JPH01215909A - Manufacture of metallic fiber porous body - Google Patents

Manufacture of metallic fiber porous body

Info

Publication number
JPH01215909A
JPH01215909A JP4034588A JP4034588A JPH01215909A JP H01215909 A JPH01215909 A JP H01215909A JP 4034588 A JP4034588 A JP 4034588A JP 4034588 A JP4034588 A JP 4034588A JP H01215909 A JPH01215909 A JP H01215909A
Authority
JP
Japan
Prior art keywords
metal
metal fiber
fibers
sintered
metallic fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4034588A
Other languages
Japanese (ja)
Inventor
Kiyoshi Inoue
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP4034588A priority Critical patent/JPH01215909A/en
Publication of JPH01215909A publication Critical patent/JPH01215909A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a bearing or grinding sone having excellent characteristic by interposing solid lubricant or hard particle in metallic fiber at the time of manufacturing the metallic fiber porous body by packing the metallic fiber of stainless steel, etc., in a plastic mold and conducting the electricity and sintering while pressurized- compressing with electrodes for compressing and conducting electricity. CONSTITUTION:In the plastic mold 16 in a chamber 2, for example, the stainless steel fiber 20 having 5-30mmphi is charged and the electrodes 17, 18 for compressing and conducting electricity are fitted from the upper and lower parts of the mold and the stainless steel fiber 20 is pressurizing-compressed with rising of a piston rod 13 forming an actuator 38 while supplying Ar gas from an Ar gas cylinder 25 into the chamber 2. At the same time, the power is conducted through both electrodes 17, 18 from the power source 29 and the green compact is sintered to manufacture the porous metallic fiber sintered compact. In this case, by mixing the solid lubricant of MoS2, WS2, BN, etc., having 3-30mumphi at 0.5-25vol.% in the metallic fiber 20, the bearing material is obtd. By mixing the hard SiC, CBN, Al2O3, WC diamond, etc., having 5-500mumphi at 3-60vol.% in the metallic fiber 20, the grinding stone having excellent characteristic is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金属繊維を加圧成形すると共に、通電して加熱
焼結する金属繊維焼結多孔体の製造方法及びそれを利用
した軸受け、砥石の製造方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for manufacturing a metal fiber sintered porous body in which metal fibers are pressure-formed and heated and sintered by applying electricity, and a bearing and a grindstone using the same. Relating to a manufacturing method.

〔従来の技術) 旋削によって製作された断面が10μm2〜55μm2
である黄銅、低炭素鋼、アルミニウム、フェライト系ス
テンレス鋼、オーステナイト系ステンレス鋼等の金属繊
維はランダムウェーバ又はカードにかけられる以前に焼
鈍軟弛処理が施されており、且つIll全全体70重量
%以上のものが10〜ioo mmの長さのものであっ
て、ランダムウェーバ又はカードにかけて得られたウェ
ブをそのまま焼結炉に導入して焼結することにより 1
80°曲げても折れない性質の金属繊維にし、この金属
繊維よりなる空隙率99%で厚み5 mmのウェブを得
、これを更に800℃の水素中で焼結を行ない、焼結金
属多孔体を得る金属繊維多孔体の連続製造法が特公昭6
2−41,284号公報に開示されている。
[Prior art] The cross section produced by turning is 10 μm2 to 55 μm2.
Metal fibers such as brass, low carbon steel, aluminum, ferritic stainless steel, austenitic stainless steel, etc. are subjected to an annealing softening treatment before being applied to a random webber or card, and the total content of the metal fibers is 70% by weight or more. By introducing the obtained web into a sintering furnace as it is into a sintering furnace and sintering the web, which has a length of 10 to ioo mm,
The metal fibers were made into metal fibers that would not break even when bent at 80 degrees, and a web with a porosity of 99% and a thickness of 5 mm was obtained. This was further sintered in hydrogen at 800°C to create a sintered metal porous body. A method for continuous production of porous metal fibers was published in 1986.
It is disclosed in Japanese Patent No. 2-41,284.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の空隙率が99%の金属Il維からなるウェブであ
っても、これを水素中で加熱すると、金属繊維は全体的
に加熱され、表面が軟化、或いは溶融して繊維が互いに
広い範囲で溶着しあうことによって空隙率を急激に低下
させる等して正確な空隙率のものを得ることができない
。又、ウェブの外側から加熱するから、外側と中心部分
の加熱状態が一様でないことから、あまり厚いウェブの
焼結には適さなかった。
Even if it is a conventional web made of metal Il fibers with a porosity of 99%, when it is heated in hydrogen, the metal fibers are heated as a whole, the surface softens or melts, and the fibers are separated from each other in a wide range. By welding each other, the porosity decreases rapidly, making it impossible to obtain a material with an accurate porosity. Furthermore, since the web is heated from the outside, the heating conditions between the outside and the center are not uniform, making it unsuitable for sintering very thick webs.

本発明はウェブの厚さにかかわりなく、ウェブを構成す
る金属繊維が互いに接触する部分のみを溶着し、又ウェ
ブの加圧力を制御して金属繊維が互いに接触する量を制
御し、所定の空隙率を有する金属繊維多孔体の製造方法
、及びこの金属繊維多孔体を利用した軸受、砥石の製造
方法、或いは、又粒体を含む金属11維を基板に接合焼
結してなる金RrUIIi多孔体の製造方法を提供する
ことを目的とするものである。
Regardless of the thickness of the web, the present invention welds only the parts where the metal fibers constituting the web contact each other, and also controls the pressing force of the web to control the amount of contact between the metal fibers and fill a predetermined gap. A method for manufacturing a porous metal fiber body having a high carbon fiber ratio, and a method for manufacturing a bearing or a grindstone using this porous metal fiber body, or a porous gold RrUIIi body formed by bonding and sintering metal 11 fibers containing grains to a substrate. The purpose of this invention is to provide a method for manufacturing.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために本発明は、5〜30μmφの
ステンレス繊維の所定量を所定寸法形状の塑型内に充填
すると共に、この型に押圧体兼通電電極を嵌合し、充填
金属、繊維を加圧圧縮すると共に通電(放電を含む)加
熱し、充填金属繊維を短時間で所望の空隙率を有する体
積となるように圧縮、成形、焼結するようにしたもので
ある。
In order to achieve the above object, the present invention fills a predetermined amount of stainless steel fibers with a diameter of 5 to 30 μm into a plastic mold of a predetermined size and shape, fits a pressing body and current-carrying electrode into the mold, and fills the filled metal with fibers. The filled metal fibers are compressed, molded, and sintered in a short time to a volume having a desired porosity by compressing them under pressure and heating them with electricity (including discharge).

又、ステンレス繊維に3〜30μmφの固体潤滑材1y
’lo S12 、WS2 、BN、(CF)nの微粒
子を体積化で0.5〜25%含有させて焼結し、含油性
軸受けを製造し、或いは金属繊維体に5〜500μmφ
の砥粒用の硬質粒子Sf CXCBNXFe 203、
AI!203、WC1zrO2、ダイヤ等を体積比で3
〜60%含有させて焼結し、砥石を製造し、或いは、又
、固体潤滑材、砥粒、摩擦材等の粒体を含む金属繊維を
金属等導電性の基板に接合焼結するようにしたものであ
る。
In addition, a solid lubricant 1y with a diameter of 3 to 30 μm is added to the stainless steel fiber.
'lo S12, WS2, BN, (CF)n fine particles are contained in a volume of 0.5 to 25% and sintered to produce an oil-impregnated bearing, or a metal fiber body with a diameter of 5 to 500 μm
Hard particles Sf CXCBNXFe 203 for abrasive grains,
AI! 203, WC1zrO2, diamond etc. in volume ratio of 3
~60% content and sintering to manufacture a grindstone, or bonding and sintering metal fibers containing particles of solid lubricant, abrasive grains, friction material, etc. to a conductive substrate such as metal. This is what I did.

〔作用〕[Effect]

使用する金属繊維の密度と径と、全体の重量並びに塑型
の体積から加圧圧縮した金属繊維の空隙率を容易に知る
ことができる。この加圧圧縮した金属繊維に、押圧体兼
通電電極より通電すると、電流は金属繊維が互いに接触
した部分を溶着する。
The porosity of the compressed metal fiber can be easily determined from the density and diameter of the metal fiber used, the total weight, and the volume of the plastic mold. When current is applied to the pressurized metal fibers from a pressing body and current-carrying electrode, the current welds the parts where the metal fibers are in contact with each other.

従って、始めに押圧体兼通電電極で加圧し所定の空隙率
を保った状態で、蜘蛛の巣状に焼結することができるこ
とから、フィルタの外に固体潤滑材を含有させた軸受け
や、砥′粒を含有させて砥石、摩擦材を含ませて金属板
に接合焼結しブレーキを製造することができる等極めて
広い範囲に利用することができるものである。
Therefore, since it is possible to sinter into a spider web shape while maintaining a predetermined porosity by first pressurizing with a pressing body and current-carrying electrode, it is possible to sinter the shape of a spider's web in a state where a predetermined porosity is maintained. It can be used in a very wide range of applications, such as making grindstones containing 'grains, and brakes by joining and sintering metal plates with friction materials.

〔実施例〕〔Example〕

本発明を例示した図に基づいて説明する。使用する金属
繊維の素材はアルミニウム及びアルミ合金、銅及び銅合
金、鋼、鋳鉄、鉛、チタン、亜鉛等を用いることができ
るが、ここでは代表してステンレスを利用する。この素
材を旋盤によって回転し、切削する切刃には自励振動を
与えて直接、金属繊維を製造するビビリ振動切削法によ
って製造した繊維径5〜30μmφのものが利用される
The present invention will be explained based on the drawings that illustrate the invention. The material of the metal fiber used can be aluminum and aluminum alloys, copper and copper alloys, steel, cast iron, lead, titanium, zinc, etc., but stainless steel is typically used here. This material is rotated by a lathe, and the cutting blade used for cutting is a fiber having a diameter of 5 to 30 μm, which is produced by a chatter vibration cutting method in which self-excited vibration is applied to directly produce metal fibers.

又、金R繊維の製造方法には、このビビリ振動切削法の
外にダイスを通して細線する伸線法、この伸線法の前の
段階で適用される押出法、高温で熱分解、水素還元、置
換反応等の気相反応を利用して加熱された基材の上に高
融点金属、炭化物く硼化物、珪化甥等を沈積させる気相
蒸着法等があり、これらの方法で製造した金属1IiH
1又この金属繊維をウェブにしたものを利用することが
できる。
In addition to the chattering vibration cutting method, methods for producing gold R fibers include a wire drawing method in which a fine wire is passed through a die, an extrusion method applied at a stage before this wire drawing method, thermal decomposition at high temperatures, hydrogen reduction, There are vapor phase deposition methods that deposit high melting point metals, carbides, borides, silicides, etc. on a heated base material using gas phase reactions such as substitution reactions, and metals produced by these methods
Alternatively, a web made of this metal fiber can be used.

本発明を実施する装置を例示した第1図に於て、枠1に
固定したヂVンバ2の開口部を覆うカバー3はヒンジ4
で開閉し、ハンドル5によって密閉する。このチャンバ
2とカバー3とには何れも冷却水を流すジャケット6が
あって、図示していないが公知の冷却水供給装置で冷却
水を循環して冷却するようになっている。チャンバ2に
貫通して枢支する電極7,8はシール9,10で気密に
保ち、電極7は絶縁部材11を介して枠1に固定し、電
極8は絶縁部材12を介してアクチエータ38を構成す
るピストンロッド13の端部に固着する。ピストンロッ
ド13はシリンダ14内を移動するピストン15によっ
て上下に移動し、電極8を上下に移動する。この電極7
.8の先端面には、図示していないが、WC−Co系の
合金をろう付けしておくこともあり、又電極の軸心に沿
って孔を設け、その孔径より細いパイプを挿入し、冷却
水を循環することによって電極7,8を一様に冷却する
。塑型16に枢支した押圧体兼通電電極17.18で構
成する焼結室19に金属繊維20を充填し、一方の押圧
体兼通電電極17を電極8の先端面に載置し、他方の押
圧体兼通電電極18は電極7の先端面に当接するように
設置する。
In FIG. 1 illustrating an apparatus for carrying out the present invention, a cover 3 covering an opening of a hinge 2 fixed to a frame 1 is attached to a hinge 4.
It opens and closes with the handle 5, and is sealed with the handle 5. Both the chamber 2 and the cover 3 have a jacket 6 through which cooling water flows, and although not shown, a known cooling water supply device is used to circulate the cooling water for cooling. The electrodes 7 and 8 that penetrate and pivot into the chamber 2 are kept airtight with seals 9 and 10, the electrode 7 is fixed to the frame 1 via an insulating member 11, and the electrode 8 is fixed to the actuator 38 via an insulating member 12. It is fixed to the end of the constituting piston rod 13. The piston rod 13 is moved up and down by a piston 15 moving within the cylinder 14, and moves the electrode 8 up and down. This electrode 7
.. Although not shown, a WC-Co alloy may be brazed to the tip surface of the electrode 8, and a hole is provided along the axis of the electrode, and a pipe smaller than the diameter of the hole is inserted. The electrodes 7 and 8 are uniformly cooled by circulating the cooling water. A sintering chamber 19 consisting of pressing body/current carrying electrodes 17 and 18 pivotally supported on a plastic mold 16 is filled with metal fibers 20, one pressing body/current carrying electrode 17 is placed on the tip surface of the electrode 8, and the other The pressing body/current-carrying electrode 18 is installed so as to come into contact with the tip end surface of the electrode 7.

この塑型16と押圧体兼通電電極17.18は耐熱性の
高いグラフ1イト材を用いて作るが、特公昭49−5.
803号公報で開示したように、粉末20と接触する面
にS! 02 、AI!203、MgO1Fe203、
Fe3O4等のセラミックス粉末を薄く、通電により焼
結溶着したものを利用することができる。又、コノ外に
金属、Ti B2 、Zr B2 、Zr C,Ta’
C,Ti N、BNlNb C,Sm 02等、炭化物
、窒化物、硼化物の単独又は複数種類を複合した流体に
Zno、5〜20%、AizOa10〜40%、5iO
z40〜80%、Tf2035〜20%の混合比率から
なるフワットを10〜50%混入して液状にしlc型材
で型取りをして加熱し乾燥させるようにした、特願昭6
2−187,038号で提示したものも利用できる。チ
ャンバ2の開口21に真空ポンプ22を接続し、制御装
置23の制御指令によりチャンバ2内の空気等を排気す
る。又チャンバ2の開口24はチャンバ2内にAr等の
雰囲気ガスを供給するボンベ25とを弁26を介して接
続するものであり、制御装置230制御指令により作動
する弁26によりチャンバ2内にボンベ25の雰囲気ガ
スを供給する。ヂVンバ2の温度、塑型16の温度は温
度センサ27によって検出し、その検出信号を制御装置
23に送り、その信号で制御装置23に記憶しているプ
ログラムによって、パルス電流、又は直流電流とその印
加時間、及び冷却水の供給を制御することもできるよう
になっている。又、電極8の位置は枠1に設けた位置セ
ンサ28で検出し、その検出信号を制御装置23に送っ
て、金属繊維20の歪量、製品寸法を検知し、その検出
信号を制m装置23に送る。電極7,8は図示していな
い端子を介してパルス電流、又は直流を印加する通電電
源29と接続する。この通電電源29は制御装置23に
よって制御する。電極8・を移動するアクチエータ38
の油圧シリンダ14に接続する油路33,34の中、油
路33は油タンク35に通じ、油路34はポンプ36に
接続する。
The plastic mold 16 and the pressing body/current-carrying electrodes 17 and 18 are made using graphite material with high heat resistance.
As disclosed in Publication No. 803, S! is applied to the surface that comes into contact with the powder 20. 02, AI! 203, MgO1Fe203,
It is possible to use a thin ceramic powder such as Fe3O4, which is sintered and welded by applying electricity. In addition, metals such as Ti B2 , Zr B2 , Zr C, Ta'
Zno, 5 to 20%, AizOa 10 to 40%, 5iO to the fluid containing C, TiN, BNlNb C, Sm 02, etc., carbide, nitride, boride alone or in combination of multiple types.
A patent application published in 1986, in which 10 to 50% of fuwat with a mixing ratio of Z40 to 80% and Tf of 2035 to 20% is mixed, liquefied, molded with LC molding material, heated and dried.
2-187,038 can also be used. A vacuum pump 22 is connected to the opening 21 of the chamber 2, and air etc. in the chamber 2 is evacuated according to a control command from a control device 23. The opening 24 of the chamber 2 is connected via a valve 26 to a cylinder 25 that supplies atmospheric gas such as Ar into the chamber 2. 25 atmosphere gases are supplied. The temperature of the chamber 2 and the temperature of the plastic mold 16 are detected by a temperature sensor 27, and the detection signal is sent to the control device 23, and the signal is used to generate a pulse current or a direct current according to a program stored in the control device 23. It is also possible to control the application time and supply of cooling water. Further, the position of the electrode 8 is detected by a position sensor 28 provided on the frame 1, and the detection signal is sent to the control device 23, which detects the amount of distortion of the metal fiber 20 and the product dimensions, and sends the detection signal to the control device. Send to 23rd. The electrodes 7 and 8 are connected to an energizing power source 29 that applies pulse current or direct current through terminals not shown. This energizing power source 29 is controlled by a control device 23. Actuator 38 for moving electrode 8
Of the oil passages 33 and 34 connected to the hydraulic cylinder 14, the oil passage 33 communicates with an oil tank 35, and the oil passage 34 connects with a pump 36.

このポンプ36はインバータ回転数制御するモータ37
によって駆動し、モータ37の回転制御に伴って吐出量
を制御するようになっている。このポンプ36が吐出す
る油をアクチエータ3Bに送る油路34には、一方のポ
ート39を接続し、他方のポート40をタンク35に開
放する絞り弁41が設けである。この絞り弁41のオリ
フィスは、オリフィスの径を変えたオリフィス板を交換
したり、ニードルの先端位置をねじ等で変化させて開口
量を変化させるものを任意に利用する。しかして、直径
dmのオリフィスを通る流体の流量Qと、オリフィス前
後の圧力差Hとの関係は、公知の式Q−α(πd4 /
4 ’)(29Hα1/α)z  m 3 /minに
よって算出することができるが、測定した流量Qとモー
タ37の回転数(ポンプ36の吐出量)及び油路34内
の圧力、又はアクチエータ38の圧縮圧力の値を制御装
置23に入力して記憶させることによってデータとする
ことができ、このデータに基づいてアクチエータ38に
よる圧縮圧力の制御をすることもできる。斯くすること
によって、アクチエータ38の圧縮圧力は絞り弁41の
オリフィスの径dとモータ38の回転数の変化、つまり
ポンプ36の吐出量の変化により無段階に、しかも広範
囲に亘って制御する。
This pump 36 is driven by a motor 37 that controls the inverter rotation speed.
The discharge amount is controlled by controlling the rotation of the motor 37. An oil passage 34 that sends oil discharged by the pump 36 to the actuator 3B is provided with a throttle valve 41 that connects one port 39 and opens the other port 40 to the tank 35. The orifice of the throttle valve 41 can be changed by changing an orifice plate with a different orifice diameter or by changing the position of the tip of the needle with a screw or the like. Therefore, the relationship between the flow rate Q of fluid passing through an orifice with a diameter dm and the pressure difference H before and after the orifice is expressed by the well-known formula Q-α(πd4/
4') (29Hα1/α)z m 3 /min, but it can be calculated using the measured flow rate Q, the rotation speed of the motor 37 (discharge amount of the pump 36), the pressure inside the oil passage 34, or the pressure of the actuator 38. The value of the compression pressure can be input into the control device 23 and stored as data, and the compression pressure can be controlled by the actuator 38 based on this data. By doing so, the compression pressure of the actuator 38 is controlled steplessly and over a wide range by changing the diameter d of the orifice of the throttle valve 41 and the rotation speed of the motor 38, that is, changing the discharge amount of the pump 36.

第2図に示す伯の装置は、金属繊維のウェブ44を電極
7,8に接続した通電性のローラ45,46で圧縮加圧
しながら通電して焼結するものであり、第1図で説明し
た構成と同じものについては同一符号をイ」シて説明を
省略した。
Haku's apparatus shown in FIG. 2 sinters a metal fiber web 44 by applying electricity while compressing it using conductive rollers 45 and 46 connected to electrodes 7 and 8. Components that are the same as those described above are given the same reference numerals and their explanations are omitted.

上述の装置を利用して本発明では、5〜50μmφのス
テンレス繊維の所定量を所定寸法形状の塑型16内に充
填すると共に、その塑型16に押圧体兼通電電極17.
18を嵌合し充填した金属繊維20をアクチエータ38
で圧縮加圧し、その加圧量を、つまり製品寸法を位置セ
ンサ28で検出しながら通電電源29より、パルス電流
又は直流電流を通電加熱し、金属繊維が互いに接触する
部分を溶着して、蜘蛛の巣状に焼結した金属繊維多孔体
を得た。
In the present invention, using the above-mentioned apparatus, a predetermined amount of stainless steel fibers having a diameter of 5 to 50 μm is filled into a plastic mold 16 having a predetermined size and shape, and a pressing body/current-carrying electrode 17 is placed in the plastic mold 16.
The metal fiber 20 fitted and filled with the actuator 38
The amount of pressurization, that is, the product dimensions, is detected by the position sensor 28, and a pulse current or direct current is applied from the energizing power source 29 to heat the metal fibers, welding the parts where the metal fibers come into contact with each other. A porous metal fiber body sintered into a nest shape was obtained.

第3図に、金属繊維の密度を横軸にとり、縦軸に引張り
強さをとってテストした結果を示すと、本発明の金属繊
維多孔体は線図Hに示すように、I!維密度が小さいも
のであっても、かなり引張り強さを示していて、金属繊
維密度の差に対する引張り強さの変化は少なく安定して
いる。それに対して、従来のものは線図Gに示すように
、金属繊維密度が高くならないと所定の引張り強度を有
する金属繊維強化複合材を得ることができない。又金属
繊維密度の僅かな差により、引張り強度が大きく変化し
て不安定なものであった。
FIG. 3 shows the results of a test where the horizontal axis represents the density of metal fibers and the vertical axis represents tensile strength.As shown in diagram H, the metal fiber porous body of the present invention has I! Even if the fiber density is low, it shows considerable tensile strength, and the change in tensile strength due to the difference in metal fiber density is small and stable. In contrast, in the conventional method, as shown in diagram G, a metal fiber reinforced composite material having a predetermined tensile strength cannot be obtained unless the metal fiber density becomes high. Furthermore, the tensile strength varied greatly due to a slight difference in metal fiber density, making it unstable.

又、ステンレスi維に3〜30μmφの固体潤滑材MO
S2 、WS2 、BN、又は(CF)nの微粒子を体
積比で0.5〜25%含有させて、通電焼結させること
により含油軸受を製造して、従来品と比較したところ、
最大許容力速度係数PV値が、従来品に対する本発明品
が、1000 : 1450.1500 :2800と
優れたものであり、摩擦係数μは0,08 :0.07
.0.09 :  0.08と何れも優れた値を示すも
のであった。
In addition, a solid lubricant MO with a diameter of 3 to 30 μm is applied to stainless steel fiber.
Oil-impregnated bearings were produced by containing 0.5 to 25% by volume of fine particles of S2, WS2, BN, or (CF)n and sintered with electricity, and compared with conventional products.
The maximum allowable force-velocity coefficient PV value of the present invention product is superior to that of the conventional product at 1000:1450.1500:2800, and the friction coefficient μ is 0.08:0.07.
.. 0.09:0.08, both of which were excellent values.

又軸受けとは反対に、金属mHに5〜500μmφの砥
粒用の硬質粒子S! C,CBN、 Fe 203、A
ノ2o3、WC1Zro2、ダイヤ等を体積比で3〜6
0%含有させて通電焼結し、強靭な砥石を製造すること
ができたものである。
Also, contrary to bearings, hard particles S for abrasive grains with a diameter of 5 to 500 μm are used for metal mH! C, CBN, Fe 203, A
No2o3, WC1Zro2, diamond etc. in volume ratio of 3 to 6
It was possible to produce a strong grindstone by sintering with an electric current containing 0%.

或いは、又第4図に示すように、金属等導電性の基板4
7に、前記固体潤滑材、砥粒の外にC’u −C系、ケ
ルメツト合金系、又はFc系その他金属、合金、耐摩性
向上のために金属酸化物、金属窒化物、金属硼化物等高
硬度、高融点材を一種又はそれ以上添加混合したもの、
熱要領の大きい3e等の金属、合金を主体とし、これに
Si、B  、M(1,WJi、l−i等の金属、C等
の粉粒体を含んだ金属繊維48を、塑型16内で接合焼
結することができたものである。
Alternatively, as shown in FIG. 4, a conductive substrate 4 such as a metal
7. In addition to the abrasive grains, the solid lubricant contains C'u-C, Kelmet alloy, or Fc-based other metals, alloys, metal oxides, metal nitrides, metal borides, etc. to improve wear resistance. A mixture of one or more materials with high hardness and high melting point,
The metal fibers 48 are mainly made of metals and alloys such as 3e, which have a large heating requirement, and contain metals such as Si, B, M (1, WJi, l-i, etc.), and powders such as C. This allows for bonding and sintering to be performed within the process.

〔発明の効果〕〔Effect of the invention〕

本発明の金属繊維強化複合材は繊維相互の接触部分を通
電により接合して鋼状にしたことにより、強さが極めて
大となり、空隙率も容易に制御することができるように
なったとから、フィルタ、軸受、砥石、ブレーキ等単体
で又金属板に接合焼結する等異なる製品に幅広く応用し
て優れた製品を製造することができたものである。
The metal fiber-reinforced composite material of the present invention is made into a steel-like material by bonding the contact portions of the fibers together by applying electricity, making it extremely strong and making it possible to easily control the porosity. It has been applied to a wide range of different products, such as filters, bearings, grindstones, brakes, etc., or by bonding and sintering to metal plates, making it possible to manufacture excellent products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施する装置を例示した図、第2図は
本発明を実施する他の装置を例示した図、第3図は繊維
密度と引張り強さとの関係を示した図、第4図は金属板
等の基板に接合焼結したことを例示した図である。 7.8・・・・・・・・・電極 16・・・・・・・・・塑型 17.18・・・・・・・・・押圧体兼通電電極20・
・・・・・・・・金属繊維 29・・・・・・・・・通電電源 38・・・・・・・・・アクチエータ 47・・・・・・・・・基板 特  許  出  願  人 株式会社井上ジャパックス研究所 代表者 井 上   潔
FIG. 1 is a diagram illustrating an apparatus for implementing the present invention, FIG. 2 is a diagram illustrating another apparatus for implementing the present invention, FIG. 3 is a diagram illustrating the relationship between fiber density and tensile strength, and FIG. FIG. 4 is a diagram illustrating bonding and sintering to a substrate such as a metal plate. 7.8......Electrode 16...Plastic mold 17.18...Press body and current-carrying electrode 20.
......Metal fiber 29...Electrifying power source 38...Actuator 47...Substrate patent application Person stock Kiyoshi Inoue, representative of the company Inoue Japax Research Institute

Claims (4)

【特許請求の範囲】[Claims] (1)金属繊維を加圧成形すると共に加熱焼結する金属
繊維焼結多孔体の製造方法に於て、前記金属繊維が5〜
30μmφのステンレス繊維であつて、該金属繊維の所
定量を所定寸法形状の塑型内に充填すると共に、該塑型
に押圧体兼通電電極を嵌合し、前記充填金属繊維体を加
圧圧縮すると共に通電(放電を含む)加熱し、充填金属
繊維体を短時間で所望の空隙率を有するように圧縮、成
形焼結することを特徴とする金属繊維焼結多孔体の製造
方法。
(1) A method for producing a metal fiber sintered porous body in which metal fibers are press-molded and heated and sintered, wherein the metal fibers are
A predetermined amount of the metal fibers, which are stainless steel fibers with a diameter of 30 μm, are filled into a plastic mold of a predetermined size and shape, and a pressing body and current-carrying electrode is fitted into the plastic mold, and the filled metal fiber body is compressed under pressure. A method for producing a metal fiber sintered porous body, which comprises heating the filled metal fiber body with electricity (including discharge), compressing the filled metal fiber body in a short time so that it has a desired porosity, forming and sintering it.
(2)金属繊維を加圧成形すると共に加熱焼結する金属
繊維焼結多孔体の製造方法に於て、前記金属繊維体が3
〜30μmφの固体潤滑材MoS_2、WS_2、BN
、又は(CF)nの微粒子を体積比で0.5〜25%含
有してなることを特徴とする金属繊維多孔体からなる含
油性軸受けの製造方法。
(2) In a method for producing a metal fiber sintered porous body in which metal fibers are press-formed and heated and sintered, the metal fiber body is
~30μmφ solid lubricant MoS_2, WS_2, BN
, or (CF)n in a volume ratio of 0.5 to 25%.
(3)金属繊維を加圧成形すると共に加熱焼結する金属
繊維多孔体の製造方法に於て、前記金属繊維体が5〜5
00μmφの砥粒用の硬質粒子SiC、CBN、Fe_
2O_3、Al_2O_3、WC、ZrO_2、ダイヤ
等を体積比で3〜60%含有してなることを特徴とする
金属繊維多孔体からなる砥石の製造方法。
(3) In a method for producing a porous metal fiber body in which metal fibers are pressure-molded and heated and sintered, the metal fiber body
Hard particles for abrasive grains of 00μmφ SiC, CBN, Fe_
1. A method for manufacturing a grindstone made of a porous metal fiber material, characterized in that the grindstone contains 3 to 60% by volume of 2O_3, Al_2O_3, WC, ZrO_2, diamond, etc.
(4)金属繊維を加圧成形すると共に加熱焼結する金属
繊維焼結多孔体の製造方法に於て、前記金属繊維、又は
固体潤滑材、砥粒、摩耗材等の粒体を含む繊維を金属等
導電性の基板に接合焼結してなる金属繊維多孔体の製造
方法。
(4) In a method for manufacturing a metal fiber sintered porous body in which metal fibers are pressure-molded and heated and sintered, the metal fibers or fibers containing particles such as solid lubricants, abrasive grains, and abrasive materials are used. A method for manufacturing a metal fiber porous body formed by bonding and sintering a metal or other conductive substrate.
JP4034588A 1988-02-23 1988-02-23 Manufacture of metallic fiber porous body Pending JPH01215909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4034588A JPH01215909A (en) 1988-02-23 1988-02-23 Manufacture of metallic fiber porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4034588A JPH01215909A (en) 1988-02-23 1988-02-23 Manufacture of metallic fiber porous body

Publications (1)

Publication Number Publication Date
JPH01215909A true JPH01215909A (en) 1989-08-29

Family

ID=12578043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4034588A Pending JPH01215909A (en) 1988-02-23 1988-02-23 Manufacture of metallic fiber porous body

Country Status (1)

Country Link
JP (1) JPH01215909A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000004580A1 (en) * 1998-07-14 2000-01-27 The Furukawa Electric Co., Ltd. Optical device, electronic device enclosure, and getter assembly
DE10108570C2 (en) * 2001-02-22 2003-05-28 Laeis & Bucher Gmbh Method and device for producing a shaped body
DE10223250A1 (en) * 2002-05-22 2003-12-18 Max Fuss Gmbh & Co Kg Ing Fiber reinforced ceramic material moldings are produced by pressing a raw material under temperature and pressure
US6901095B2 (en) 2001-07-25 2005-05-31 The Furukawa Electric Co., Ltd. Semiconductor laser module, optical measuring method and optical measuring apparatus
JP2014194074A (en) * 2013-03-01 2014-10-09 Mitsubishi Materials Corp Porous aluminum sintered compact
WO2021193956A1 (en) * 2020-03-26 2021-09-30 株式会社村田製作所 Composite fiber

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000004580A1 (en) * 1998-07-14 2000-01-27 The Furukawa Electric Co., Ltd. Optical device, electronic device enclosure, and getter assembly
DE10108570C2 (en) * 2001-02-22 2003-05-28 Laeis & Bucher Gmbh Method and device for producing a shaped body
US6901095B2 (en) 2001-07-25 2005-05-31 The Furukawa Electric Co., Ltd. Semiconductor laser module, optical measuring method and optical measuring apparatus
DE10223250A1 (en) * 2002-05-22 2003-12-18 Max Fuss Gmbh & Co Kg Ing Fiber reinforced ceramic material moldings are produced by pressing a raw material under temperature and pressure
DE10223250B4 (en) * 2002-05-22 2008-04-17 Ing. Max Fuss Gmbh & Co. Kg Device for the production of molded articles from fiber-reinforced ceramic materials
JP2014194074A (en) * 2013-03-01 2014-10-09 Mitsubishi Materials Corp Porous aluminum sintered compact
US9669462B2 (en) 2013-03-01 2017-06-06 Mitsubishi Materials Corporation Porous aluminum sintered compact
WO2021193956A1 (en) * 2020-03-26 2021-09-30 株式会社村田製作所 Composite fiber
JPWO2021193956A1 (en) * 2020-03-26 2021-09-30
CN115335558A (en) * 2020-03-26 2022-11-11 株式会社村田制作所 Composite fiber

Similar Documents

Publication Publication Date Title
US6001304A (en) Method of bonding a particle material to near theoretical density
CN100575515C (en) A kind of method for preparing ultra-fine crystal WC-Co hard alloy
Kruth et al. New ferro powder for selective laser sintering of dense parts
US20110129380A1 (en) Method and device for producing a workpiece, particularly a shaping tool or a part of a shaping tool
US6187087B1 (en) Method of bonding a particle material to near theoretical density
JPH01215909A (en) Manufacture of metallic fiber porous body
JPH07207381A (en) Production of particle reinforced composite material
Wan et al. Effects of processing parameters, particle characteristics, and metallic coatings on properties of Al2O3 copper alloy matrix composites
Annaraj et al. A review on mechanical and tribological properties of sintered copper matrix composites
CN102107278A (en) Aluminum-bismuth-tin composite powder for oil bearing alloy and preparation method thereof
Tokita Development of square-shaped large-size WC/Co/Ni system FGM fabricated by Spark Plasma Sintering (SPS) method and its industrial applications
CN1042807C (en) Dispersion-strengthened copper electrode for upset welding
JP3935029B2 (en) Tungsten carbide ultra-hard material and method for producing the same
Homayoun et al. Investigation of Floating and Single-Action Dies in Producing Dense Compacts with High Aspect Ratio
Jiang et al. Parameters investigation during simultaneous synthesis and densification WC–Ni composites by field-activated combustion
JP2001261440A (en) Oxidation-resistant hafnium carbide sintered body and oxidation-resistant hafnium carbide-lanthanum boride sintered body, their production processes and electrode for plasma generation, made by using the same
KR102126296B1 (en) Manufacturing method of Tungsten Carbide-Nickel sintered body for Computerized numerical control plasma holder processing
Araoyinbo et al. Overview of powder metallurgy process and its advantages
Ünal Powder forming
JP2000144301A (en) Tungsten carbide sintered body and its production
JPH05320814A (en) Composite member and its production
DE102007005394B3 (en) Production of metal matrix-hard material composite coatings comprises heating sheet metal container filled with mixture of metal powder and hard material to temperature above 1000 degrees and extruding product on to steel substrate
Raja et al. A short note on manufacturing process of metal powders
CN1375368A (en) Casting with in-situ generated surface cermet layer and its productino process
US7270782B2 (en) Reduced temperature and pressure powder metallurgy process for consolidating rhenium alloys