JPH01214408A - Molding material - Google Patents

Molding material

Info

Publication number
JPH01214408A
JPH01214408A JP63038869A JP3886988A JPH01214408A JP H01214408 A JPH01214408 A JP H01214408A JP 63038869 A JP63038869 A JP 63038869A JP 3886988 A JP3886988 A JP 3886988A JP H01214408 A JPH01214408 A JP H01214408A
Authority
JP
Japan
Prior art keywords
fiber
fibers
molding material
thermoplastic resin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63038869A
Other languages
Japanese (ja)
Other versions
JP2623282B2 (en
Inventor
Tomohito Koba
木場 友人
Toshiyuki Nakakura
中倉 敏行
Hideo Sakai
坂井 英男
Satoshi Kishi
岸 智
Chiaki Maruko
千明 丸子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP63038869A priority Critical patent/JP2623282B2/en
Publication of JPH01214408A publication Critical patent/JPH01214408A/en
Application granted granted Critical
Publication of JP2623282B2 publication Critical patent/JP2623282B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To better dispersion properties at the time of injection molding, lessen snappings of fibers and increase impact strength by specifying the filling rate of a fiber-like reinforcing material and covering the surface of single fiber as a constituting unit of the fiber-reinforcing material with thermoplastic resin. CONSTITUTION:The filling rate of a fiber-like reinforcing material is made 50wt.% or more to 90wt.% or less in a molding material composed of thermoplastic resin and the fiber-like reinforcing material, and fiber-like reinforcing materials are disposed almost horizontally and continuously in the axial direction or all over the overall length of the molding material. Further, the surface of 90% or more of single fibers as the constituting unit of the fiber reinforcing material is covered with thermoplastic resin. High filling of fiber can not be carried out, if the filling rate of fiber-like reinforcing material is 50wt.% or less, while the surface of single fibers cannot be covered sufficiently with thermoplastic resin, if the filling rate is 90wt.% or more, to generate snappings of fibers at the time of injection molding. As the surface of 90% or more of single fibers is covered with resin and respective single fibers are dispersed in resin sufficiently, the void of the molding material is 10% or less, and fibers are impregnated well with resin.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、成形用材料に関し、詳しくは補強材である繊
維を高濃度に含有しているにも拘らず成形時の分散性が
良好であって、更に繊維の折損が少なく機械強度、特に
衝撃強度が大幅に向上した成形品を提供し得る射出成形
に用いて便利な成形用材料に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a molding material, and more specifically, the present invention relates to a molding material, and more specifically, the present invention relates to a molding material that has good dispersibility during molding despite containing a high concentration of reinforcing fibers. In particular, the present invention relates to a molding material that is convenient for use in injection molding and can provide molded products with less fiber breakage and significantly improved mechanical strength, especially impact strength.

[従来の技術] 従来、繊維強化熱可塑性樹脂組成物としては、熱可塑性
樹脂に例えば3+nm長程度のガラス繊維をトライブレ
ンドし、押出機で混練してペレット化されたものがほと
んどである。
[Prior Art] Conventionally, most fiber-reinforced thermoplastic resin compositions have been made by triblending thermoplastic resin with glass fibers having a length of, for example, about 3+ nm, and then kneading the mixture with an extruder to form pellets.

しかし、このようなトライブレンド物を押出機で混練す
るとガラス繊維がブリッジング、マツティング化する傾
向にあり、繊維の分散が不十分となり、又繊維の折損が
起こり約0 、3mm長に中央部をもつ正規分布した長
さで不規則に配列する等補強効果が減じる問題が生ずる
However, when such triblends are kneaded in an extruder, the glass fibers tend to become bridging and matting, resulting in insufficient fiber dispersion and breakage of the fibers. A problem arises in which the reinforcing effect is reduced, such as by irregularly arranging the lengths with normally distributed lengths.

さらに上記分散の問題からガラス繊維の充填率は30重
量%が通常上限であり、これ以上の高充填率の成形用材
料を得ようとすると混練時の繊維の分散が困難となり、
充填効果が得られなかった。
Furthermore, due to the above-mentioned dispersion problem, the upper limit of the glass fiber filling rate is usually 30% by weight, and if you try to obtain a molding material with a higher filling rate than this, it will be difficult to disperse the fibers during kneading.
No filling effect was obtained.

一方、前記問題点を解決する為、ガラス繊維等を熱可塑
性樹脂で被覆する方法が提案されている。例えば、特公
昭49−41105号には、ガラス繊維等の連続体をダ
イス穿孔内に通し、一方押出機で溶融した熱可塑性樹脂
を上記ダイス穿孔内に導き前記繊維束を被覆し、冷却後
一定長に切断して円筒状の射出成形材料を得ようとする
ものである。
On the other hand, in order to solve the above-mentioned problems, a method of coating glass fiber or the like with a thermoplastic resin has been proposed. For example, in Japanese Patent Publication No. 49-41105, a continuous body such as glass fiber is passed through a die hole, while a thermoplastic resin melted by an extruder is introduced into the die hole to cover the fiber bundle, and after cooling, a constant The purpose is to obtain a cylindrical injection molding material by cutting it into long pieces.

しかしこの方法では、補強繊維が成形材料の中心に集合
する傾向にあり、m雑書の内層に存在する単m維(フィ
ラメント)表面は樹脂で被覆されておらず、従って射出
成形時の繊維の分散が悪く、m維が折損し射出成形前の
繊維長を保持できない為、その補強効果は未だ満足の行
くものではない。
However, with this method, the reinforcing fibers tend to gather at the center of the molding material, and the surface of the single m filaments present in the inner layer of the m zakasho is not coated with resin, so the fibers are dispersed during injection molding. The reinforcing effect is still unsatisfactory because the m-fibers break and cannot maintain the fiber length before injection molding.

さらに上記方法によれば、ダイス穿孔内でガラス繊維が
溶融樹脂に接触する際、ガラス繊維表面に大きな剪断力
がかかり、この剪断力はダイス穿孔内での繊維の占有率
の上昇と共に増加し、ついには繊維がダイス穿孔内を通
過する際、切断することとなる。このような理由から、
通常成形材料中の繊維充填率の上限は50重量%といわ
れ、これ以上の繊維充填率を有する成形材料が得られな
いという問題がある。
Furthermore, according to the above method, when the glass fiber comes into contact with the molten resin within the die perforation, a large shearing force is applied to the surface of the glass fiber, and this shearing force increases as the occupancy of the fiber within the die perforation increases. Eventually, the fibers will be cut as they pass through the die perforations. For this reason,
The upper limit of the fiber filling rate in a molding material is usually said to be 50% by weight, and there is a problem that a molding material having a higher fiber filling rate cannot be obtained.

また、上記繊維の分散性の問題から、補強繊維の充填率
には限界があり、50重量%を越えると実際上射出成形
が困難となる等、未だ満足の行く射出成形材料は得られ
ていない。
Furthermore, due to the problem of fiber dispersibility, there is a limit to the filling rate of reinforcing fibers, and if it exceeds 50% by weight, injection molding becomes difficult, and a satisfactory injection molding material has not yet been obtained. .

C発明が解決しようとする課題] そこで本発明は、補強材である繊維を高濃度に含有して
いるにも拘らず射出成形時の分散性が良好であり、繊維
の折損が少なく、機械強度、特に衝撃強度が大幅に向上
した成形品を提供し得る成形用材料を提供することを課
題とする。
Problems to be Solved by the Invention] Therefore, the present invention has good dispersibility during injection molding despite containing a high concentration of reinforcing fibers, less fiber breakage, and high mechanical strength. In particular, it is an object of the present invention to provide a molding material that can provide molded products with significantly improved impact strength.

[課題を解決するための手段] 本発明者らは、上記目的を達成するため鋭意検討を重ね
た結果、本発明に至ったものであり、本発明に係る成形
用材料は、熱可塑性樹脂と繊維状補強材とより成る成形
用材料において、該繊維状補強材の充填率が50重量%
以上90重量%以下であり、且つ前記繊維状補強が当該
成形用材料の全長にわたって軸方向に略々平行に連続し
て配置しており、さらに当該繊維補強材の構成単位であ
る単繊維(フィラメント)の90%以上の表面が前記熱
可塑性樹脂によって被覆されていることを特徴とする。
[Means for Solving the Problems] The present inventors have arrived at the present invention as a result of extensive studies to achieve the above object, and the molding material according to the present invention is a thermoplastic resin and a thermoplastic resin. In a molding material consisting of a fibrous reinforcing material, the filling rate of the fibrous reinforcing material is 50% by weight.
90% by weight or less, and the fibrous reinforcement is continuously arranged approximately parallel to the axial direction over the entire length of the molding material, and the fibrous reinforcement is composed of single fibers (filaments) that are the constituent units of the fibrous reinforcement. ) is characterized in that 90% or more of the surface thereof is covered with the thermoplastic resin.

[発明の構成] 以下、本発明について詳述する。[Structure of the invention] The present invention will be explained in detail below.

先ず、この成形用材料の代表的構造を第1図及び第2図
に基き説明する。
First, a typical structure of this molding material will be explained based on FIGS. 1 and 2.

第1図及び第2図は本発明の成形用材料の構造を示す部
分拡大斜視図であり、第1図は角形状を有するものを示
し、第2図は円柱形状を有するものを示す。
1 and 2 are partially enlarged perspective views showing the structure of the molding material of the present invention, with FIG. 1 showing one having a square shape and FIG. 2 showing one having a cylindrical shape.

図において、Aは成形用材料、Bは熱可塑性樹脂、Cは
単繊維である。Lは成形用材料の長さ、即ち繊維長であ
り、 1.0〜10mmが好ましい。
In the figure, A is a molding material, B is a thermoplastic resin, and C is a single fiber. L is the length of the molding material, that is, the fiber length, and is preferably 1.0 to 10 mm.

1.0mm未満では繊維長が短く十分な補強効果が期待
できず、逆に10mm以上ではホッパー内でのブリッジ
化等の問題から成形が困難となるので好ましくない。
If the fiber length is less than 1.0 mm, the fiber length is short and a sufficient reinforcing effect cannot be expected, whereas if it is 10 mm or more, molding becomes difficult due to problems such as bridging in the hopper, which is not preferable.

一方、W、H,Dは各々幅、高さ、直径であり、特に指
定はないがスクリューへの食い込み等の面から、W= 
1〜10mm、 H= 0.1〜5+u+、D=0.5
〜5mmφが好ましい。
On the other hand, W, H, and D are width, height, and diameter, respectively, and although there is no particular specification, W=
1~10mm, H=0.1~5+u+, D=0.5
~5 mmφ is preferable.

本発明に用いる繊維状補強材の種類としては、E−ガラ
ス、S−ガラス等のガラス繊維、ポリアクリルニトリル
系、ピッチ系、レーヨン系等の炭素繊維、デュポン社の
ケブラーに代表される芳香族ポリアミドfam、日本カ
ーボン社のニカロン等の炭化ケイ素繊維、金属繊維等が
挙げられる。
The types of fibrous reinforcing materials used in the present invention include glass fibers such as E-glass and S-glass, carbon fibers such as polyacrylonitrile, pitch, and rayon, and aromatic reinforcing materials such as DuPont's Kevlar. Examples include polyamide fam, silicon carbide fibers such as Nicalon manufactured by Nippon Carbon Co., Ltd., and metal fibers.

これらの#lla状補強材は、単独或いは組合せて用い
られる。
These #lla-shaped reinforcing materials may be used alone or in combination.

又、繊維径は繊維の種類によっても異なるが、例えばガ
ラスm維の場合、通常5〜25μmであるが、機械特性
の面からは細い方が好ましい。m雄状補強材を表面処理
することは熱可塑性樹脂との接着性の面から好ましく、
例えばガラス繊維の場合、シラン系、チタネート系カッ
プリング剤で処理することは特に好ましい。
Although the fiber diameter varies depending on the type of fiber, for example, in the case of glass m-fiber, it is usually 5 to 25 μm, but from the viewpoint of mechanical properties, a smaller diameter is preferable. It is preferable to surface-treat the male reinforcing material from the viewpoint of adhesion with the thermoplastic resin.
For example, in the case of glass fiber, it is particularly preferable to treat it with a silane-based or titanate-based coupling agent.

本発明に用いる熱可塑性樹脂としては、特に制限はなく
、用途に応じて選択すればよい。例えば、ポリプロピレ
ン、スチレンアクリロニトリル共重合体、ポリスチレン
、アクリロニトリル・ブタジェン・スチレン共重合体(
メチルメタクリレート・ブタジェン・スチレン、メチル
メタクリレート拳アクリロニトリル−ブタジェン・スチ
レン、アクリロニトリル・ブタジェンΦα−メチルスチ
レン・スチレン共重合体を含む)、ポリフェニレンエー
テル(変性PPOを含む)、ポリエチレン、ポリオキシ
メチレン、ポリカーボネート、ポリアミド、ポリメチル
メタクリレート、ポリ塩化ビニル、ポリエチレンテレフ
タレート、ポリブチレンテレフタレート、ポリスェニレ
ンスルフィド、ポリスルフォン、ポリエーテルスルフォ
ン、ポリエーテルエーテルケトン、ポリエーテルケトン
、ポリイミド、ポリエーテルイミド等が挙げられる。
The thermoplastic resin used in the present invention is not particularly limited and may be selected depending on the intended use. For example, polypropylene, styrene-acrylonitrile copolymer, polystyrene, acrylonitrile-butadiene-styrene copolymer (
Methyl methacrylate/butadiene/styrene, methyl methacrylate, acrylonitrile/butadiene/styrene, acrylonitrile/butadiene Φα-including methylstyrene/styrene copolymer), polyphenylene ether (including modified PPO), polyethylene, polyoxymethylene, polycarbonate, polyamide , polymethyl methacrylate, polyvinyl chloride, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, polysulfone, polyethersulfone, polyetheretherketone, polyetherketone, polyimide, polyetherimide, and the like.

成形用材料中の繊維状補強材の充填率は、50重量%以
上90重量%以下である。50重量%未満では本発明の
効果である繊維の高充填化の特徴が発揮できないこと、
又後述するマスターバッチとして用いる場合、経済性の
面からみても好ましくない。
The filling rate of the fibrous reinforcing material in the molding material is 50% by weight or more and 90% by weight or less. If it is less than 50% by weight, the effect of the present invention of high fiber filling cannot be exhibited;
Furthermore, when used as a masterbatch to be described later, it is not preferable from an economic point of view.

一方、90重量%以上では単繊維の表面を熱可塑性樹脂
で十分被覆することができず、従って射出成形時、繊維
の折損が生ずる為、その補強効果が低下する為好ましく
ない。
On the other hand, if it is more than 90% by weight, the surface of the single fiber cannot be sufficiently covered with the thermoplastic resin, and therefore, the fiber will break during injection molding, which will reduce its reinforcing effect, which is not preferable.

前記繊維の構成単位である単繊維の90%以上の表面が
上記樹脂によって被覆され、単m維は各々よく樹脂中に
分散しており、従って当該成形用材料の空隙率が10%
以下と前記繊維は上記樹脂でよく含浸されているもので
ある。
More than 90% of the surface of the single fibers, which are the structural units of the fibers, are covered with the resin, and each single m fiber is well dispersed in the resin, so that the porosity of the molding material is 10%.
The fibers below are well impregnated with the resin.

本発明の成形用材料は、熱可塑性樹脂で単繊維表面を被
覆した連続繊維/熱可塑性樹脂複合体を一定長に切断す
ることにより得られる。
The molding material of the present invention is obtained by cutting a continuous fiber/thermoplastic resin composite whose single fiber surface is coated with a thermoplastic resin into a certain length.

連続繊維に熱可塑性樹脂を含浸して繊維の構成単位であ
る単繊維(フィラメント)の表面を熱可塑性樹脂で被覆
する方法としては通常の方法は全て利用できる。
All conventional methods can be used to impregnate continuous fibers with a thermoplastic resin and coat the surface of single fibers (filaments), which are the structural units of the fibers, with the thermoplastic resin.

例えば、熱可塑性樹脂を溶融状態で繊維状補強材に含浸
させる溶融含浸法、粉末状の熱可塑性樹脂を空気中に浮
遊、または水などの液体中に懸濁させた状態で含浸させ
る流動床法が挙げられる。
For example, a melt impregnation method in which a fibrous reinforcing material is impregnated with a thermoplastic resin in a molten state, and a fluidized bed method in which a powdered thermoplastic resin is impregnated while suspended in the air or suspended in a liquid such as water. can be mentioned.

また溶融含浸法として、特開昭81−229534号、
同61−229535号、同81−229536号及び
特願昭61−218253号に代表的に示されているよ
うに、溶融樹脂を表面に有する加熱ロールまたは加熱ベ
ルトに繊維状補強材を接触させて含浸させる方法なども
挙げられる。
In addition, as a melt impregnation method, JP-A No. 81-229534,
As typically shown in Japanese Patent Application No. 61-229535, No. 81-229536, and Japanese Patent Application No. 61-218253, a fibrous reinforcing material is brought into contact with a heating roll or heating belt having a molten resin on its surface. A method of impregnation may also be mentioned.

即ち、この方法では複数のボビンより引き出した一方向
長繊維、例えばトウを引揃えた繊維シートまたは多方向
連続繊維を張力調整ロールにて引取方向に一定の張力を
かける。一方、熱可塑性樹脂は押出機で加熱溶融させ、
グイから所定の温度に昇温した加熱ロール表面上の下ベ
ルトに塗布する。次いで前述の繊維シートまたは多方向
連続繊維を上下一対のベルトにはさまれた状態で1本ま
たは複数の加熱ロール群の間を通過させて含浸させるも
のである。
That is, in this method, unidirectional long fibers pulled out from a plurality of bobbins, such as a fiber sheet with aligned tows or multidirectional continuous fibers, are subjected to a constant tension in the drawing direction using a tension adjustment roll. On the other hand, thermoplastic resin is heated and melted in an extruder,
Apply it to the lower belt on the surface of the heating roll heated to a predetermined temperature. Next, the above-described fiber sheet or multidirectional continuous fiber is passed between one or more groups of heating rolls while being sandwiched between a pair of upper and lower belts to be impregnated.

このようにして得た十分に含浸した連続繊維/熱可塑性
樹脂複合体は、そのまま或いは必要により所望の厚みに
なるよう必要枚数積層・熱圧した後、所望の幅にmmと
平行にスリット後、所望の長さに繊維と直角方向に切断
することにより角形状の成形用材料を得ることができる
The thus obtained fully impregnated continuous fiber/thermoplastic resin composite can be used as it is or, if necessary, laminated and hot-pressed in the required number of sheets to obtain the desired thickness, and then slit parallel to mm to the desired width. A rectangular molding material can be obtained by cutting the fibers to a desired length in a direction perpendicular to the fibers.

上記積層・熱圧する方法としては、例えば当該複合体の
表面を熱可塑性樹脂の軟化点以上に加熱後、積層するか
、或いは積層後、加熱炉内で当該樹脂の軟化点以上に加
熱する。
As the method of laminating and hot pressing, for example, the surface of the composite is heated to a temperature higher than the softening point of the thermoplastic resin and then laminated, or after the composite is laminated, the composite is heated in a heating furnace to a temperature higher than the softening point of the resin.

次いで当該複合体を冷ニップロール間を通過させる等し
て加圧下に当該樹脂の固化温度以下まで冷却することに
より達せられる。
This is then achieved by cooling the composite under pressure to a temperature below the solidification temperature of the resin, such as by passing the composite between cold nip rolls.

又、円柱形状の成形用材料を得る方法としては、上記含
浸後の連続繊維/熱可塑性樹脂複合体を熱可塑性樹脂の
軟化点以上に加熱された円筒形状を有するダイス内を引
き抜いて賦形し、次いで当該樹脂の固化温度以下に冷却
後、所望の長さに切断する等の方法が挙げられる。
Further, as a method for obtaining a cylindrical molding material, the impregnated continuous fiber/thermoplastic resin composite is drawn out from inside a cylindrical die heated to a temperature higher than the softening point of the thermoplastic resin and shaped. Then, the resin is cooled to a temperature below the solidification temperature of the resin, and then cut into a desired length.

このようにして得られた成形用材料は、そのまま或いは
所望の繊維充填率になる様、繊維未強化熱可塑性樹脂と
トライブレンドする所謂マスターバッチとして用いるこ
とにより射出成形に供せられる。
The molding material thus obtained is subjected to injection molding either as it is or by using it as a so-called masterbatch which is triblended with a non-fiber-reinforced thermoplastic resin to obtain a desired fiber filling rate.

[実施例] 以下、本発明を実施例及び比較例により具体的に説明す
る。
[Examples] Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples.

実施例1 ポリプロピレンとガラスtamから次のようにして成形
用材料を得た。用いた装置の概略を第3図に示す。
Example 1 A molding material was obtained from polypropylene and glass tam in the following manner. A schematic diagram of the apparatus used is shown in FIG.

100木のポどン1から引き出されたガラスmMI(繊
維径13μm、収束本数1600本)のロービング21
00本を整列器3で一方向に整列させた後、張力調整ロ
ール4,5.6を通過させて150mm幅のi!維シー
ト7とした。
Roving 21 of glass mmI (fiber diameter 13 μm, convergence number 1600) drawn from 100 wooden podons 1
After aligning the 00 pieces in one direction with the aligner 3, they are passed through the tension adjustment rolls 4 and 5.6 to form a 150 mm wide i! fiber sheet 7.

一方、押出機(図示せず)で210°Cに加熱溶融した
ポリプロピレンをダイ8を経由して、下ベルト用ロール
9(ここでは3本)で220°Cに加熱された下ベルト
10の表面に105μmの厚みで塗布した。次いで前記
シートを、下ベルトと、上ベルト用ロール11(ここで
は3本)で220°Cに加熱された上ベルト12にはさ
んだ状態で、 220°Cに加熱さレタ径240mmの
含浸ロール13(ここでは3本)の間を、150kgの
張力をかけながら50cm/分の速度で通過させた。こ
のようにして得られたガラス繊維/ポリプロピレン複合
体14は 100°Cまで冷却後、引取用ロール15.
18で引き取った後、スリッター17で幅5mm間隔で
スリットした後、切断機18で長さ3mmに切断して厚
み0.25mm、ガラス繊維充填率90重量%の成形用
材料を得た。
On the other hand, polypropylene heated and melted at 210°C in an extruder (not shown) is passed through a die 8, and the surface of the lower belt 10 is heated to 220°C with lower belt rolls 9 (three rolls in this case). The coating was applied to a thickness of 105 μm. Next, the sheet is sandwiched between the lower belt and the upper belt 12 heated to 220°C by the upper belt rolls 11 (in this case, 3 rolls), and impregnated roll 13 heated to 220°C and having a diameter of 240 mm. (three in this case) at a speed of 50 cm/min while applying a tension of 150 kg. The glass fiber/polypropylene composite 14 thus obtained is cooled to 100°C, and then transferred to a take-off roll 15.
After taking it out at 18, it was slit at 5 mm width intervals using a slitter 17, and then cut into 3 mm lengths using a cutter 18 to obtain a molding material having a thickness of 0.25 mm and a glass fiber filling rate of 90% by weight.

得られた成形用材料の切断面の単繊維(フィラメント)
の分散状態を走査型電子顕微鏡で観察した結果、単繊維
は樹脂内によく分散されており、且つその90重量%以
上が当該樹脂でよく被覆されていることが確認された。
Single fiber (filament) on the cut surface of the obtained molding material
As a result of observing the dispersion state of the single fibers using a scanning electron microscope, it was confirmed that the single fibers were well dispersed in the resin, and that 90% by weight or more of the single fibers were well covered with the resin.

尚、得られた成形用材料の空隙率(ボイド率)を測定し
、結果を表1に示した。ここで空隙率とは、成形用材料
中のm雄状補強材の重量%と成形用材料の比重から求め
た値である。
The porosity (void ratio) of the obtained molding material was measured, and the results are shown in Table 1. Here, the porosity is a value determined from the weight percent of the m-male reinforcing material in the molding material and the specific gravity of the molding material.

次いで当該成形用材料62.5重量部と繊維未強化ポリ
プロピレン樹脂37.5重量部をトライブレンド後、射
出成形機を用いてガラス繊維充填率50重量%の試験片
を作成した。試験片の断面を走査型電子顕微鏡で観察し
たが、繊維の分散は良好であり、ブロッキング化等の現
象は見られなかっ1 ま た。
Next, 62.5 parts by weight of the molding material and 37.5 parts by weight of non-fiber-reinforced polypropylene resin were triblended, and then a test piece with a glass fiber filling rate of 50% by weight was prepared using an injection molding machine. The cross section of the test piece was observed using a scanning electron microscope, and the fibers were well dispersed and no phenomena such as blocking were observed1.

又、当該試験片を用いてアイゾツト衝撃強度、i維長を
測定した。結果を表1に示すが、#a維長分布の中央部
が約1.5n+mと従来技術品と比較して射出成形時の
繊維の折損が少なく、アイゾツト衝撃強度が約2倍とな
った。
In addition, Izot impact strength and i-fiber length were measured using the test piece. The results are shown in Table 1. The central part of #a fiber length distribution was about 1.5n+m, which means that there was less fiber breakage during injection molding compared to the conventional product, and the Izot impact strength was about twice as high.

比較例1 直径3mm、長さ300mn+の穿孔を有するクロスへ
ラドダイ内押重機で溶融したポリプロピレンを供給した
。一方、実施例1で用いたガラス繊維12木を上記穿孔
内に通し、 220°Cに加熱されたクロスヘツド内を
通過させながら溶融ポリプロピレンと接触させた後、引
き取ってガラス繊維充填率60重量%の成形用材料を得
ようとしたが、繊維がクロスヘツドの穿孔内で切断して
しまい、順調に引き取ることができなかった。そこでガ
ラス繊維の本数を9木に減らして上記操作を行って#l
!維を樹脂で被覆した後、 1(1(1℃以下に冷却し
て引き取った後、長さ3mmに切断して直径3mm、ガ
ラス繊維充填率48重量%の円柱形状を有する成形用材
料を得た。得られた成形用材料の切断面を走査型電子W
4微鏡で観察して単繊維の分散状態を調べたが、#!維
のほとんどが成形用材料の中央部に束状に存在しており
、且つ樹脂で被覆されている単繊維は当該繊維束の表層
のみでり、内層の単繊維群は全く樹脂で被覆されていな
かった。
Comparative Example 1 Melted polypropylene was supplied to a cloth having a hole of 3 mm in diameter and 300 mm in length using a RAD die presser. On the other hand, the glass fiber 12 wood used in Example 1 was passed through the hole and brought into contact with the molten polypropylene while passing through a crosshead heated to 220°C. An attempt was made to obtain molding material, but the fibers were cut within the perforations of the crosshead and could not be removed smoothly. Therefore, reduce the number of glass fibers to 9 pieces and perform the above operation #l
! After coating the fibers with resin, 1 The cut surface of the obtained molding material was scanned using a scanning electronic W.
4 I checked the dispersion state of the single fibers by observing with a microscope, but #! Most of the fibers are present in a bundle in the center of the molding material, and only the surface layer of the fiber bundle is coated with resin, and the single fibers in the inner layer are not coated with resin at all. There wasn't.

尚、空隙率の測定結果を表1に示す。Incidentally, the measurement results of the porosity are shown in Table 1.

次いで得られた成形用材料をそのまま実施例工で用いた
射出成形機によってガラス繊維充填率48重量%の試験
片を作成した。試験片の断面を走査型電子顕微鏡で観察
したが、繊維の分散が不十分であり、ブロッキング化の
現象が観察された。
Next, the obtained molding material was used as it was in the injection molding machine used in the example to prepare a test piece with a glass fiber filling rate of 48% by weight. When the cross section of the test piece was observed using a scanning electron microscope, it was found that the fibers were insufficiently dispersed and a blocking phenomenon was observed.

又、当該試験片を用いてアイゾツト衝撃強度、繊維長を
測定した。結果を表1に示すが、繊維長分布の中央部が
約0 、5mmと実施例1と比較して射出成形時の繊維
折損が激しく、その結果アイゾツト衝撃強度も大きく低
下した。
In addition, Izot impact strength and fiber length were measured using the test piece. The results are shown in Table 1. The center portion of the fiber length distribution was about 0.5 mm, which caused more fiber breakage during injection molding than in Example 1, and as a result, the Izot impact strength also decreased significantly.

比較例2 実施例1の装置を用いて1@維充填率92%のガラス繊
!I/ポリプロピレン複合体を得た後、幅5mm、長さ
3mmの射出成形用材料を得た。得られた成形用材料の
切断面の単繊維の分散状態を走査型電子顕微鏡で観察し
た結果、famは部分的にブロッキング化し、且つ単繊
維の多くが樹脂で全く被覆されていなかった。
Comparative Example 2 Using the apparatus of Example 1, 1@Glass fiber with a fiber filling rate of 92%! After obtaining the I/polypropylene composite, an injection molding material with a width of 5 mm and a length of 3 mm was obtained. When the dispersion state of the single fibers on the cut surface of the obtained molding material was observed with a scanning electron microscope, it was found that fam was partially blocked and most of the single fibers were not coated with resin at all.

尚、空隙率の測定結果を表1に示す。Incidentally, the measurement results of the porosity are shown in Table 1.

次いで当該成形用材料54重量部と繊維未強化ポリプロ
ピレン樹脂48重量部をトライブレンド後、射出成形し
てガラス繊維充填率50重量%の試験片を得た。試験片
の断面を走査型電子顕微鏡で観察したが、繊維がかなり
ブロッキング化しており、分散不良であった。
Next, 54 parts by weight of the molding material and 48 parts by weight of non-fiber-reinforced polypropylene resin were triblended and then injection molded to obtain a test piece with a glass fiber filling rate of 50% by weight. When the cross section of the test piece was observed using a scanning electron microscope, it was found that the fibers were considerably blocked and the dispersion was poor.

又、当該試験片を用いてアイゾツト衝撃強度、繊維長を
測定した。結果を表1に示すが、繊維長分布の中央部が
約0.4mmと成形時の折損が激しく、アイゾツト衝撃
強度も低下した。
In addition, Izot impact strength and fiber length were measured using the test piece. The results are shown in Table 1. The center portion of the fiber length distribution was about 0.4 mm, which caused severe breakage during molding, and the Izot impact strength also decreased.

実施例2〜4 表1に示す繊維、樹脂を用いて実施例1の装置を用いて
複合体を得た。
Examples 2 to 4 Composites were obtained using the apparatus of Example 1 using the fibers and resins shown in Table 1.

次いで幅5mmにスリットした後、表1に示す長さに切
断して成形用材料を得た。次いで表1に示す割合で繊維
未強化樹脂とトライブレンド後、射出成形して試験片を
得て繊維長、アイゾツト衝撃強度を測定した。
Next, the material was slit to a width of 5 mm, and then cut into lengths shown in Table 1 to obtain a molding material. Next, the mixture was triblended with a non-fiber-reinforced resin in the ratio shown in Table 1, and then injection molded to obtain a test piece, and the fiber length and Izot impact strength were measured.

結果を成形用材料の空隙率と共に表1に示す。The results are shown in Table 1 along with the porosity of the molding material.

以下余白 [発明の効果] 本発明によれば、m維の補強効果が十分尭揮できると共
に高充填化が可能であり、且つ成形性が良好な成形用材
料を提供することができる。
Margin below [Effects of the Invention] According to the present invention, it is possible to provide a molding material in which the reinforcing effect of m-fibers can be sufficiently exerted, high filling is possible, and moldability is good.

【図面の簡単な説明】[Brief explanation of the drawing]

81図及び第2図は本発明の成形用材料の構造を示す部
分拡大斜視図、第3図は本発明に係る成形用材料を製造
する装置の一例を示す概略図である。 A:成形用材料 B:熱可塑性樹脂 C:単R維 特許出願人  三井東圧化学株式会社 代 理 人 弁理士 坂口信昭 手続補正書(自発) 11X−件の表示 特願昭63−38869号 2 発明の名称 成形用材料 3 補正をする者 事件との関係   出願人 名  称  (312)三井東圧化学株式会社4代理人
 〒160 住  所  東京都新宿区西新宿七丁目10番11号第
2イト−ビル5階 6 補正により増加する発明の数 7 補正の対象 I]明細書の発明の詳細な説明の欄) 8 補正の内容 ■−1]明細書中、第17頁の[表1jを別紙の通り補
正する。
FIG. 81 and FIG. 2 are partially enlarged perspective views showing the structure of the molding material of the present invention, and FIG. 3 is a schematic diagram showing an example of an apparatus for manufacturing the molding material according to the present invention. A: Molding material B: Thermoplastic resin C: Single R fiber Patent applicant Mitsui Toatsu Chemical Co., Ltd. Agent Patent attorney Nobuaki Sakaguchi Procedural amendment (voluntary) 11 Name of the invention Molding material 3 Relationship to the case of the person making the amendment Applicant name (312) Mitsui Toatsu Chemical Co., Ltd. 4 Agent 160 Address No. 2, 10-11 Nishi-Shinjuku 7-chome, Shinjuku-ku, Tokyo Building 5th floor 6 Number of inventions increased by amendment 7 Target of amendment I] Detailed description of the invention column in the specification) 8 Contents of amendment ■-1] In the specification, [Table 1j on page 17] Correct as expected.

Claims (1)

【特許請求の範囲】 1、熱可塑性樹脂と繊維状補強材とより成る成形用材料
において、該繊維状補強材の充填率が50重量%以上9
0重量%以下であり、且つ前記繊維状補強が当該成形用
材料の全長にわたって軸方向に略々平行に連続して配置
しており、さらに当該繊維補強材の構成単位である単繊
維(フィラメント)の90%以上の表面が前記熱可塑性
樹脂によって被覆されていることを特徴とする成形用材
料。 2、射出成形用材料として用いることを特徴とする請求
項1記載の成形用材料。 3、前記繊維状補強材の長さが1mm〜10mmである
ことを特徴とする請求項1記載の成形用材料。
[Claims] 1. A molding material comprising a thermoplastic resin and a fibrous reinforcing material, in which the filling rate of the fibrous reinforcing material is 50% by weight or more.9
0% by weight or less, and the fibrous reinforcement is continuously arranged approximately parallel to the axial direction over the entire length of the molding material, and further a single fiber (filament) is a constituent unit of the fibrous reinforcement. 90% or more of the surface of the molding material is covered with the thermoplastic resin. 2. The molding material according to claim 1, which is used as an injection molding material. 3. The molding material according to claim 1, wherein the length of the fibrous reinforcing material is 1 mm to 10 mm.
JP63038869A 1988-02-22 1988-02-22 Molding material Expired - Lifetime JP2623282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63038869A JP2623282B2 (en) 1988-02-22 1988-02-22 Molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63038869A JP2623282B2 (en) 1988-02-22 1988-02-22 Molding material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP17551896A Division JPH08309748A (en) 1996-06-14 1996-06-14 Molding material

Publications (2)

Publication Number Publication Date
JPH01214408A true JPH01214408A (en) 1989-08-28
JP2623282B2 JP2623282B2 (en) 1997-06-25

Family

ID=12537220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63038869A Expired - Lifetime JP2623282B2 (en) 1988-02-22 1988-02-22 Molding material

Country Status (1)

Country Link
JP (1) JP2623282B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0482717A (en) * 1990-07-25 1992-03-16 Polyplastics Co Bamper beam and preparation thereof
JPH04203254A (en) * 1990-11-29 1992-07-23 Toray Ind Inc Cylinder head cover made of fiber-reinforced resin
JPH06182761A (en) * 1992-12-15 1994-07-05 Toyobo Co Ltd Fiber-reinforced resin pellet and molded product thereof
JPH08151483A (en) * 1994-11-30 1996-06-11 Idemitsu Petrochem Co Ltd Fiber reinforced polyolefin resin molding material, molding method, and molded article
US5788908A (en) * 1994-08-19 1998-08-04 Polyplastics Co., Ltd. Method for producing long fiber-reinforced thermoplastic resin composition
JP2007138178A (en) * 2005-11-18 2007-06-07 Ems Chemie Ag Reinforced polyamide molding material
JP2008088377A (en) * 2006-10-05 2008-04-17 Mitsubishi Engineering Plastics Corp Polyamide resin composition for breaker box body and breaker box body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57181852A (en) * 1981-01-21 1982-11-09 Ici Plc Fiber reinforced composition and manufacture of said composition
JPS5947234A (en) * 1982-07-28 1984-03-16 インペリアル・ケミカル・インダストリーズ・パブリック・リミティド・カンパニー Manufacture of fiber reinforcement composition
JPS6062912U (en) * 1983-10-06 1985-05-02 三菱レイヨン株式会社 Molding material
US4559262A (en) * 1981-01-21 1985-12-17 Imperial Chemical Industries, Plc Fibre reinforced compositions and methods for producing such compositions
JPS61229535A (en) * 1985-04-04 1986-10-13 Kouseinou Jushi Shinseizou Gijutsu Kenkyu Kumiai Method and device for manufacturing fiber reinforced resin sheet
JPS625906U (en) * 1985-06-26 1987-01-14

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57181852A (en) * 1981-01-21 1982-11-09 Ici Plc Fiber reinforced composition and manufacture of said composition
US4559262A (en) * 1981-01-21 1985-12-17 Imperial Chemical Industries, Plc Fibre reinforced compositions and methods for producing such compositions
JPS5947234A (en) * 1982-07-28 1984-03-16 インペリアル・ケミカル・インダストリーズ・パブリック・リミティド・カンパニー Manufacture of fiber reinforcement composition
JPS6062912U (en) * 1983-10-06 1985-05-02 三菱レイヨン株式会社 Molding material
JPS61229535A (en) * 1985-04-04 1986-10-13 Kouseinou Jushi Shinseizou Gijutsu Kenkyu Kumiai Method and device for manufacturing fiber reinforced resin sheet
JPS625906U (en) * 1985-06-26 1987-01-14

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0482717A (en) * 1990-07-25 1992-03-16 Polyplastics Co Bamper beam and preparation thereof
JPH04203254A (en) * 1990-11-29 1992-07-23 Toray Ind Inc Cylinder head cover made of fiber-reinforced resin
JPH06182761A (en) * 1992-12-15 1994-07-05 Toyobo Co Ltd Fiber-reinforced resin pellet and molded product thereof
US5788908A (en) * 1994-08-19 1998-08-04 Polyplastics Co., Ltd. Method for producing long fiber-reinforced thermoplastic resin composition
JPH08151483A (en) * 1994-11-30 1996-06-11 Idemitsu Petrochem Co Ltd Fiber reinforced polyolefin resin molding material, molding method, and molded article
JP2007138178A (en) * 2005-11-18 2007-06-07 Ems Chemie Ag Reinforced polyamide molding material
JP2008088377A (en) * 2006-10-05 2008-04-17 Mitsubishi Engineering Plastics Corp Polyamide resin composition for breaker box body and breaker box body

Also Published As

Publication number Publication date
JP2623282B2 (en) 1997-06-25

Similar Documents

Publication Publication Date Title
DE2754929C3 (en) Process for the production of a mixed fiber raw fleece for the formation of reinforced thermoplastic articles
JP5996320B2 (en) Random mat manufacturing method
EP2716433B1 (en) Method for manufacturing compact with sustained isotropy
KR101444631B1 (en) Random mat and fiber reinforced composite material
US3684645A (en) Glass fiber reinforced thermoplastic article
JP5722732B2 (en) Method for producing isotropic random mat for forming thermoplastic composite material
KR920001646B1 (en) Maruko chiaki
KR20140040846A (en) Method for manufacturing molded article by low-pressure molding
JPS62135537A (en) Flexible composite material and production thereof
WO2014007389A1 (en) Composite base
JPH01214408A (en) Molding material
WO2016017469A1 (en) Combined filament yarn and manufacturing method thereof
JP2000141502A (en) Manufacture of long fiber reinforced thermoplastic resin sheet and long fiber reinforced thermoplastic resin sheet
JP3040865B2 (en) Long fiber reinforced thermoplastic resin pellets
JP2646028B2 (en) Molding materials and mixtures thereof
JP3724067B2 (en) Method for producing composite material and mat-like composite material
JPH08309748A (en) Molding material
JPH02255735A (en) Fiber reinforced composite sheet
JP2646027B2 (en) Molding material
JPH0137503B2 (en)
JP2646029B2 (en) Molding materials and mixtures thereof
JPS61229536A (en) Method and apparatus for producing fiber-reinforced resin sheet
JPH03179034A (en) Molding material and its mixture
JPH03179035A (en) Molding material and its mixture
JPH0246056B2 (en)