JPH03179035A - Molding material and its mixture - Google Patents

Molding material and its mixture

Info

Publication number
JPH03179035A
JPH03179035A JP31769689A JP31769689A JPH03179035A JP H03179035 A JPH03179035 A JP H03179035A JP 31769689 A JP31769689 A JP 31769689A JP 31769689 A JP31769689 A JP 31769689A JP H03179035 A JPH03179035 A JP H03179035A
Authority
JP
Japan
Prior art keywords
resin
molding material
nylon
fiber
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31769689A
Other languages
Japanese (ja)
Inventor
Tomohito Koba
木場 友人
Toshiyuki Nakakura
中倉 敏行
Hideo Sakai
坂井 英男
Misao Masuda
益田 操
Chiaki Maruko
千明 丸子
Satoshi Kishi
岸 智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP31769689A priority Critical patent/JPH03179035A/en
Publication of JPH03179035A publication Critical patent/JPH03179035A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PURPOSE:To obtain a molding having good fiber dispersibility and high mechanical strengths in spite of containing a fiber reinforcement in a high concentration by cutting a plate prepared by infiltrating a nylon 6 resin into a fibrous reinforcement composed of single fibers to form a molding material satisfying specified requirements and using this material. CONSTITUTION:A molding material 20 obtained by preparing a plate of a structure in which a fibrous reinforcement composed of single fibers (filaments) 22 is coated with a nylon 6 resin and the nylon 6 resin is infiltrated into the fibrous reinforcement and cutting this plate and satisfying the following requirements (1)-(5): (1) the filling ratio of the fibrous reinforcement in the molding material is 50-90wt.%, (2) the length of the fibrous reinforcement is 1-30mm, (3) at least one side (e.g. H) of the molding material 20 is at most 1mm, (4) the specific surface area of the molding material 20 is at least 20cm<2>/g, and (5) the melt flow rate of the nylon 6 resin is 20-100g/10min when measured under conditions of 235 deg.C and 2.16kgf according to JIS K-7210.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は成形材料およびそのl昆合物に関し、詳しくは
射出成形、押出成形、圧縮成形等に使用され、成形時の
分散性が良好であって、繊維の破断が少なく、機vA強
度が大幅に向上した成形品を提供し得る成形材料および
その混合物に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a molding material and its mixture, and more specifically, it is used in injection molding, extrusion molding, compression molding, etc., and has good dispersibility during molding. The present invention relates to a molding material and a mixture thereof that can provide a molded product with less fiber breakage and significantly improved machine vA strength.

〔従来の技術〕[Conventional technology]

従来、繊維によって強化された樹脂組成物の製造方法と
しては、次の二つに大別される。
Conventionally, methods for producing fiber-reinforced resin compositions can be roughly divided into the following two types.

■その一つの方法は、ナイロン6樹脂に例えば3+nn
+程度の長さのガラス繊維をトライブレンドしてトライ
ブレンド物を作り、これを押出機で混練・造粒等してベ
レットにする方法である。
■One method is to use nylon 6 resin, for example, 3+nn.
This is a method of tri-blending glass fibers with a length of approximately + to create a tri-blend product, which is then kneaded and granulated using an extruder to form pellets.

■他の一つの方法は、ガラス繊維等の連続体をダイス穿
孔内に通し、押出機で溶融したナイロン6樹脂を上記ダ
イス穿孔内に導き、前記繊維策を被覆し、冷却後一定長
に切断して円筒状の成形材料を得る方法である。
■Another method is to pass a continuous body such as glass fiber through a die hole, introduce nylon 6 resin melted by an extruder into the die hole, cover the fiber, and cut it into a certain length after cooling. This is a method to obtain a cylindrical molding material.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のように得られた成形材料のガラス繊維の充填率は
、■前者の場合、混練時の繊維の分散性の間むから通常
30重量%が上限とされていた。又■後者の場合もダイ
ス穿孔内での繊維引き抜き抵抗の問題から通常が40重
量%が上限とされている。
In the former case, the upper limit of the glass fiber filling rate of the molding material obtained as described above has usually been set at 30% by weight because of the difficulty in dispersing the fibers during kneading. Also in the latter case, the upper limit is usually set at 40% by weight due to the problem of resistance to pulling out the fibers within the die hole.

従って、これ以上の高充填率の成形材料を得ることがで
きないというt!!!題があった。
Therefore, it is impossible to obtain a molding material with a higher filling rate than this. ! ! There was a problem.

また従来、成形材料に用いられる樹脂は成形後の成形品
の物性を考慮して一般に高分子量、即ち低いメルトフロ
レート(以下、rMFRJと略記する)を有しており、
このための前者の場合には混練時に押出機内バレルとス
クリューとの間で発生する剪断力のために繊維の破断が
起こり、得られる成形材料中の平均繊維長は0.3〜0
.501111と短くなる課題があった。
Furthermore, conventionally, resins used as molding materials generally have a high molecular weight, that is, a low melt fluororate (hereinafter abbreviated as rMFRJ), in consideration of the physical properties of the molded product after molding.
In the former case, the fibers break due to the shearing force generated between the extruder barrel and screw during kneading, and the average fiber length in the resulting molding material is 0.3 to 0.
.. There was an issue where the number was shortened to 501,111.

一方■後者の場合においても成形材料中の繊維長さは、
成形材料のそれと同一であり、長く保たれているものの
、上記低MFRであること並びに成形材料の形状が一般
に円筒であり、単位重量当りの成形材料の表面積、即ち
比表面積が小さくて押出機供給ゾーンにおけるナイロン
6樹脂の可塑化に時間を要するため、成形時に繊維が破
断して成形品中の平均繊維が0.3〜0.5肋と短くな
るばかりでなく、繊維の分散不良という課題も生じる。
On the other hand, even in the latter case, the fiber length in the molding material is
Although it is the same as that of the molding material and is maintained for a long time, it has the above-mentioned low MFR, and the shape of the molding material is generally cylindrical, and the surface area of the molding material per unit weight, that is, the specific surface area is small, so it is difficult to feed it to an extruder. Because it takes time to plasticize the nylon 6 resin in the zone, the fibers break during molding, which not only shortens the average fiber in the molded product to 0.3 to 0.5 ribs, but also causes the problem of poor fiber dispersion. arise.

以上にように従来技術では、繊維の充填率、破損、分散
性の面から繊維の補強効果を十分に発揮し得ないという
i1%題があった。
As described above, the conventional technology has the i1% problem of not being able to fully demonstrate the reinforcing effect of fibers in terms of fiber filling rate, breakage, and dispersibility.

そこで、本発明の目的は、繊維補強材を高濃度に充填し
ているにも拘らず、成形時の繊維分散性が良好であり、
繊維の破断が少なく、繊維強度が大幅に向上した成形品
が得られる成形材料およびその混合物を提供することに
ある。
Therefore, the object of the present invention is to achieve good fiber dispersibility during molding despite being filled with a high concentration of fiber reinforcing material.
It is an object of the present invention to provide a molding material and a mixture thereof that allow a molded article with less fiber breakage and significantly improved fiber strength to be obtained.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は上記課題を解決すべく鋭意検討した結果、成
形時に押出機内で発生する繊維分散不良、あるいは繊維
破断の課題は成形材料中の樹脂のMFR及び比表面積と
密接な関係にあり、またこれらの肝R及び比表面積の一
定条件を満足するように設定することにより、成形品の
物性を損なうことなく、成形時の繊維分散性が良好であ
り、繊維の破断が少なく、機械強度が大幅に向上するこ
とを見出し、本発明を完成するに至ったものである。
As a result of intensive studies to solve the above problems, the present inventor found that the problem of poor fiber dispersion or fiber breakage that occurs in the extruder during molding is closely related to the MFR and specific surface area of the resin in the molding material. By setting the R and specific surface area to satisfy certain conditions, fiber dispersibility during molding is good, fiber breakage is small, and mechanical strength is significantly increased without impairing the physical properties of the molded product. The present invention has been completed based on the discovery that the present invention can be improved.

即ち、本発明に係る成形材料は、単繊維(フィラメント
)から横取される繊維状補強材がナイロン6樹脂によっ
て被覆され、且つ該ナイロン6樹脂が繊維状補強材中に
含浸されている構成の板状体を得、前記繊維状補強材が
充填されている該板状体を切断して得られる成形材料に
おいて、(i)該成形材料に対する繊維状補強材の充填
率が50重量%以上90重量%以下、 (it)該繊維状補強材の長さが1〜30閤、(iii
 )該板状体の少なくとも一辺が1鋪以下、(iv )
該成形材料の比表面積が20cm” / g以上(v)
該ナイロン6樹脂のMFRがJIS K T210に基
づき試験温度235°C1試験荷重2.16kgfの条
件で測定した時に20 g /10分以上100g/1
0分以下であることを特徴とする。
That is, the molding material according to the present invention has a structure in which a fibrous reinforcing material taken from a single fiber (filament) is covered with nylon 6 resin, and the nylon 6 resin is impregnated into the fibrous reinforcing material. In the molding material obtained by obtaining a plate-shaped body and cutting the plate-shaped body filled with the fibrous reinforcing material, (i) the filling rate of the fibrous reinforcing material with respect to the molding material is 50% by weight or more and 90% by weight; % by weight or less, (it) the length of the fibrous reinforcement is 1 to 30 kg, (iii
) At least one side of the plate-like body is 1 square or less, (iv)
The specific surface area of the molding material is 20 cm”/g or more (v)
The MFR of the nylon 6 resin is 20 g/10 minutes or more 100 g/1 when measured at a test temperature of 235°C and a test load of 2.16 kgf based on JIS K T210.
It is characterized by being 0 minutes or less.

また本発明に係わる成形材料混合物は、上記の成形材料
と繊維未強化ナイロン6樹脂とからなり、該繊維未強化
ナイロン6樹脂のMFRが前記成形材料であるナイロン
6樹脂のMFRの0.05〜1倍(同一条件下で測定)
であることを特徴とする。
Further, the molding material mixture according to the present invention comprises the above-mentioned molding material and an unreinforced fiber-reinforced nylon 6 resin, and the MFR of the unreinforced fiber-reinforced nylon 6 resin is 0.05 to 0.05 of the MFR of the nylon 6 resin which is the molding material. 1x (measured under the same conditions)
It is characterized by

以下、本発明について詳説する。The present invention will be explained in detail below.

始めに、本発明の成形材料の一例を第1図及び第2図に
基き説明する。同図において、20は成形材料、21は
ナイロン6樹脂、22は単繊維である。
First, an example of the molding material of the present invention will be explained based on FIGS. 1 and 2. In the figure, 20 is a molding material, 21 is a nylon 6 resin, and 22 is a single fiber.

Lは成形材料の長さ、即ち繊維長であり、1.0〜30
mである。1.0m未満では繊維長が短く十分な補強効
果が得られず、逆に30−を越えるとホッパー内でブリ
ッジ化等を引き起こし成形が困難となるので好ましくな
い。
L is the length of the molding material, that is, the fiber length, and is 1.0 to 30
It is m. If the fiber length is less than 1.0 m, the fiber length is short and a sufficient reinforcing effect cannot be obtained, whereas if it exceeds 30 m, bridging etc. occur in the hopper, making molding difficult, which is not preferable.

W及び11は各々成形材料の幅及び厚さであり、次式の
比表面積が一定値以上になるように決定される。
W and 11 are the width and thickness of the molding material, respectively, and are determined so that the specific surface area of the following formula is greater than or equal to a certain value.

2  [LXll+WX(L+8)) LX阿 XIIXP 式中L;威成形料の長さ(cm) m:成形材料の輻 (cm) Iト:成形材料の厚さ(cm) P:成形材料の比重(g/coり なお、幅と厚さの内、少なくとも一方を1 、0 mm
以下、好ましくは0.5間未満とすることは比表面積を
大きく設定する上で好ましい。
2 [LXll+WX(L+8)) LXA XIIXP Where L: Length of molding material (cm) m: Radius of molding material (cm) I: Thickness of molding material (cm) P: Specific gravity of molding material ( g/co, at least one of the width and thickness is 1.0 mm
Hereinafter, it is preferable to set the specific surface area to be less than 0.5 in order to set a large specific surface area.

本発明において、比表面積は20cit / g以上、
好ましくは30c績/g、より好ましくは40cJ/g
以上である。比表面積が20cJ/g未満では射出成形
や押出成形等の成形時に、押出機内において成形材料中
のナイロン6樹脂が溶融状態となる迄に長時間を要し、
押出機供給ゾーンにおいて、繊維分散不良、繊維破断等
の問題が起こり好ましくない。
In the present invention, the specific surface area is 20 cit/g or more,
Preferably 30c/g, more preferably 40cJ/g
That's all. If the specific surface area is less than 20 cJ/g, it will take a long time for the nylon 6 resin in the molding material to become molten in the extruder during injection molding, extrusion molding, etc.
In the extruder supply zone, problems such as poor fiber dispersion and fiber breakage occur, which is undesirable.

尚、厚さ11に関してはホッパー内分級、取扱い性の面
からは0.1mm以上に設定することが好ましい。
Note that the thickness 11 is preferably set to 0.1 mm or more in terms of classification in the hopper and ease of handling.

本発明に用いられるナイロン6樹脂のMFRは、JIS
 K 7210に基づき試験塩度235℃、試験荷重2
゜16 kg fの条件(以下、「本発明の測定条件」
という)で測定した時に、20g/10分以上100g
/10分以下である。 100 g /10分を越える
と得られる成形品の機械強度が大巾に低下するため好ま
しくない。又20g/10分未満では成形時の繊維分散
不良、繊維の破断が起こり繊維の補強効果を田なうので
好ましくない。なお一般にナイロン6樹脂のMFRは本
発明の測定条件で測定した場合、5〜lto g /1
0分の範囲にある。即ら、本発明者は一般のMFHの範
囲で、他の本発明の要件との関係で特定の?IFRの範
囲を見出したのである。
The MFR of the nylon 6 resin used in the present invention is JIS
Based on K 7210, test salinity 235℃, test load 2
゜16 kg f conditions (hereinafter referred to as "measurement conditions of the present invention")
20g/100g for more than 10 minutes when measured at
/10 minutes or less. If it exceeds 100 g/10 minutes, the mechanical strength of the molded product obtained will decrease significantly, which is not preferable. Further, if it is less than 20 g/10 minutes, it is not preferable because it causes poor fiber dispersion and fiber breakage during molding, which impairs the reinforcing effect of the fibers. Generally, the MFR of nylon 6 resin is 5 to lto g/1 when measured under the measurement conditions of the present invention.
It is in the range of 0 minutes. That is, within the scope of the general MFH, the inventor has specified specific questions in relation to other requirements of the present invention. They discovered the range of IFR.

本発明に用いる繊維状J+li強材の柱頭としては、E
−ガラス、S−ガラス等のガラス繊維、ポリアクリルニ
トリル系、ピッチ系、レーヨン系等の炭素繊維、デュポ
ン社の「ケブラー」 (商標)に代表される芳香族ポリ
アミド繊維、日本カーボン社の「ニカロン」 (商標)
等の炭化ケイ素’+6’i維、金属繊維等が挙げられる
。これらの繊維状補強材は、単独或いは組合せて用いる
ことができる。
The capital of the fibrous J+li reinforcement used in the present invention is E
-Glass fibers such as glass and S-glass, carbon fibers such as polyacrylonitrile, pitch, and rayon, aromatic polyamide fibers such as DuPont's "Kevlar" (trademark), Nippon Carbon's "Nicalon" ” (Trademark)
Examples include silicon carbide '+6'i fibers, metal fibers, etc. These fibrous reinforcing materials can be used alone or in combination.

本発明において繊維径は繊維の種類によっても異なるが
、例えばガラス繊維の場合、通常5〜25μmであるが
、RIiii:特性の面からは細い方が好ましい。また
繊維状補強材を表面処理することはナイロン6樹脂との
接着性の面から好ましく、例えばガラス繊維の場合、シ
ラン系、チクネート系カップリング剤で処理することは
特に好ましい。
In the present invention, the fiber diameter varies depending on the type of fiber, but for example, in the case of glass fiber, it is usually 5 to 25 μm, but from the viewpoint of RIiii: characteristics, the smaller the diameter is, the better. In addition, it is preferable to surface-treat the fibrous reinforcing material from the viewpoint of adhesion with the nylon 6 resin. For example, in the case of glass fiber, it is particularly preferable to treat it with a silane-based or thicnate-based coupling agent.

本発明において成形材料中の繊維状補強剤の充填率は、
50重量%以上90重量%以下である。50重量%未満
では本発明の効果である繊維の高充填化の特徴が発揮で
きず、また後述するマスターバッチとして用いる場合経
済性の面からみても好ましくない、一方、90重景気を
越えると単繊維の表面をナイロン6樹脂で十分被覆する
ことができず好ましくない。
In the present invention, the filling rate of the fibrous reinforcing agent in the molding material is
It is 50% by weight or more and 90% by weight or less. If it is less than 50% by weight, the characteristic of high fiber filling, which is the effect of the present invention, cannot be achieved, and it is also not preferable from an economic point of view when used as a masterbatch, which will be described later. This is not preferable because the surface of the fiber cannot be sufficiently covered with the nylon 6 resin.

本発明に係る成形材料は、単繊維(フィラメント)から
構成される繊維状′411i強材が樹脂によって被覆さ
れ、且つ該ナイロン6樹脂が繊維状補強材中に含浸され
ているta成の板状体を得、前記繊維状補強材が充填さ
れている該板状体を一定長に切断することにより得られ
る。
The molding material according to the present invention is a plate-like material in which a fibrous '411i reinforcing material composed of single fibers (filaments) is covered with a resin, and the nylon 6 resin is impregnated into the fibrous reinforcing material. The plate-shaped body filled with the fibrous reinforcing material is cut into a certain length.

本発明においては、前記繊維状補強材の構成単位である
単繊維(フィラメント)の90%以上の表面が、前記ナ
イロン6樹脂で被覆されている成形材料を得ることが好
ましい。
In the present invention, it is preferable to obtain a molding material in which 90% or more of the surface of single fibers (filaments), which are the constituent units of the fibrous reinforcing material, are coated with the nylon 6 resin.

本発明において、繊維状補強材中にナイロン6樹脂を含
浸して繊維の構成単位である単繊維(フィラメント)の
表面をナイロン6樹脂で被覆する方法は、特に限定され
ない9例えば、溶融状態のナイロン6樹脂を繊維状補強
材に含浸させる溶融含浸方法、粉末状のナイロン6樹脂
を空気中に浮遊、または水などの液体中に怒濁させた状
態で含浸させる流動床法が挙げられる。
In the present invention, the method of impregnating nylon 6 resin into the fibrous reinforcing material and coating the surface of single fibers (filaments), which are the constituent units of fibers, with nylon 6 resin is not particularly limited. Examples include a melt impregnation method in which a fibrous reinforcing material is impregnated with nylon 6 resin, and a fluidized bed method in which powdered nylon 6 resin is suspended in the air or impregnated in a liquid such as water in an turbid state.

溶融含浸法の代表的な例は特開昭61−229534号
、同61−229535号、同61−229536号及
び特願昭61−216253号に開示されている。
Representative examples of the melt impregnation method are disclosed in Japanese Patent Application Laid-Open Nos. 61-229534, 61-229535, 61-229536 and Japanese Patent Application No. 61-216253.

本発明で採用可能な溶融含浸法の一例を第3図に基き説
明する。
An example of the melt impregnation method that can be employed in the present invention will be explained based on FIG. 3.

複数のポビン1から引き出された長繊維のローピング2
を、−整列器3で一方向に整列させた後、張力調整ロー
ル4.5.6を通過させて繊維シート7とする。なお本
発明のおいては一方向に整列させた繊維シート以外に、
織布等の多方向連続織組を用いることもできる。
Long fiber roping 2 drawn from multiple pobbins 1
are aligned in one direction by an aligner 3, and then passed through a tension adjustment roll 4.5.6 to form a fiber sheet 7. In addition, in the present invention, in addition to the fiber sheet aligned in one direction,
Multidirectional continuous weaves such as woven fabrics can also be used.

一方、押出機(図示せず)で加熱溶融した樹脂をダイ8
を経由して、加熱ロール9で加熱される下ベルト10の
表面に塗布する。上ベルト12は加熱ロール11で加熱
される。
On the other hand, the extruder (not shown) heats and melts the resin into a die 8.
It is applied to the surface of the lower belt 10 which is heated by the heating roll 9. The upper belt 12 is heated by a heating roll 11.

次いで、前記シート7は、下ベル)10と上ベル目2の
間に扶まれた状態で、加熱された含浸ロール13の間を
、張力をかけながら通過する。
Next, the sheet 7 is passed between the heated impregnating rolls 13 under tension while being held between the lower bell 10 and the upper bell 2.

このようにして得られた連続繊維/ナイロン6樹脂の複
合体14は、そのまま或いは必要により所望の厚みにな
るように必要枚数を積層・熱圧した後、所望の幅に繊維
と平行にスリック17でスリントした後、所望の長さに
繊維と直角方向に切断機18で切断することにより、角
形状の成形材料20を得ることができる。なお第3図に
おいて、15.16は引取用ロールである。
The continuous fiber/nylon 6 resin composite 14 obtained in this way may be used as it is or, if necessary, after laminating and hot pressing the required number of sheets to obtain the desired thickness, slick 17 in parallel with the fibers to the desired width. After the fibers are slinted, a rectangular molding material 20 can be obtained by cutting the fibers to a desired length using a cutter 18 in a direction perpendicular to the fibers. In addition, in FIG. 3, 15 and 16 are rolls for take-up.

上記積層・熱圧する方法としては、例えば当該複合体1
4の表面をナイロン6樹脂の軟化点以上に加熱後積層す
るか、或いはfi層後加熱炉内で当該樹脂の軟化点以上
に加熱する0次いで当該複合体14を冷ニップロール間
を通過させる等して加圧下に当該樹脂の固化温度以下ま
で冷却する。
As the method of laminating and hot pressing, for example, the composite 1
The surface of nylon 6 resin is heated to a temperature higher than the softening point of the nylon 6 resin, or the composite 14 is heated to a temperature higher than the softening point of the resin in a heating furnace after the FI layer.Then, the composite 14 is passed between cold nip rolls, etc. The resin is cooled under pressure to a temperature below the solidification temperature of the resin.

このようにして得られた成形材料は、そのまま、或いは
所望の繊維充填率になるように繊維未強化ナイロン6樹
脂とトライブレンドすることにより成形材料混合物を得
、所謂マスターバッチとして用いることにより、射出成
形、押出成形に供せられる。
The molding material thus obtained can be used as it is or by tri-blending it with unreinforced nylon 6 resin to obtain the desired fiber filling rate to obtain a molding material mixture and using it as a so-called masterbatch for injection. Can be used for molding and extrusion.

当該成形材料と繊維未強化ナイロン6樹脂とのブレンド
比に制約は特になく、当該混合物を成形して得られる成
形品の繊維充填率の設定値によって決定されるべきであ
る。
There are no particular restrictions on the blend ratio of the molding material and the non-fiber-reinforced nylon 6 resin, and it should be determined by the set value of the fiber filling rate of the molded product obtained by molding the mixture.

本発明に用いられる繊維未強化樹脂のMFRは、本発明
の測定条件において前記の成形材料中のナイロン6樹脂
MFHの0.05〜1倍である。1倍を越えると成形品
の物性が大きく低下するため好ましくなく、また0、0
5倍未満では成形品中の繊維分散不良や繊維破損が起こ
り、本発明の効果を発揮できないため好ましくない。
The MFR of the fiber-unreinforced resin used in the present invention is 0.05 to 1 times that of the nylon 6 resin MFH in the above molding material under the measurement conditions of the present invention. If it exceeds 1 times, the physical properties of the molded product will greatly deteriorate, which is undesirable.
If it is less than 5 times, it is not preferable because poor fiber dispersion and fiber breakage occur in the molded article, making it impossible to exhibit the effects of the present invention.

なお、上記成形材料または成形材料混合物は、上記射出
成形、押出成形以外に、例えば圧縮成形にも適用できる
。この圧縮成形に適用する場合においても、成形材料の
形状が板状体、即ち鱗片状であるから金型との密着が良
い、′また比表面積が大きいため、材料中の樹脂溶融時
間が早く、従来法と比較して短時間に成形ができる。こ
の場合従来の成形材料が通常円筒状であるのに対し、当
該材料は鱗片状であり、金型上での位置設定が容易であ
るという副次的効果がある。
Note that the above-mentioned molding material or molding material mixture can be applied to, for example, compression molding in addition to the above-mentioned injection molding and extrusion molding. When applied to this compression molding, the molding material has a plate-like shape, that is, a scale, so it adheres well to the mold. Also, because the specific surface area is large, the resin in the material melts quickly. Molding can be done in a shorter time compared to conventional methods. In this case, whereas conventional molding materials are usually cylindrical, the material is scale-like, and has the secondary effect of being easier to position on the mold.

〔実施例〕〔Example〕

以下、本発明の実施例について説明するが、本発明の範
囲でこれらの実施例によって制限的に解されるものでは
ない。
Examples of the present invention will be described below, but these examples should not be construed as limiting within the scope of the present invention.

実施例1 第3図に示す装置を用い、ナイロン6樹脂とガラス繊維
から、次のようにして成形材料を得た。
Example 1 Using the apparatus shown in FIG. 3, a molding material was obtained from nylon 6 resin and glass fiber in the following manner.

ナイロン6樹脂のMFRは、JIS K 7210に基
づき試験温度235°C1試験荷重2.16kgfの条
件で測定した時に86g/10分である。
The MFR of nylon 6 resin is 86 g/10 minutes when measured based on JIS K 7210 at a test temperature of 235° C. and a test load of 2.16 kgf.

100本のボビンlから引き出されたガラス繊維(繊維
径13μm、収束本数1600本)のロービング210
0本を、整列器3で一方向に整列させた後、張力調整ロ
ール4.5.6を通過させて200mm幅の繊維シート
7とした。
Roving 210 of glass fibers (fiber diameter 13 μm, convergence number 1600) drawn from 100 bobbins
After aligning the fibers in one direction with the aligner 3, they were passed through a tension adjustment roll 4.5.6 to form a fiber sheet 7 with a width of 200 mm.

一方、押出機(図示せず)で240″Cに加熱溶融した
ナイロン6樹脂をダイ8を経由して、下ベルト用ロール
9(ここでは2本、9°は加熱せず)で280’Cに加
熱された下ベルト10の表面に145μmの厚みで塗布
した。
On the other hand, nylon 6 resin heated and melted at 240"C in an extruder (not shown) is passed through a die 8 and heated to 280"C with lower belt rolls 9 (here, two rolls, 9 degrees are not heated). It was applied to a thickness of 145 μm on the surface of the lower belt 10 which had been heated to

次いで前記シート7を、下ベルト10と上ベルト12(
2本の上ベルト用ロール11で280″Cに加熱されて
いる。尚ロール11’ は加熱しない、)に挟んだ状態
で280°Cに加熱された径240閣の3本の含浸ロー
ル13の間を、115kgの張力をかけなから50cr
a/分の速度で通過させた。
Next, the sheet 7 is attached to the lower belt 10 and the upper belt 12 (
The three impregnated rolls 13 with a diameter of 240 cm are heated to 280°C with the two rolls 11 for the upper belt heated to 280°C.The rolls 11' are not heated. 50cr without applying 115kg of tension between
It was passed at a speed of a/min.

このようにして得られたガラス繊維/ナイロン6柑脂複
合体14は100°Cまで冷却された後、引取用ロール
15.16で引き取った後、スリッタ17で幅5mm間
隔でスワントシた後、切断機18で長さ3mmに切断し
て厚み0.24mm、ガラス繊維充填率70重量%の成
形材料を得た。
The glass fiber/nylon 6-citrus composite 14 thus obtained was cooled to 100°C, taken off by take-up rolls 15 and 16, swung at intervals of 5 mm in width by a slitter 17, and then cut. The molding material was cut into a length of 3 mm using a machine 18 to obtain a molding material having a thickness of 0.24 mm and a glass fiber filling rate of 70% by weight.

得られた成形材料の比表面積を求めたところ57C績/
gであった。
The specific surface area of the molding material obtained was found to be 57C/
It was g.

次いで当該成形材料43重量部と繊維未強化ナイロン6
樹脂(MFR= 7 g /10分)57重量部をドラ
イブレドして成形材料混合物を得、射出成形機を用いて
ガラス繊維充填率30重量%の成形品を作成した。
Next, 43 parts by weight of the molding material and unreinforced nylon 6
A molding material mixture was obtained by dry-blending 57 parts by weight of the resin (MFR=7 g/10 minutes), and a molded article with a glass fiber filling rate of 30% by weight was produced using an injection molding machine.

成形品の断面を走査型電子顕微鏡で観察したが、繊維の
分散性は良好であり、またブロッキング化等の現象は見
られなかった。
When the cross section of the molded article was observed using a scanning electron microscope, the dispersibility of the fibers was good and no phenomena such as blocking were observed.

また当該成形品を用いてアイゾツト衝撃強度、平均繊維
長を測定した。結果を表1に示す。
In addition, Izot impact strength and average fiber length were measured using the molded product. The results are shown in Table 1.

従来技術品と比較して射出成形時の繊維の折)員が少な
く、アイゾツト衝撃強度も大巾に向上した。
Compared to conventional products, there is less fiber folding during injection molding, and the isot impact strength has also been greatly improved.

実施例2 ベルトへのナイロン6樹脂塗布厚みを210μmに変え
た以外は実施例1と同様に処理して繊維充填率50%の
成形材料を得た。ついで、得られた成形材料をそのまま
実施例1と同様に成形して繊維充填率50%の成形品を
得た。
Example 2 A molding material with a fiber filling rate of 50% was obtained in the same manner as in Example 1, except that the thickness of the nylon 6 resin applied to the belt was changed to 210 μm. Then, the obtained molding material was molded as it was in the same manner as in Example 1 to obtain a molded product with a fiber filling rate of 50%.

成形品の断面を走査型電子顕微鏡で観察したが、繊維の
分散性は良好であり、またブロッキング化等の現象は見
られなかった。また当該成形品を用いてアイゾツト衝撃
強度、平均繊維長を測定した。結果を表1に示す。
When the cross section of the molded article was observed using a scanning electron microscope, the dispersibility of the fibers was good and no phenomena such as blocking were observed. In addition, Izot impact strength and average fiber length were measured using the molded product. The results are shown in Table 1.

比較例1 本発明の測定条件におけるMFRが7g/10分である
ナイロン6樹脂を用いた以外は実施例1と同様にしてガ
ラス繊維充填率70重量%、比表面積が57c艷/gの
成形材料を得た。
Comparative Example 1 A molding material with a glass fiber filling rate of 70% by weight and a specific surface area of 57 cm/g was prepared in the same manner as in Example 1, except that a nylon 6 resin having an MFR of 7 g/10 minutes under the measurement conditions of the present invention was used. I got it.

次いで当該成形材料43重量部と実施例1で用いた繊維
未強化ナイロン6樹脂57重量部をトライブレンドして
底形材料混合物を得、射出成形機を用いてガラス繊維充
填率30重量%の成形品を作成した。
Next, 43 parts by weight of the molding material and 57 parts by weight of the non-fiber-reinforced nylon 6 resin used in Example 1 were triblended to obtain a bottom material mixture, and molded using an injection molding machine with a glass fiber filling rate of 30% by weight. created a product.

成形品の断面を走査型電子顕微鏡で観察したが、繊維の
分散性は不充分であり、またブロッキング化等の現象は
見られなかった。
When the cross section of the molded article was observed with a scanning electron microscope, the dispersibility of the fibers was insufficient and no phenomena such as blocking were observed.

また当該成形品を用いてアイシンNJiF強度、平均繊
維長を測定した。結果を表1に示す。
Furthermore, the Aisin NJiF strength and average fiber length were measured using the molded product. The results are shown in Table 1.

実施例1と比較して射出成形時の繊維の折損が激しく、
アイゾツト衝撃強度も大巾に低下した。
Compared to Example 1, fiber breakage during injection molding was severe;
Izotsu impact strength also decreased significantly.

比較例2 直径3mm、長さ300IIlfilの穿孔を有するク
ロスヘツドダイ内に押出機で溶融したナイロン6樹脂(
実施例1で用いた樹脂と同しもの)を供給した。
Comparative Example 2 Nylon 6 resin (
The same resin as used in Example 1) was supplied.

一方、実施例1で用いたガラス繊維7本を上記穿孔内に
通し、280°Cに加熱されたクロスヘツド内を通過さ
せながら溶融ナイロン6樹脂と接触させて繊維を樹脂で
被覆した。
On the other hand, the seven glass fibers used in Example 1 were passed through the perforations and brought into contact with molten nylon 6 resin while passing through a crosshead heated to 280°C to coat the fibers with the resin.

次いで100°C以下に冷却して引き取った後、長さ3
mに切断して、直径3+mn、ガラス繊維充填率40M
量%の円柱形状を有する成形材料を得た。得られた成形
材料の比表面積を求めたところ14cul/gであった
Then, after cooling to below 100°C and taking it away, the length of 3
Cut to m, diameter 3+mn, glass fiber filling rate 40M
A molding material having a cylindrical shape of % was obtained. The specific surface area of the molding material obtained was determined to be 14 cul/g.

次いで得られた成形材料を表1に示すようにトライブレ
ンド後、実施例1で用いた射出成形機によってガラス繊
維充填率30重量%の成形品を作成した。成形品の断面
を走査型電子顕微鏡で観察したが、繊維の分散性は不充
分であり、またブロッキング化等の現象が観察された。
Next, the obtained molding materials were triblended as shown in Table 1, and then molded products with a glass fiber filling rate of 30% by weight were created using the injection molding machine used in Example 1. When the cross section of the molded article was observed using a scanning electron microscope, it was found that the dispersibility of the fibers was insufficient and phenomena such as blocking were observed.

また当該成形品を用いてアイゾッ) Ui H強度、平
均繊維長を測定した。結果を表1に示す。
In addition, using the molded product, the IZO) Ui H strength and average fiber length were measured. The results are shown in Table 1.

実施例1と比較して射出成形時の繊維折損が激しく、そ
の結果アイゾツト衝撃強度も大きく低下した。
Compared to Example 1, fiber breakage during injection molding was severe, and as a result, the Izot impact strength was also significantly reduced.

実施例3〜4 実施例1において、表1に示すナイロン6樹脂に代えて
、実施例1と同様にして成形材料を得た。
Examples 3 to 4 Molding materials were obtained in the same manner as in Example 1, except that the nylon 6 resin shown in Table 1 was used in Example 1.

次いで表1に示す割合で繊維未強化ナイロン6樹脂とト
ライブレンド後、成形して表1に示す成形品を得た。
Next, the mixture was triblended with fiber-unreinforced nylon 6 resin in the proportions shown in Table 1, and then molded to obtain the molded products shown in Table 1.

当該成形品を用いてアイゾツト衝撃強度、平均繊維長を
測定した。結果を表1に示す。
Izot impact strength and average fiber length were measured using the molded product. The results are shown in Table 1.

比較例3 実施例1において、表1に示すナイロン6樹脂に代えて
、実施例1と同様にして成形材料を得た。
Comparative Example 3 A molding material was obtained in the same manner as in Example 1, except that the nylon 6 resin shown in Table 1 was used in Example 1.

次いで表1に示す割合で繊維未強化ナイロン6樹脂とト
ライブレンド後、底形して表1に示す成形品を得た。
Next, the mixture was triblended with non-fiber-reinforced nylon 6 resin in the proportions shown in Table 1, and the molded products shown in Table 1 were obtained by bottom shaping.

当tit形品を用いてアイゾツト衝撃強度、平均繊維長
を測定した。結果を表1に示す。
Izot impact strength and average fiber length were measured using this tit shaped product. The results are shown in Table 1.

実施例5 実施例1で得た成形材料を、繊維未強化ナイロン6樹脂
とトライブレンドして繊維充填率が30%になるように
調整した。このトライブレンド物を通常の押出成形機を
用いて、直径30mmφの丸棒の成形品を得た。
Example 5 The molding material obtained in Example 1 was triblended with non-fiber-reinforced nylon 6 resin to adjust the fiber filling rate to 30%. This triblend was molded into a round bar with a diameter of 30 mm using a conventional extrusion molding machine.

この成形品の断面を走査型電子顕微鏡で観察したが、繊
維の分散性は良好であり、またブロッキング化等の現象
は見られなかった。
When the cross section of this molded article was observed using a scanning electron microscope, the dispersibility of the fibers was good and no phenomena such as blocking were observed.

実施例6 離型剤(FREKOTE44 ;米国FREKOTE 
Inc、製)を塗布した第4図に示す雌金型30内に実
施例1で得た成形材料20を300 g均一に置いた後
、上記離型剤を塗布した雌金型31をセットした。
Example 6 Mold release agent (FREKOTE44; American FREKOTE)
After uniformly placing 300 g of the molding material 20 obtained in Example 1 into the female mold 30 shown in FIG. .

次いで260°Cに加熱した加熱炉内に上記金型を金型
温度が240°Cになる迄放置した後、素早く常温の加
圧板を有する圧縮成形機内に移し、50kg/ciの圧
力で20分間加圧して、300x 300x 2.Om
+aの成形品を得た。
Next, the mold was left in a heating furnace heated to 260°C until the mold temperature reached 240°C, and then quickly transferred to a compression molding machine with a pressure plate at room temperature for 20 minutes at a pressure of 50 kg/ci. Apply pressure to 300x 300x 2. Om
A molded product of +a was obtained.

成形品の表面を肉眼で観察したが、繊維が表面に浮き出
ることもなく、良好に繊維が分散しており、良好な表面
光沢を有していた。
When the surface of the molded product was visually observed, it was found that the fibers were well dispersed without any fibers protruding from the surface, and the molded product had good surface gloss.

〔発明の効果) 本発明によれば、繊維補強材を高濃度に充填しているに
も拘らず、成形時の繊維分散性が良好であり、繊維の折
I員や破断が少なく、機械強度が大幅に向上した成形品
が得られる成形材料及びその混合物を提供することがで
きる。
[Effects of the Invention] According to the present invention, despite being filled with a high concentration of fiber reinforcing material, the fiber dispersibility during molding is good, there is little folding or breaking of the fibers, and the mechanical strength is improved. It is possible to provide a molding material and a mixture thereof that yield a molded article with significantly improved properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の成形材料の構造の一例を示す斜?J1
図、第2図は成形材料の部分拡大図、第31f!Jは本
発明の成形材料を製造する装置の一例を示す概略図、第
4図は本発明が適用される圧縮成形用の金型の一例を示
す斜視図である。 20:成形材料 21:ナイロン6樹脂 22:単繊維 30 : #金型 31:雄金型
FIG. 1 is an oblique view showing an example of the structure of the molding material of the present invention. J1
Fig. 2 is a partially enlarged view of the molding material, Fig. 31f! J is a schematic view showing an example of an apparatus for manufacturing the molding material of the present invention, and FIG. 4 is a perspective view showing an example of a mold for compression molding to which the present invention is applied. 20: Molding material 21: Nylon 6 resin 22: Single fiber 30: #Mold 31: Male mold

Claims (1)

【特許請求の範囲】 1、単繊維(フィラメント)から構成される繊維状補強
材がナイロン6樹脂によって被覆され、且つ該ナイロン
6樹脂が繊維状補強材中に含浸されている構成の板状体
を得、前記繊維状補強材が充填されている該板状体を切
断して得られる成形材料において、 (i)該成形材料に対する繊維状補強材の充填率が50
重量%以上90重量%以下、 (ii)該繊維状補強材の長さが1〜30mm、(ii
i)該板状体の少なくとも一辺が1mm以下、(iv)
該成形材料の比表面積が20cm^2/g以上(v)該
ナイロン6樹脂のメルトフロレートがJISK7210
に基づき試験温度235℃、試験荷重2.16kgfの
条件で測定した時に20g/10分以上100g/10
分以下 であることを特徴とする成形材料。 2、請求項1記載の成形材料と繊維未強化ナイロン6樹
脂とからなり、該繊維未強化ナイロン6樹脂のメルトフ
ロレートが前記ナイロン6樹脂のメルトフロレート0.
05〜1倍(同一条件下で測定)であることを特徴とす
る成形材料混合物。
[Scope of Claims] 1. A plate-shaped body having a structure in which a fibrous reinforcing material made of single fibers (filaments) is covered with nylon 6 resin, and the nylon 6 resin is impregnated into the fibrous reinforcing material. and cutting the plate-shaped body filled with the fibrous reinforcing material, (i) the filling ratio of the fibrous reinforcing material to the molding material is 50
% by weight or more and 90% by weight or less, (ii) the length of the fibrous reinforcing material is 1 to 30 mm, (ii)
i) at least one side of the plate-like body is 1 mm or less; (iv)
The specific surface area of the molding material is 20 cm^2/g or more (v) The melt fluorate of the nylon 6 resin is JISK7210.
20g/10 minutes or more 100g/10 when measured at a test temperature of 235℃ and a test load of 2.16kgf based on
A molding material characterized by being less than 1 minute. 2. The molding material according to claim 1 and a non-fiber-reinforced nylon 6 resin, wherein the melt fluorate of the non-fiber-reinforced nylon 6 resin is equal to or less than that of the nylon 6 resin.
05 to 1 times (measured under the same conditions).
JP31769689A 1989-12-08 1989-12-08 Molding material and its mixture Pending JPH03179035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31769689A JPH03179035A (en) 1989-12-08 1989-12-08 Molding material and its mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31769689A JPH03179035A (en) 1989-12-08 1989-12-08 Molding material and its mixture

Publications (1)

Publication Number Publication Date
JPH03179035A true JPH03179035A (en) 1991-08-05

Family

ID=18091006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31769689A Pending JPH03179035A (en) 1989-12-08 1989-12-08 Molding material and its mixture

Country Status (1)

Country Link
JP (1) JPH03179035A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016463A (en) * 2004-06-30 2006-01-19 Asahi Fiber Glass Co Ltd Filament-reinforced polyamide resin molding material and method for producing the same
JP2006016462A (en) * 2004-06-30 2006-01-19 Asahi Fiber Glass Co Ltd Composition for continuous filament-reinforced polyamide resin molding and method for producing molded body using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016463A (en) * 2004-06-30 2006-01-19 Asahi Fiber Glass Co Ltd Filament-reinforced polyamide resin molding material and method for producing the same
JP2006016462A (en) * 2004-06-30 2006-01-19 Asahi Fiber Glass Co Ltd Composition for continuous filament-reinforced polyamide resin molding and method for producing molded body using the same
JP4514531B2 (en) * 2004-06-30 2010-07-28 オーウェンスコーニング製造株式会社 A composition for molding a long fiber reinforced polyamide resin and a method for producing a molded body.
JP4666571B2 (en) * 2004-06-30 2011-04-06 オーウェンスコーニング製造株式会社 Long glass fiber reinforced polyamide resin molding material and method for producing the same

Similar Documents

Publication Publication Date Title
US4541884A (en) Method of producing fibre-reinforced composition
AU740119B2 (en) Reinforced thermoplastic composite systems
US4037011A (en) Glass fiber reinforced thermoplastic composition and process for its preparation
KR920001646B1 (en) Maruko chiaki
JPS62135537A (en) Flexible composite material and production thereof
JPH03243308A (en) Fiber reinforced pellet structure
KR20140040846A (en) Method for manufacturing molded article by low-pressure molding
JPH01198635A (en) Highly thermostable polyarylene thioether ketone prepreg and molded product thereof
JPH03179035A (en) Molding material and its mixture
JP2623282B2 (en) Molding material
JP2646028B2 (en) Molding materials and mixtures thereof
JP2008284729A (en) Fiber-containing resin pellet and its manufacturing method
JP3040865B2 (en) Long fiber reinforced thermoplastic resin pellets
JPH10264152A (en) Manufacture of fiber reinforced resin pellet
JPH0365311A (en) Carbon fiber chop
JP2646027B2 (en) Molding material
JP2646029B2 (en) Molding materials and mixtures thereof
JPH03179034A (en) Molding material and its mixture
JPH03179033A (en) Molding material and its mixture
JPH03179032A (en) Molding material and its mixture
JPS61229536A (en) Method and apparatus for producing fiber-reinforced resin sheet
JP3210694B2 (en) Method for producing fiber-reinforced composite material
JPH0550434A (en) Continuous preparation of rod-shaped fiber-reinforced resin material and apparatus thereof
JPH08309748A (en) Molding material
JPH05177629A (en) Preparation of pellet