には、循環流路の途中に撹拌槽を設けること
ができる。この場合、Ia拌槽を起点として複数の循F
2流路を設けることもできる。懸濁液の循環には、ポン
プを使って強制循環する方法、塩素気泡のガスリフト効
果を利用して自然W1環させる方法等を用いることがで
きる。光照射部分は、撹拌槽を除く流路に、ガラスや石
英ガラス等の光透過性材料を介して外側の光源から光を
照射する構造とすることが好ましい、光照射部分の前後
には光遮断部分を設ける。塩素は反応器の循環流路部分
あるいは撹拌槽に供給することができ、また複数の箇所
から供給することもできる。
〔作用・効果〕
本発明によって製造されたcp、vcは、連続的な光照
射方法で製造されたものに比べて塩素化反応率、即ら塩
素含を率の分布が均一であって、熱加工の際の流動性が
良く、熱着色が少ない等の好ましい品質を有する。この
ようなcpvcの特性は、後記の実施例及び比較例で示
される様に、示差走査熱Wk測定分析(以下、DSCと
記す)によるガラス転移点の範囲によく表れている0例
えば、連続的な光照射方法で製造された塩素含有率65
wtχのcpvcのガラス転移点は110℃から170
℃の広い範囲にわたっているのに対して、本発明によっ
て製造した同一塩素含有率のcpvcのガラス転移点は
120℃から130℃という狭い範囲にある。また1、
180℃付近における熱安定性を比べてみると、本発明
によって製造されたcpvcは、連続的な光照射方法で
製造されたCpvcよりも脱塩酸反応速度が遅い0例え
ば、昇温熱重量分析(以下、TGAと記す)によれば、
本発明によって製造したcpvcは、連続的な光照射方
法で製造されたものに比べて熱分解による重量減少の起
こる温度が高い。
〔実施例〕
以下に実施例と比較例を示して、更に本発明を説明する
が、本発明はこれらにより何ら制限を受けるものではな
い。
実施例1 懸濁重合によって得られた重合度600で平均粒子径1
20μm、空隙率0.1cc/gのPVC粒子を、第1
図に示す反応装置の石英ガラス製試料皿(2)に入れて
石英ガラス製反応管(1)の中に仕込んだ。反応管(1
)には塩素供給口(7)より塩素ガスを導入し、塩素排
出口(8)よりυF出した。水銀灯(6)を点灯し、水
銀灯(6)と反応管(1)中の試料皿(2)との間に可
動式の遮光板(5)を設置して、一回当たり200秒間
光を遮断し、次いで遮光板(5)を取り除いて試料へ5
秒間光を照射する周1す1的な操作を行った。
このようにしてPvCの光塩素化を行い、kl: 14
皿(2)を吊したスプリング(3)の伸びを変位検出器
(4)で検出して試料の重量変化を自動的に測定した。
試料の重量が仕込んだpvcの重量の1,25倍になっ
た時点で光照射と塩素ガスの流通を停止して反応を終了
させ、気相で塩素化されたcpvcを得た。
比較例1 実施例1と同じpvc粒子を、遮光板(5)を用いない
こと以外は実施例1と同じ方法で塩素化した。即ち、水
銀灯(6)は光遮断することなく試料へ連続的に照射し
てcpvcを得た。
実施例1と比較例1の方法で得られたcpvcについて
、DSC,、!:TGAによる熱的物性を比較して本発
明の効果を評価した。DSCにおいては試料を約5mg
、昇温速度をlO℃/minとして411定した。TG
Aにおいては試料を約10mg、昇温速度を5℃/ v
* i nとして測定した。
DSCの測定結果を第2図に示す。第2図において、実
施例1の試料の結果は曲線aで、比較例1の試料の結果
は曲線すで、また比較説明のための原料pvcの結果は
曲線Cで示す。同図において、いずれの試料についても
昇温にともなってヘースラインが上方へ移動して比熱が
変化しているが、これによってガラス転移点の範囲が観
測される。塩素化した実施例1 (曲線a)と比較例1
(曲線b)の試料のガラス転移点は、いずれも原料pv
c <曲線C)に比べて高温になっている。
比較例1 (曲線b)の試IIのガラス転移点温度は1
10℃から170℃の範囲に広がって見られるが、実施
例I (曲線a)の試料のガラス転移点温度は120℃
から140℃の比較的狭い範囲に観測される。このこと
は、比較例1の試i4においては塩素化反応率が幅広く
分布しているのに対し、実施例1の試料の塩素化反応率
は比較的均一であることを示すものであると解釈できる
実施例1及び比較例1の試料についてのTGAの測定結
果を、それぞれ第3図の曲線d及びeとして示す。いず
れの試料もM温すると脱塩酸などの熱的な分解反応がお
こって重量が減少して、再び一定重量になる。この熱的
な分解反応は実施例1 (曲線d)の試料に比べると、
比較例1 (曲線e)の試料の方が低い温度から観測さ
れ、重量が半分に減少する温度は前者(曲線d)では2
97℃であるのに対して後者は(曲線e)では282°
Cである。このことから、実施例1の試料の方が比較例
1の試料に比べて熱加工などにおいて安定であることが
分かる。
実施例2 実施例1と同しpvc粒子を第4図に示す装置の攪拌槽
<A)に仕込み、水中に分散させた。この懸濁液の温度
を50℃に設定してから攪拌槽(A)への塩素供給を開
始し、外部循環流路(C)に設けた長さ20cmのガラ
ス製光照射部分(D)の高圧水銀ランプ(J)を点灯し
た後、流路切換えコックFを開け、ポンプ(B)を使っ
て、懸濁液を外部Wi環流路(C)に取り出し、5cm
/Secの線速度で流通させた。、攪拌槽(A)から取
り出して光照射部分(D)を通した懸濁液をfil↑槽
(E)へと導入し、遮光状態で塩素を供給した。
攪拌槽(A)内の懸濁液を払い出し終えたら、流路切換
えコック(F、G、H,I)を操作して、上記と同様の
操作によって攪拌槽(E)の懸濁液を外部循環流路(C
)に取り出して光照射部分(D)を通過させて攪拌槽(
A)へと導入した。
このような流路の切換えをつぎつぎに繰り返して塩素化
反応を続けた0反応に伴って副生ずる塩酸量を観測する
ことによって測定できるcpvcの塩素含有率が63−
tχになったときに高圧水銀ランプ(J)を消灯して反
応を止めた。
比較例2 実施例2と同様の攪拌槽を用いてPvCの光塩素化を行
った。即ち、実施例1と同じpvc粒子をガラス製の攪
拌槽に仕込んで水中に分散させ、塩素ガスを供給した。
このとき攪拌槽の外側直近に高圧水銀ランプを設け、攪
拌槽のガラス壁を通してpvc粒子懸濁液へ連続的に光
照射して反応を行った。cpvcの塩素含有率が63w
tχになったときに高圧水銀ランプを消灯して反応を止
めた。
実施例2と比較例2の方法で得られたcpvcについて
、実施例1と比較例1の場合と同じ要領でDSCとTG
Aによる分析を行って熱的物性を比較し、本発明の効果
を評価した。
DSCの測定結果によれば、比較例2の試料のガラス転
移点温度は100℃から160℃の範囲に広がってみら
れるが、実施例2の試料のガラス転移点温度は110℃
から140℃の比較的狭い範囲に観測される。このこと
は、比較例2の試料においては塩素化反応率が幅広く分
布しているのに対し、実施例2の試料の塩素化反応率は
比較的均一であることを示すものであると解釈できる。
TGAの測定結果によれば、熱的な分解反応は実施例2
の試料より比較例2の試料の方が低い温度から観測され
、脱塩酸などの熱的な分解反応によって重量が半分に減
少する温度は実施例2の試料が290℃であるのに対し
て比較例2の試料は280℃であった。このことから、
実施例2の試料の方が比較例2の試料に比べて熱加工な
どにおいて安定であることが分かる。
【図面の簡単な説明】
第1図は実施例1で用いた装置の概要図、第2図はDS
Cチャート、第3図はTGAチャート、第4図は実施例
2で用いた装置の概要図である。 尚、第1図において、 1:反応管、2:試料皿、3ニスプリング、4:変位検
出器、5:遮光板、6:水銀灯、7:塩素供給口、8:
塩素排出口 第4図において、 A:PA拌槽、B:ポンプ、C:循環流路、D:光照射
部分、E:Pil、拌槽、 F:波路切換えコック、c : ’tin路切換えコッ
ク、H二流路切換えコック、I:流路切換えコック、J
:水銀灯、K:塩素供給口、L:塩素排出口、M:遮光
板 特許出願人 鐘淵化学工業株式会社 七瞳吸漁慶 損性lし勅羽皇逼

Claims (1)

  1. 【特許請求の範囲】 1、ポリ塩化ビニル系樹脂と塩素を光の照射下に反応さ
    せて塩素化ポリ塩化ビニル系樹脂を製造するにあたり、
    光遮断と光照射とを交互に繰り返すことを特徴とするポ
    リ塩化ビニル系樹脂の光塩素化方法。 2、平均粒子径が10μm〜500μmであり、空隙率
    が0.05cc/g〜0.5cc/gの多孔質粒子状の
    ポリ塩化ビニル系樹脂を原料として、一回あたりの光照
    射時間を10^−^6秒〜10秒とし、一回あたりの光
    遮断時間を50秒〜1000秒とする請求項1記載の方
    法。 3、ポリ塩化ビニル系樹脂粒子を塩素を溶解した水中に
    懸濁して管式反応器内に流通させ、その流路に光照射部
    分を設けて光塩素化を行う請求項1記載の方法。 4、平均粒子径が10μm〜500μmであり、空隙率
    が0.05cc/g〜0.5cc/gの多孔質粒子状の
    ポリ塩化ビニル系樹脂を塩素を溶解した水中に懸濁して
    管式反応器内に流通させ、該反応器の一箇所の光照射部
    分を粒子懸濁液が通過する平均通過時間を10^−^6
    秒〜10秒とし、一箇所の光遮断部分での平均滞留時間
    を50秒〜1000秒とする請求項3記載の方法。
JP4482688A 1988-02-26 1988-02-26 ポリ塩化ビニル系樹脂の光塩素化方法 Pending JPH01217008A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4482688A JPH01217008A (ja) 1988-02-26 1988-02-26 ポリ塩化ビニル系樹脂の光塩素化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4482688A JPH01217008A (ja) 1988-02-26 1988-02-26 ポリ塩化ビニル系樹脂の光塩素化方法

Publications (1)

Publication Number Publication Date
JPH01217008A true JPH01217008A (ja) 1989-08-30

Family

ID=12702259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4482688A Pending JPH01217008A (ja) 1988-02-26 1988-02-26 ポリ塩化ビニル系樹脂の光塩素化方法

Country Status (1)

Country Link
JP (1) JPH01217008A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7423081B2 (en) * 2004-11-23 2008-09-09 Servicios Condumex S.A. De C.V. Thermoplastic formulations for manufacturing pipes and accessories for home and industrial use, and process for the same
WO2020203828A1 (ja) * 2019-03-29 2020-10-08 積水化学工業株式会社 塩素化塩化ビニル系樹脂
KR20210148099A (ko) * 2019-03-29 2021-12-07 세키스이가가쿠 고교가부시키가이샤 염소화 염화비닐계 수지

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958007A (ja) * 1982-08-25 1984-04-03 ザ・ビ−・エフ・グツドリツチ・カンパニイ ポリ塩化ビニル樹脂の塩素化方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958007A (ja) * 1982-08-25 1984-04-03 ザ・ビ−・エフ・グツドリツチ・カンパニイ ポリ塩化ビニル樹脂の塩素化方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7423081B2 (en) * 2004-11-23 2008-09-09 Servicios Condumex S.A. De C.V. Thermoplastic formulations for manufacturing pipes and accessories for home and industrial use, and process for the same
WO2020203828A1 (ja) * 2019-03-29 2020-10-08 積水化学工業株式会社 塩素化塩化ビニル系樹脂
JPWO2020203828A1 (ja) * 2019-03-29 2021-04-30 積水化学工業株式会社 塩素化塩化ビニル系樹脂
CN113614121A (zh) * 2019-03-29 2021-11-05 积水化学工业株式会社 氯化聚氯乙烯系树脂
KR20210148099A (ko) * 2019-03-29 2021-12-07 세키스이가가쿠 고교가부시키가이샤 염소화 염화비닐계 수지
KR20210148097A (ko) * 2019-03-29 2021-12-07 세키스이가가쿠 고교가부시키가이샤 염소화 염화비닐계 수지
US20220177615A1 (en) * 2019-03-29 2022-06-09 Sekisui Chemical Co., Ltd. Chlorinated vinyl chloride resin

Similar Documents

Publication Publication Date Title
RU2419635C2 (ru) Способы радикальной полимеризации для получения галогенированных полимеров, галогенированные полимеры и изделия из них
EP1874827B1 (en) Production of polymers in a conical reactor
US20100063247A1 (en) Chlorinated vinyl chloride-based resin and manufacturing method
JP2006328166A (ja) 塩素化塩化ビニル系樹脂及びその成形体
KR20150046000A (ko) 염소화 염화비닐계 수지의 제조 방법 및 제조 장치
JP4790115B2 (ja) 不飽和脂肪族ニトリルに基づく架橋したイオン交換体の製造方法
US3591571A (en) Superchlorinated polyvinyl chloride and method of producing it
JPH01217008A (ja) ポリ塩化ビニル系樹脂の光塩素化方法
US7465771B2 (en) Process for producing radical polymer and microapparatus for chemical reaction
EP3574024B1 (en) A process for the preparation of dry chlorinated polyvinyl chloride
JP2021185240A (ja) 塩素化塩化ビニル系樹脂
JPS602322B2 (ja) 粉末塩化ビニルポリマーの塩素化方法
US3535220A (en) Bulk polymerized,fluidized bed,afterchlorinated polyvinyl chloride
US3700632A (en) Readily extruded chlorinated copolymers and process of preparing same
TW202104286A (zh) 氯化氯乙烯系樹脂
JP2000119333A (ja) 塩素化塩化ビニル系樹脂の製造方法
TWI428361B (zh) Production method of vinyl chloride-based resin (2)
WO2023048247A1 (ja) 塩素化塩化ビニル系樹脂、成形用樹脂組成物及び成形体
JP6916392B2 (ja) 塩素化塩化ビニル系樹脂
US3635929A (en) Process for the halogenation of vinyl polymers
JPH07224102A (ja) アクリル系重合体の製造方法
TW200823241A (en) The chlorinated vinyl chloride based resin and the manufacturing method thereof
CN109021152A (zh) 氯化聚氯乙烯的制备方法、制得的氯化聚氯乙烯及其应用
JPH11124407A (ja) 塩素化塩化ビニル系樹脂の製造方法
TW202041545A (zh) 氯化氯乙烯系樹脂