JPH01216323A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH01216323A
JPH01216323A JP4125588A JP4125588A JPH01216323A JP H01216323 A JPH01216323 A JP H01216323A JP 4125588 A JP4125588 A JP 4125588A JP 4125588 A JP4125588 A JP 4125588A JP H01216323 A JPH01216323 A JP H01216323A
Authority
JP
Japan
Prior art keywords
voltage
liquid crystal
supply voltage
crystal display
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4125588A
Other languages
Japanese (ja)
Inventor
Katsunori Yamazaki
克則 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP4125588A priority Critical patent/JPH01216323A/en
Publication of JPH01216323A publication Critical patent/JPH01216323A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To obtain the maximum contrast at each temperature by keeping a supply voltage constant by varying a ratio of the voltage at the time of non-selection and at the time of selection of the liquid crystal display device which is displayed by driving by an averaging voltage method. CONSTITUTION:In case a supply voltage 3 is set, for instance, to 23.5 volts and a liquid crystal display device is used at 0 deg.C-50 deg.C, values of a variable resistor 1 and a resistor 2 are set so that a voltage V at the time of non- selection is varied from 13V to 17.5V at the time of non-selection. That is, the variable resistor 1 is allowed to have a curve by which a resistance value is varied in a falling tendency against a mechanical variation quantity, therefore, the supply voltage 3 can be made constant. Also, by aligning the supply voltage 3 with pressure resistance of a driver IC, the bias becomes high. In such a way, the contrast can be maximized with regard to each temperature within an allowable range of pressure resistance of the driver IC, and the highest contract can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液晶表示装置の駆動方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for driving a liquid crystal display device.

〔従来の技術〕[Conventional technology]

従来の液晶駆動は平均化駆動方法が良く知られており、
この平均化駆動方法に於いては、非選択特に液晶層を挟
持する一対の電極に加わる電圧に対する選択時に加わる
電圧の比(以下、バイアスと言う、)が一定であり、液
晶表示装置のコントラストをIl′Iliするには、こ
のバイアスに比例した電圧を与える供給電圧3を調整し
ていた。
Conventional liquid crystal driving is well known for its averaging driving method.
In this averaging driving method, the ratio of the voltage applied during selection (hereinafter referred to as bias) to the voltage applied to a pair of electrodes sandwiching the liquid crystal layer in non-selection is constant, and the contrast of the liquid crystal display device is To achieve Il'Ili, the supply voltage 3 was adjusted to provide a voltage proportional to this bias.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来の駆動方法では、一対の基板に挟持される
液晶層の点灯電圧が、周囲の温度が低くなるにつれ高く
なる液晶の特性がある。そのため、第3図で示す、最適
コントラストを得るための各周囲の温度における供給電
圧とバイアスの関係から、液晶表示装置の使用温度範囲
を広げるには第3図で例えばV−14Vバイアスで使用
する場合24 、5 Voltカら21 、3VO1t
までと供給電圧3の変化量を大きくしなければならず、
コントラストを安定にしかも最適なコントラストを得る
には、安定かつ微調整が出来る回路が必要であった。又
、液晶表示装置の表示容量が大きくなり、コントラスト
を大きくするためにバイアスを大きくすると、供給電圧
3に対する液晶層に加する実効値が小さくなるため、第
2図で示すように例えばv−140バイアスで使用する
場合、供給電圧3は最大24.5Valtと供給電圧3
を上げる必要があるので、液晶表示素子を駆動する集積
回路(以下ドライバーICと言う)の高耐圧化が必要と
なりコストアップとなる。  ・ 本発明はかかる問題点を解決するもので、その目的は供
給電圧3を固定し、又、ドライバーICの耐圧を低くす
ることにある。
However, in the conventional driving method, the lighting voltage of the liquid crystal layer sandwiched between a pair of substrates has a characteristic of liquid crystal that increases as the ambient temperature decreases. Therefore, from the relationship between the supply voltage and bias at each ambient temperature to obtain the optimum contrast, as shown in Figure 3, in order to widen the operating temperature range of the liquid crystal display device, it is necessary to use a bias of, for example, V-14V as shown in Figure 3. Case 24, 5 Volt 21, 3VO1t
The amount of change in supply voltage 3 must be increased up to
In order to stabilize the contrast and obtain the optimum contrast, a stable and finely adjustable circuit was required. Furthermore, as the display capacity of the liquid crystal display device increases and the bias is increased to increase the contrast, the effective value applied to the liquid crystal layer with respect to the supply voltage 3 becomes smaller. When used in bias, supply voltage 3 is max. 24.5Valt and supply voltage 3
Therefore, it is necessary to increase the breakdown voltage of an integrated circuit (hereinafter referred to as driver IC) for driving the liquid crystal display element, which increases costs. - The present invention solves this problem, and its purpose is to fix the supply voltage 3 and lower the withstand voltage of the driver IC.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の液晶表示装置は、平均化電圧法による駆動によ
って表示される液晶表示装置において非選択特の電圧と
選択時の電圧の割合を変化させることを特徴とする。
The liquid crystal display device of the present invention is characterized in that the ratio between the non-selection voltage and the selection voltage is changed in the liquid crystal display device that displays by driving using the average voltage method.

〔実 施 例〕〔Example〕

第1図は本発明の実施例でバイアスを与える回路でバイ
アスは本発明においては第3図で示すように1 /20
0 duty駆動で供給電圧3を23.5v。
Figure 1 shows a circuit that applies a bias according to an embodiment of the present invention. In the present invention, the bias is 1/20 as shown in Figure 3.
Supply voltage 3 is 23.5v with 0 duty drive.

+1.液晶表示装置をO℃〜50℃で使用する場合を示
し、非選択特の電圧Vに対し、非選択特に13vから1
7.5Vに変化するように可変抵抗器■及び抵抗器2の
値が設定されている。可変抵抗器1は機械的変化量に対
し抵抗値が尻下りに変化するカーブを持たせである。こ
のようになっているため、0℃−で液晶層の点灯電圧を
得るために供給電圧3ヲ23.5VOIt、バイアスを
V−13Vにすれば良く、又、50℃では供給電圧3.
24.5VO1t、バイアスをV−17,5Vにすれば
良いので、供給電圧3を一定にすることが出来る。又、
供給電圧3をドライバーICの耐圧に合わせることによ
り、バイアスを大きくすることによりコントラストをド
ライバーICの耐圧の許容範囲で各温度について最大に
することが出来る。又、最も使用頻度の高い常温25℃
付近で1/200dutyの時の最適バイアスであるV
−14,IVになりもっとも高いコントラストを得るこ
とが出来る。
+1. The case where the liquid crystal display device is used at 0°C to 50°C is shown.
The values of variable resistor (2) and resistor (2) are set so that the voltage changes to 7.5V. The variable resistor 1 has a curve in which the resistance value changes gradually with respect to the amount of mechanical change. Because of this, in order to obtain the lighting voltage of the liquid crystal layer at 0°C -, it is sufficient to set the supply voltage to 3.23.5VOIt and the bias to V - 13V, and at 50°C, the supply voltage should be set to 3.
Since it is sufficient to set the bias voltage to 24.5VO1t and V-17.5V, the supply voltage 3 can be kept constant. or,
By adjusting the supply voltage 3 to the withstand voltage of the driver IC, the contrast can be maximized at each temperature within the allowable range of the driver IC's withstand voltage by increasing the bias. Also, the most frequently used room temperature is 25℃.
V which is the optimum bias when the duty is 1/200 in the vicinity
-14.IV, and the highest contrast can be obtained.

又、低温部ではバイアスが小さくなったりコントラスト
のむらが小さくなった。
Furthermore, in the low temperature region, the bias became smaller and the unevenness of contrast became smaller.

第1図の実施例で、各電圧V0〜V、電圧を安定するよ
うに出力するために第2図で示す演算増幅器等によるボ
ルテージホロワ回路を設置することにより、第1図の実
施例と同様な効果を有するとともに表示むらもなくなっ
た。
In the embodiment shown in Fig. 1, by installing a voltage follower circuit such as an operational amplifier shown in Fig. 2 in order to stably output each voltage V0 to V, the voltage can be changed from the embodiment shown in Fig. 1. It has similar effects and also eliminates display unevenness.

又、第1図の実施例で、可変抵抗器1のかわりに、周囲
の温度によって正の係数をもつ表示、例えば株式会社村
田製作所製の商品名ポジスタを使用することによって同
様な効果を得ると共に、周囲の温度によって自動的にバ
イアスが最適コントラストを得るように、変化するので
、調整が不要となる。
Furthermore, in the embodiment shown in FIG. 1, the same effect can be obtained by using a display having a positive coefficient depending on the ambient temperature, for example, a POSISTOR manufactured by Murata Manufacturing Co., Ltd., in place of the variable resistor 1. The bias automatically changes depending on the ambient temperature to obtain the optimum contrast, eliminating the need for adjustment.

〔発明の効果〕〔Effect of the invention〕

実施例で示すように、バイアスを変化させることにより
コントラストの調整をすることにより、供給電圧を一定
することが出来、供給電圧を安定微調整する回路が不要
となった。
As shown in the examples, by adjusting the contrast by changing the bias, the supply voltage can be kept constant, and a circuit for stably finely adjusting the supply voltage is no longer necessary.

又、供給電圧をドライバーICの耐圧に会わせることに
よってドライバーICの許容耐圧において、各温度で最
大のコントラストを得ることが出来る。
Further, by making the supply voltage match the withstand voltage of the driver IC, it is possible to obtain the maximum contrast at each temperature within the allowable withstand voltage of the driver IC.

又、使用頻度の高い常温付近で最大のコントラストを得
ることが出来るようになり、低温部ではバイアスが小さ
くなるので、コントラストのむらが小さくなるという効
果も得られた。
In addition, the maximum contrast can be obtained near normal temperatures, which are frequently used, and the bias is reduced in low-temperature areas, resulting in the effect of reducing contrast unevenness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例で、抵抗分割によるバイアスを
作る回路例図。 第2図は他の実施例でのバイアスを作る回路例図。 第3図は、各周囲温度における最適コントラストを得る
ための供給電圧3とバイアスの関係を示す図。 以上 出願人 セイコーエプソン株式会社
FIG. 1 is an embodiment of the present invention, and is an example circuit diagram for creating a bias by resistor division. FIG. 2 is an example diagram of a circuit for creating a bias in another embodiment. FIG. 3 is a diagram showing the relationship between supply voltage 3 and bias for obtaining the optimum contrast at each ambient temperature. Applicant: Seiko Epson Corporation

Claims (1)

【特許請求の範囲】 一対の電極によって挟持される液晶層によって形成され
る液晶表示装置を電圧平均化法によって駆動する液晶表
示装置において、 前記一対の電極間に加わる非選択特の電圧と選択時の電
圧の割合を変化させることを特徴とする液晶表示装置。
[Scope of Claims] A liquid crystal display device in which a liquid crystal display device formed by a liquid crystal layer sandwiched between a pair of electrodes is driven by a voltage averaging method, wherein a non-selection voltage applied between the pair of electrodes and a selection voltage are provided. A liquid crystal display device characterized by changing the ratio of voltage.
JP4125588A 1988-02-24 1988-02-24 Liquid crystal display device Pending JPH01216323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4125588A JPH01216323A (en) 1988-02-24 1988-02-24 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4125588A JPH01216323A (en) 1988-02-24 1988-02-24 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH01216323A true JPH01216323A (en) 1989-08-30

Family

ID=12603331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4125588A Pending JPH01216323A (en) 1988-02-24 1988-02-24 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH01216323A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04113314A (en) * 1990-09-03 1992-04-14 Sharp Corp Liquid crystal display device
JPH06348235A (en) * 1993-06-07 1994-12-22 Nec Corp Liquid crystal display device
WO1996036902A1 (en) * 1995-05-17 1996-11-21 Seiko Epson Corporation Liquid crystal display, its driving method, and driving circuit and power supply used therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141493A (en) * 1984-12-14 1986-06-28 シャープ株式会社 Temperature compensation circuit for liquid crystal display element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141493A (en) * 1984-12-14 1986-06-28 シャープ株式会社 Temperature compensation circuit for liquid crystal display element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04113314A (en) * 1990-09-03 1992-04-14 Sharp Corp Liquid crystal display device
JPH06348235A (en) * 1993-06-07 1994-12-22 Nec Corp Liquid crystal display device
WO1996036902A1 (en) * 1995-05-17 1996-11-21 Seiko Epson Corporation Liquid crystal display, its driving method, and driving circuit and power supply used therefor
KR100254647B1 (en) * 1995-05-17 2000-05-01 야스카와 히데아키 Liquid crystal display device and its drive method and the drive circuit and power supply circuit used therein
US6252571B1 (en) 1995-05-17 2001-06-26 Seiko Epson Corporation Liquid crystal display device and its drive method and the drive circuit and power supply circuit device used therein

Similar Documents

Publication Publication Date Title
EP1012819B1 (en) Common electrode voltage driving circuit for a liquid crystal display
US7483007B2 (en) Liquid crystal display
US5414441A (en) Temperature compensation apparatus for liquid crystal display
KR100352717B1 (en) Liquid crystal display device
JPH05203918A (en) Active matrix liquid crystal display device
CN1963907A (en) Temperature compensating circuit of LCD element
JPH01216323A (en) Liquid crystal display device
US20070242020A1 (en) Liquid crystal display device and common voltage generating circuit
JPH05307169A (en) Common electrode driving circuit for liquid crystal display device
US6999058B1 (en) Power supply circuit for driving liquid crystal display device
US8159448B2 (en) Temperature-compensation networks
US6600466B1 (en) Method and circuit for controlling contrast in liquid crystal displays using dynamic LCD biasing
JPH07230079A (en) Liquid crystal display device
US6670937B1 (en) Liquid crystal display apparatus
JPH04191821A (en) Liquid crystal display device
CN216352011U (en) Automatic control voltage stabilizing circuit for liquid crystal display
KR20030049264A (en) Common voltage generation circuit of liquid crystal display device
JPS63267917A (en) Driving voltage circuit for liquid crystal display device
US9824649B2 (en) Gray scale control for liquid crystal displays
JPS61141493A (en) Temperature compensation circuit for liquid crystal display element
KR20020016124A (en) circuit for controlling common voltage in the Liquid Crystal Display
JPH04204627A (en) Liquid crystal display device
JPH04107233U (en) liquid crystal display device
KR20000015729A (en) Temperature compensation circuit of liquid crystal display device
JPH02278229A (en) Liquid crystal display device