JPH01215959A - Manufacture of aluminum foil for electrolytic capacitor cathode - Google Patents

Manufacture of aluminum foil for electrolytic capacitor cathode

Info

Publication number
JPH01215959A
JPH01215959A JP4100788A JP4100788A JPH01215959A JP H01215959 A JPH01215959 A JP H01215959A JP 4100788 A JP4100788 A JP 4100788A JP 4100788 A JP4100788 A JP 4100788A JP H01215959 A JPH01215959 A JP H01215959A
Authority
JP
Japan
Prior art keywords
foil
strength
electrolytic capacitor
pure
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4100788A
Other languages
Japanese (ja)
Inventor
Kuniaki Matsui
邦昭 松井
Masao Kageyama
影山 政夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4100788A priority Critical patent/JPH01215959A/en
Publication of JPH01215959A publication Critical patent/JPH01215959A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve electrostatic capacity and strength by subjecting pure Al in which impurity content is controlled to soaking treatment, hot rolling, and cold rolling under respectively controlled conditions to form the above pure Al into product thickness. CONSTITUTION:A pure-Al stock which has >=99.7% purity and in which contents of Fe, Si, Cu, and Ti as impurities are controlled to <=0.15% by weight, <=0.10%, <=0.05%, and <=0.05%, respectively, is subjected to soaking treatment at a temp. as high as >=540 deg.C for 4-20hr, which is hot-rolled and then wound up at a winding temp. as low as <=300 deg.C. This hot-rolled plate is further cold-rolled at >=95% final cold draft so as to be formed into an Al foil of the final thickness. The resulting Al foil for electrolytic capacitor cathode has high electrostatic capacity and high strength and, by using this Al foil, the capacitor can be made compact and lightweight by means of thinning.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電解コンデンサ陰極用アルミニウム箔の製造に
係り、特に静電容量及び強度の優れたアルミニウム箔の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to the production of aluminum foil for electrolytic capacitor cathodes, and particularly to a method of producing aluminum foil with excellent capacitance and strength.

(従来の技術) 電解コンデンサの陰極箔には、静電容量及び強度アップ
を目的として、従来からCu単独箔或いは各種元素との
組合せによるCu合金箔及びその製造方法が各種提案さ
れている(例、特公昭44−25016号など)。しか
し、Cu合金箔は、合金元素のCuへの固溶、析出の状
況により、エツチング特性や強度が変動し易いほか、コ
ンデンサに組立てた後は、電解液との反応により静電容
量が経時変化により低下し易い欠点がある。
(Prior Art) Various proposals have been made for the cathode foil of electrolytic capacitors, including Cu foil alone or Cu alloy foil in combination with various elements, and their manufacturing methods, with the aim of increasing capacitance and strength (e.g. , Special Publication No. 44-25016, etc.). However, the etching properties and strength of Cu alloy foils tend to fluctuate depending on the state of solid solution and precipitation of alloy elements in Cu, and after being assembled into a capacitor, the capacitance changes over time due to reaction with the electrolyte. It has the disadvantage that it is more likely to deteriorate.

したがって、長寿命を必要とするコンデンサ陰極箔に対
しては、一般にCuを添加しない99.7%以上の純ア
ルミニウム箔が使用されている。これは、Cuを添加し
たアルミニウム合金箔は、強度、静電容量の点では優れ
ているが、静電容量の経時変化を招くために電解コンデ
ンサの寿命が短くなるという欠点があるためである。
Therefore, for capacitor cathode foils that require a long life, 99.7% or more pure aluminum foils without added Cu are generally used. This is because aluminum alloy foil containing Cu is excellent in terms of strength and capacitance, but has the disadvantage that the capacitance changes over time, shortening the life of the electrolytic capacitor.

しかし、このような純アルミニウム箔は、Cu添加アル
ミニウム合金箔に比較し、エツチング性が若干劣るため
、容量が若干低くなり、また十分な強度が得られないこ
とが知られている。
However, it is known that such pure aluminum foil has slightly lower etching properties than Cu-added aluminum alloy foil, resulting in a slightly lower capacity and insufficient strength.

(発明が解決しようとする課題) これらの点の改善策に関しては、従来より、種々提案さ
れているところである。
(Problems to be Solved by the Invention) Various measures for improving these points have been proposed in the past.

すなわち、純アルミニウム箔の容量アップのためには、
Ti元素の低減による方法(特開昭53−112452
号参照)や、製造工程の改善による方法(特公昭44−
15177号参照)などが提案されているが、いずれも
製造工程が複雑になり、生産性上問題がある。
In other words, in order to increase the capacity of pure aluminum foil,
Method by reducing Ti element (JP-A-53-112452
(Refer to No.) and methods by improving the manufacturing process (Special Public Interest Publication No. 1973-
15177), but all of them complicate the manufacturing process and pose problems in terms of productivity.

一方、強度アップに対してはあまり検討されておらず、
唯、特殊な例として薄板連鋳法により合金元素を固溶化
する方法(特開昭53−118214号参照)が提案さ
れているが、これも製造設備が限定されるため、実用化
が困難である。
On the other hand, little consideration has been given to increasing strength.
However, as a special example, a method has been proposed in which alloying elements are made into a solid solution by continuous thin plate casting (see Japanese Patent Application Laid-Open No. 118214/1982), but this is also difficult to put into practical use due to limited manufacturing equipment. be.

そこで、強度に関しては、従来より、50μm以下の薄
い厚さの製品では、強度アップを図るために加工硬化を
利用して調質したものをH材として用いられている。し
かし、電解エツチングした後の乾燥工程において軟化し
てしまう欠点があり、このため、コンデンサに組立てる
際には強度不足が生じ、箔切れなどの不具合から生産性
を低下されることがあり、どうしても箔厚を厚くせざる
を得ない状態である。
Therefore, regarding strength, conventionally, for products with a thin thickness of 50 μm or less, H materials that have been tempered using work hardening in order to increase strength have been used. However, it has the disadvantage that it softens in the drying process after electrolytic etching, which results in insufficient strength when assembled into a capacitor, and productivity may be reduced due to defects such as foil breakage. It is necessary to increase the thickness.

また容量の点においても、純アルミニウム材はCu添加
アルミニウム合金材に比較して電解エツチング性が劣る
ため、箔厚を厚くして深さ方向に粗面化を進行させ、容
量アップを図る必要があつ゛た。しかし、その際にエツ
チング時間も長くなり、また、深さ方向にエツチングを
進行させることは表面エツチングむらの原因になり易く
、容量のばらつきをしばしば発生させるという不具合が
あった。
In addition, in terms of capacity, pure aluminum materials have inferior electrolytic etching properties compared to Cu-added aluminum alloy materials, so it is necessary to increase the capacity by increasing the foil thickness and roughening the surface in the depth direction. It was hot. However, in this case, the etching time becomes longer, and furthermore, progressing the etching in the depth direction tends to cause surface etching unevenness, which often causes variations in capacitance.

本発明は、上記従来技術の欠点を解消し、99゜7%以
上の純アルミニウム材を用いても静電容量、強度ともに
アップさせることができ、高寿命で高性能の電解コンデ
ンサ陰極用箔が得られる製造力=3− 法を提供することを目的とするものである。
The present invention solves the drawbacks of the above-mentioned conventional technology, and provides a foil for electrolytic capacitor cathodes that has a long life and high performance, which can increase both capacitance and strength even when using pure aluminum material of 99.7% or more. The objective is to provide a method in which the resulting manufacturing power is 3-.

(課題を解決するための手段) 前記目的を達成するため、本発明者は、従来の純度99
.7%以上の純アルミニウムの高寿命性を保持しつつ1
強度、容量アップを可能にする方策について鋭意研究を
重ねた結果、不純分元素量を抑制すると共に、均熱処理
、熱間圧延、冷間圧延の各条件を規制することにより、
可能であることを見い出したものである。
(Means for Solving the Problems) In order to achieve the above object, the present inventor has developed a conventional purity 99.
.. 1 while maintaining the long life of over 7% pure aluminum.
As a result of extensive research into ways to increase strength and capacity, we have suppressed the amount of impurity elements and regulated the conditions of soaking, hot rolling, and cold rolling.
We have discovered that it is possible.

すなわち、本発明に係る電解コンデンサ陰極用アルミニ
ウム箔の製造方法は、純度99.7%以上であり、かつ
、不純分元素として、Feを0.15wt%以下、5i
tr0.10wt%以下、Cuを0.05wt%以下、
Tiを0.05wt%以下にそれぞれ抑制してなる純ア
ルミニウムにつき、均熱処理を540℃以上、4〜20
hrの範囲で施した後、熱間圧延を行って巻取温度30
0℃以下にて終了し、更に最終冷間加工率95%□以上
で冷間圧延を行って製品厚にすることを特徴とするもの
である。
That is, the method for manufacturing an aluminum foil for an electrolytic capacitor cathode according to the present invention has a purity of 99.7% or more, and contains Fe as an impurity element of 0.15 wt% or less, 5i
tr 0.10wt% or less, Cu 0.05wt% or less,
For pure aluminum with Ti suppressed to 0.05 wt% or less, soaking treatment was performed at 540°C or higher for 4 to 20 minutes.
After applying it within the range of hr, hot rolling is performed to a coiling temperature of 30
It is characterized in that it is finished at 0° C. or lower and is further cold rolled at a final cold working rate of 95%□ or higher to obtain the product thickness.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明における化学成分限定理由は以下のとおりである
。なお、各元素の含有量はりt%である。
The reasons for limiting the chemical components in the present invention are as follows. Note that the content of each element is t%.

純度99.7%以上の純アルミニウム材の場合でも、強
度の増加を図るためには、できるだけ合金元素を添加さ
せることが必要である。しかし、合金元素はエツチング
性を劣化させることが多いので、不純分元素として特定
量以下に抑制する必要がある。
Even in the case of a pure aluminum material with a purity of 99.7% or more, it is necessary to add as many alloying elements as possible in order to increase the strength. However, since alloying elements often deteriorate etching properties, they need to be suppressed to below a specific amount as impurity elements.

Fe、Siは金属間化合物を発生させ易く、エツチング
のむらの原因となるので、Feは0.15%以下、Si
は0.10%以下にそれぞれ抑える。
Fe and Si tend to generate intermetallic compounds and cause uneven etching, so Fe should be 0.15% or less and Si
are kept below 0.10%.

Cuはエツチング性を向上させるが、容量の経時変化が
生じ易くなるので、0.05%以下に抑える。
Although Cu improves etching properties, it tends to cause changes in capacitance over time, so it is suppressed to 0.05% or less.

また、T1は特にエツチング性に悪影響を与え、異常溶
解の原因となるため、微量に抑えることが必要であり、
0.05%以下、望ましくは0.01%以下にする。
In addition, T1 has a particularly negative effect on etching properties and causes abnormal dissolution, so it is necessary to keep it in a trace amount.
The content should be 0.05% or less, preferably 0.01% or less.

次に上記組成の純アルミニウム箔の製造条件について説
明する。
Next, the manufacturing conditions for pure aluminum foil having the above composition will be explained.

上記元素は、均熱処理においてできるだけ固溶させるこ
とがエツチング性及び強度のアップに必要である。その
ためには、均熱温度はできるだけ高温度で、540℃以
上にすることが必要である。
In order to improve etching properties and strength, it is necessary to dissolve the above elements in solid solution as much as possible during the soaking process. For this purpose, it is necessary to set the soaking temperature as high as possible, at 540° C. or higher.

また、保持時間も長時間が望ましく、4hr以上は必要
である。しかし、20hrを超えると上記効果は飽和す
ると共にコストが上昇して経済的でなくなる。したがっ
て、均熱処理条件は540℃以上で、4〜20hr保持
とする。
Further, it is desirable that the holding time be long, and 4 hr or more is necessary. However, if the duration exceeds 20 hours, the above effects will be saturated and the cost will increase, making it uneconomical. Therefore, the soaking treatment conditions are kept at 540° C. or higher for 4 to 20 hours.

均熱処理後は、熱間圧延を行う。熱間圧延に際しては、
これら元素の析出を防止するために300〜500℃で
の温度範囲で長時間保持することは避けるべきである。
After soaking, hot rolling is performed. When hot rolling,
In order to prevent the precipitation of these elements, holding in the temperature range of 300 to 500°C for a long time should be avoided.

したがって、熱間圧延はできるだけ短時間で実施するこ
とが望ましい。特に4000C〜500℃の温度範囲は
10分間以内で冷却することが望ましく、必要により圧
延中にクーラントによる冷却を施すことは効果がある。
Therefore, it is desirable to perform hot rolling in as short a time as possible. In particular, in the temperature range of 4000C to 500C, it is desirable to cool within 10 minutes, and if necessary, cooling with a coolant during rolling is effective.

更に重要な点は、コイル巻取り後は、どうしても冷却時
間を要するため、巻取温度をできるだけ低温にし、30
0℃以下の温度に制御することが必要である。300℃
を超えると冷却中にこれら元素の析出が生じるので好ま
しくない。
An even more important point is that after winding the coil, cooling time is required, so the winding temperature should be kept as low as possible, and the winding temperature should be kept at 30
It is necessary to control the temperature to below 0°C. 300℃
Exceeding this is not preferable because these elements will precipitate during cooling.

熱間圧延後の冷間圧延では、冷間加工率はできるだけ多
くとることが必要であり、加工歪を増大し、組織をでき
るだけ微細なものにして、エツチング性の向上を図り、
更には、転位の絡み合いが生じることから、乾燥工程な
どの加熱処理においても軟化の程度が少なく、製品での
強度アップにつながる。そのためには最終冷間加工率は
95%以上が必要であり、望ましくは99%以上の強圧
下率により、大きな効果が得られる。この加工率が95
%未満では転位の絡み合いの程度が少なく、逆に加工歪
の蓄積が回復再結晶を促進する場合があり、好ましくな
いので注意の必要がある。
In cold rolling after hot rolling, it is necessary to increase the cold working rate as much as possible, increase the processing strain, make the structure as fine as possible, and improve etching properties.
Furthermore, since entanglement of dislocations occurs, the degree of softening is small even during heat treatment such as a drying process, leading to increased strength of the product. For this purpose, the final cold working rate needs to be 95% or more, and preferably a strong reduction rate of 99% or more can provide a great effect. This processing rate is 95
If it is less than %, the degree of entanglement of dislocations is small, and conversely, the accumulation of processing strain may promote recovery recrystallization, which is not preferable, so care must be taken.

なお、冷間圧延に際しては適宜中間焼鈍を実施すること
が可能である。
Note that during cold rolling, it is possible to appropriately perform intermediate annealing.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

(実施例) 素材として、通常電解コンデンサ陰極箔に使用されてい
る純度99.8%アルミニウムを使用し、また一部につ
いては組成の影響を調査するためにFe、Si、Cu、
Tiなどを添加したものを使用して、それぞれに対して
第1表に示す製造工程を適用した。
(Example) As the material, 99.8% pure aluminum, which is normally used for electrolytic capacitor cathode foil, was used, and in order to investigate the influence of composition, Fe, Si, Cu,
The manufacturing process shown in Table 1 was applied to each of the samples to which Ti and the like were added.

すなわち、得られたスラブに各種均熱処理を行った後、
直ちに熱間圧延を行い、巻取温度を種々変えて実施した
。また、熱間圧延板厚もその後の最終冷間加工率の影響
を調査するために一部変化させた。
That is, after performing various soaking treatments on the obtained slab,
Immediately hot rolling was carried out at various coiling temperatures. In addition, the hot-rolled plate thickness was also partially changed in order to investigate the influence of the subsequent final cold working rate.

その後、冷間圧延を行って製品厚(50μm)にした。Thereafter, cold rolling was performed to obtain a product thickness (50 μm).

最終冷間加工率の影響を調査するために一部については
中間焼鈍を実施した。
In order to investigate the influence of final cold working rate, intermediate annealing was carried out for some parts.

以上の工程を第1表に示すように種々変えることにより
、それぞれの最適条件を明らかにした。
By variously changing the above steps as shown in Table 1, the optimum conditions for each were clarified.

各製品について、静電容量及び容量安定性を調べる共に
電解エツチング後の引張強度を調べた。
For each product, the capacitance and capacity stability were examined, as well as the tensile strength after electrolytic etching.

その結果を第1表に併記する。The results are also listed in Table 1.

なお、電解エツチング、静電容量の測定、容量安定性の
測定及び引張試験は以下の要領にて行った。
Incidentally, electrolytic etching, capacitance measurement, capacitance stability measurement, and tensile test were conducted in the following manner.

■ 電解エツチング条件 純水中7.5%塩酸+0.5%蓚酸、6o±1℃、AC
30Hz交流、45 A/di” X 2分間。
■ Electrolytic etching conditions 7.5% hydrochloric acid + 0.5% oxalic acid in pure water, 6o±1℃, AC
30Hz AC, 45 A/di” x 2 minutes.

■ 静電容量測定法 純水10中硼酸50g+クエン酸50g+アンモニア5
0mQ、30±5℃、測定周波数120Hz、万能ブリ
ッジによる測定。
■ Capacitance measurement method Boric acid 50g + citric acid 50g + ammonia 5 in pure water 10
0mQ, 30±5℃, measurement frequency 120Hz, measurement with universal bridge.

■ 引張強度 短冊状の15n++n幅アルミニウム箔をインストロン
引張試験機にて引張速度10 mm’/minで測定。
■ Tensile Strength A strip of 15n++n width aluminum foil was measured using an Instron tensile tester at a tensile speed of 10 mm'/min.

■ 静電容量安定性 純水10中硼酸50g、60±5℃、10日間浸漬後の
静電容量変化率を測定。
■ Capacitance stability Measurement of capacitance change rate after immersion in 50 g of boric acid in 10% pure water at 60±5°C for 10 days.

第1表より明らかなとおり、本発明例Nα5、Nα9、
Nα11〜Nα12はいずれも高静電容量、高強度であ
り、しかも容量の経時変化が少なく、高寿命性を示して
いる。
As is clear from Table 1, examples of the present invention Nα5, Nα9,
All of Nα11 and Nα12 have high capacitance and high strength, and have little change in capacitance over time and exhibit long life.

一方、Fe、Si、Cu、Tiのいずれかが多すぎる比
較例Nα1〜Nα4は容量や強度が不足し、或いは高容
量、高強度でも容量の経時変化が生じている。
On the other hand, Comparative Examples Nα1 to Nα4 containing too much of any one of Fe, Si, Cu, and Ti lacked capacity and strength, or even with high capacity and high strength, the capacity changed over time.

また、これらの不純分元素量が本発明範囲内に抑制され
ていても、均熱処理温度が低い比較例Nα6、均熱時間
が短い比較例Nα7、巻取温度が高い比較例Nα8、最
終冷間加工率が少ない比較例Nα10は、いずれも静電
容量が不足していると共に強度も低く、更にNα6は容
量安定性に問題がある。
In addition, even if the amounts of these impurity elements are suppressed within the range of the present invention, comparative example Nα6 with a low soaking temperature, comparative example Nα7 with a short soaking time, comparative example Nα8 with a high coiling temperature, and final cold treatment. Comparative example Nα10, which has a low processing rate, both lacks capacitance and has low strength, and furthermore, Nα6 has a problem with capacity stability.

【以下余白1 −11= (発明の効果) 以上詳述したように、本発明によれば、純度99.7%
以上で特定の不純分元素量を抑制すると同時に製造プロ
セス条件を規制するので、以下のような優れた効果が得
られる。
[Margin below 1 -11= (Effect of the invention) As detailed above, according to the present invention, the purity is 99.7%.
As described above, since the amount of specific impurity elements is suppressed and the manufacturing process conditions are regulated at the same time, the following excellent effects can be obtained.

■ 静電容量、強度に優れた電解コンデンサ陰極用アル
ミニウム箔が得られる。
■ Aluminum foil for electrolytic capacitor cathodes with excellent capacitance and strength can be obtained.

■ 高容量、高強度の材料が得られるために薄肉化が可
能になり、コンデンサの軽小化を図ることができる。
■ Since high-capacity, high-strength materials can be obtained, the walls can be made thinner, making it possible to make capacitors lighter and smaller.

■ 高強度であるのでエツチング時の箔切れを防止でき
るため、エツチング速度の増大を図ることができ、生産
性が向上する。
■ High strength prevents foil breakage during etching, increasing etching speed and improving productivity.

■ 容量の経時変化が少ないので、Cu添加アルミニウ
ム合金箔に比較して、電解コンデンサの寿命アップを図
ることができる。
(2) Since there is little change in capacitance over time, the life of the electrolytic capacitor can be extended compared to Cu-added aluminum alloy foil.

特許出願人   株式会社神戸製鋼所 代理人弁理士  中  村   尚Patent applicant: Kobe Steel, Ltd. Representative Patent Attorney Takashi Nakamura

Claims (2)

【特許請求の範囲】[Claims] (1)純度99.7%以上であり、かつ、不純分元素と
して、Feを0.15wt%以下、Siを0.10wt
%以下、Cuを0.05wt%以下、Tiを0.05w
t%以下にそれぞれ抑制してなる純アルミニウムにつき
、均熱処理を540℃以上、4〜20hrの範囲で施し
た後、熱間圧延を行って巻取温度300℃以下にて終了
し、更に最終冷間加工率95%以上で冷間圧延を行って
製品厚にすることを特徴とする電解コンデンサ陰極用ア
ルミニウム箔の製造方法。
(1) The purity is 99.7% or more, and as impurity elements, Fe is 0.15wt% or less and Si is 0.10wt%.
% or less, Cu 0.05wt% or less, Ti 0.05w
After applying soaking treatment at 540°C or higher for 4 to 20 hours, the pure aluminum is heated at a rolling temperature of 300°C or lower, followed by final cooling. A method for manufacturing an aluminum foil for an electrolytic capacitor cathode, the method comprising cold rolling at a processing rate of 95% or more to obtain a product thickness.
(2)熱間圧延は400〜500℃の温度範囲を10m
in以内に冷却させるように実施する請求項1記載の方
法。
(2) Hot rolling for 10m in the temperature range of 400-500℃
2. The method according to claim 1, wherein the method is carried out in such a manner that the cooling is performed within an hour.
JP4100788A 1988-02-24 1988-02-24 Manufacture of aluminum foil for electrolytic capacitor cathode Pending JPH01215959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4100788A JPH01215959A (en) 1988-02-24 1988-02-24 Manufacture of aluminum foil for electrolytic capacitor cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4100788A JPH01215959A (en) 1988-02-24 1988-02-24 Manufacture of aluminum foil for electrolytic capacitor cathode

Publications (1)

Publication Number Publication Date
JPH01215959A true JPH01215959A (en) 1989-08-29

Family

ID=12596337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4100788A Pending JPH01215959A (en) 1988-02-24 1988-02-24 Manufacture of aluminum foil for electrolytic capacitor cathode

Country Status (1)

Country Link
JP (1) JPH01215959A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047522A (en) * 2000-05-22 2002-02-15 Nippon Foil Mfg Co Ltd Aluminum hard foil for electrolytic capacitor cathode and its production method
JP2010248551A (en) * 2009-04-14 2010-11-04 Mitsubishi Alum Co Ltd Aluminum foil for electrolytic capacitor cathode and method for manufacturing the same
US8054611B2 (en) * 2008-01-08 2011-11-08 Kobe Steel, Ltd. Porous metal thin film, method for manufacturing the same, and capacitor
WO2012086447A1 (en) * 2010-12-20 2012-06-28 古河スカイ株式会社 Aluminum alloy foil for electrode current collectors and manufacturing method thereof
WO2012086448A1 (en) * 2010-12-20 2012-06-28 古河スカイ株式会社 Aluminum alloy foil for electrode current collectors and manufacturing method thereof
WO2013125565A1 (en) * 2012-02-21 2013-08-29 古河スカイ株式会社 Aluminum alloy foil for electrode charge collector, and method for producing same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047522A (en) * 2000-05-22 2002-02-15 Nippon Foil Mfg Co Ltd Aluminum hard foil for electrolytic capacitor cathode and its production method
US8054611B2 (en) * 2008-01-08 2011-11-08 Kobe Steel, Ltd. Porous metal thin film, method for manufacturing the same, and capacitor
JP2010248551A (en) * 2009-04-14 2010-11-04 Mitsubishi Alum Co Ltd Aluminum foil for electrolytic capacitor cathode and method for manufacturing the same
CN103270182B (en) * 2010-12-20 2016-08-10 株式会社Uacj Electrode collector alloy foil and manufacture method thereof
WO2012086447A1 (en) * 2010-12-20 2012-06-28 古河スカイ株式会社 Aluminum alloy foil for electrode current collectors and manufacturing method thereof
WO2012086448A1 (en) * 2010-12-20 2012-06-28 古河スカイ株式会社 Aluminum alloy foil for electrode current collectors and manufacturing method thereof
CN103270182A (en) * 2010-12-20 2013-08-28 古河Sky株式会社 Aluminum alloy foil for electrode current collectors and manufacturing method thereof
US10367204B2 (en) 2010-12-20 2019-07-30 Uacj Corporation Aluminum alloy foil for electrode current collectors and manufacturing method thereof
TWI460914B (en) * 2010-12-20 2014-11-11 Uacj Corp Aluminum alloy foil for electrode current collector and method of manufacturing the same
US10050257B2 (en) 2010-12-20 2018-08-14 Uacj Corporation Aluminum alloy foil for electrode current collectors and manufacturing method thereof
JP5856076B2 (en) * 2010-12-20 2016-02-09 株式会社Uacj Aluminum alloy foil for electrode current collector and method for producing the same
CN104245980A (en) * 2012-02-21 2014-12-24 株式会社Uacj Aluminum alloy foil for electrode charge collector, and method for producing same
US9715971B2 (en) 2012-02-21 2017-07-25 Uacj Corporation Aluminum alloy foil for electrode charge collector, and method for producing same
CN107937760A (en) * 2012-02-21 2018-04-20 株式会社Uacj Alloy foil and its manufacture method for electrode collector
JPWO2013125565A1 (en) * 2012-02-21 2015-07-30 株式会社Uacj Aluminum alloy foil for electrode current collector and method for producing the same
WO2013125565A1 (en) * 2012-02-21 2013-08-29 古河スカイ株式会社 Aluminum alloy foil for electrode charge collector, and method for producing same

Similar Documents

Publication Publication Date Title
JPH01215959A (en) Manufacture of aluminum foil for electrolytic capacitor cathode
JPH0146576B2 (en)
JP4060493B2 (en) Method for producing aluminum alloy foil for electrolytic capacitor cathode
JP2945298B2 (en) Manufacturing method of aluminum alloy foil for electrolytic capacitor cathode
JP4521771B2 (en) Aluminum material for electrolytic capacitor electrodes
JP2803762B2 (en) Manufacturing method of aluminum foil for electrolytic capacitor
JPH0363442B2 (en)
JPH11199992A (en) Production of aluminum soft foil for cathode of electrolytic capacitor
JPH02240245A (en) Production of aluminum alloy foil for electrolytic capacitor cathode
JP2826590B2 (en) Manufacturing method of aluminum alloy foil for anode of electrolytic capacitor
JPH01234551A (en) Manufacture of titanium stock excellent in workability
JP4827103B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JPS63161148A (en) Manufacture of aluminum foil excellent in strength and workability
JPS63303040A (en) Manufacture of aluminum-alloy foil for electrolytic capacitor cathode
US2128389A (en) Method of producing a deep drawn article of sheet iron
JPH06145923A (en) Manufacture of aluminum foil for electrolytic condenser anode
JPS62228456A (en) Manufacture of aluminum foil for use in high plate voltage of electrolytic capacitor
JPH08100233A (en) Soft thin aluminum strip for medium-and low-voltage anode for electrolytic capacitor and its production
JPH03165508A (en) Aluminum alloy for cathode foil of electrolytic capacitor
JP3359408B2 (en) Manufacturing method of aluminum foil for electrode of electrolytic capacitor
JP3355529B2 (en) Manufacturing method of aluminum alloy foil for electrolytic capacitor
JPH11140609A (en) Production of aluminum alloy for building material excellent in surface treatment property and workability by using continuously cast coil
JPH02148711A (en) Manufacture of aluminum foil for electrolytic capacitor electrode
JP2001335868A (en) Aluminum alloy foil for electrolytic capacitor cathode
JPH0790519A (en) Production of aluminum foil for electrolytic capacitor cathode