JPH01212241A - Method for molding optical element - Google Patents

Method for molding optical element

Info

Publication number
JPH01212241A
JPH01212241A JP3540488A JP3540488A JPH01212241A JP H01212241 A JPH01212241 A JP H01212241A JP 3540488 A JP3540488 A JP 3540488A JP 3540488 A JP3540488 A JP 3540488A JP H01212241 A JPH01212241 A JP H01212241A
Authority
JP
Japan
Prior art keywords
molded
molding
cutting
glass
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3540488A
Other languages
Japanese (ja)
Inventor
Isamu Shigyo
勇 執行
Takeshi Nomura
剛 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3540488A priority Critical patent/JPH01212241A/en
Publication of JPH01212241A publication Critical patent/JPH01212241A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/10Cutting-off or severing the glass flow with the aid of knives or scissors or non-contacting cutting means, e.g. a gas jet; Construction of the blades used
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B21/00Severing glass sheets, tubes or rods while still plastic
    • C03B21/02Severing glass sheets, tubes or rods while still plastic by cutting
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/46Lenses, e.g. bi-convex
    • C03B2215/48Convex-concave
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/70Horizontal or inclined press axis
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/76Pressing whereby some glass overflows unrestrained beyond the press mould in a direction perpendicular to the press axis
    • C03B2215/77Pressing whereby some glass overflows unrestrained beyond the press mould in a direction perpendicular to the press axis with means to trim off excess material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To suppress generation of sink marks on the surface of a molding and to obtain an optical element having high accuracy by providing a heating means for a cutting member which cuts the excess part of the molding, except the part to be molded thereof, and a heating temp. control means and executing temp. control by said means at the time of cooling the part to be molded. CONSTITUTION:The following constitution is adopted for the device for molding the optical element having a pair of molds 5, 6 for molding which are disposed to face each other so as to sandwich glass fluid 2 and form the part 21 to be molded by pressing the glass fluid 2, the cutting member 7 which is provided on the outside circumference of the mold 6 and cuts and separates the part 21 to be molded and the other parts, and the means 34, 35 for heating the cutting member 7: The means (e.g.; a thermocouple 39, a controller 40, an electric power controller 41, a temp. controller 42) for controlling the heating temp. are provided to the means 34, 35 for heating the cutting member 7 and after the outside circumference of the part 21 to be molded is cut by the cutting member 7, the temp. of the cutting member 7 is set higher than the temp. of the molds 5, 6 and the part 21 to be molded is cooled while the part 21 to be molded is held by the cutting member 7.

Description

【発明の詳細な説明】 (産業1・、の利用分野) 本発明は、プレス成形による光学素子の成形方法に関し
、より詳細には、プレス成形後において研削及び研摩等
の工程を経ることなしに表面精度及び用敬精度の良好な
光学素子又はそのリヒートプレス用として好適するプリ
フォームの成形方法に関する。
Detailed Description of the Invention (Field of Application of Industry 1) The present invention relates to a method for molding an optical element by press molding, and more specifically, the present invention relates to a method for molding an optical element by press molding, and more specifically, the present invention relates to a method for molding an optical element by press molding. The present invention relates to a method for molding an optical element with good surface precision and precision, or a preform suitable for reheat pressing thereof.

(従来の技術) 近年、所定の表面精度を有する成形用型内にガラス素材
を収容してプレス成形することにより、研削及び研摩等
の後加工を不要とした高精度の光学素子を成形する方法
が開発されている。
(Prior art) In recent years, a method of molding high-precision optical elements that eliminates the need for post-processing such as grinding and polishing has been developed by housing a glass material in a mold with a predetermined surface accuracy and press-molding it. is being developed.

このプレス成形法には、一般にリヒートプレス法とダイ
レクトプレス法がある。
This press molding method generally includes a reheat press method and a direct press method.

リヒートプレス法は、予め溶融固化したガラス材料の必
要量を切断し、砂ずり等の方法により重量調整を施して
ガラス小塊とし、これを成形用型内に入れ、該ガラス小
塊と成形用型を同時に又は別々にプレス温度まで加熱し
た後、プレス成形して成形用型に形成した光学機能面を
押圧転写して光学素子を成形する方法である。
In the reheat press method, the necessary amount of glass material that has been melted and solidified in advance is cut, the weight is adjusted using methods such as sanding, and the resulting glass pellets are placed in a mold for molding. This is a method of molding an optical element by heating the molds simultaneously or separately to a pressing temperature, and then pressing and transferring the optical functional surface formed on the mold by press molding.

一方、ダイレクトプレス法は、溶融ガラス流出オリフィ
スより流出若しくは押出される溶融ガラス流の必要量を
切断刃により切断し、これを成形用型内に直接落下させ
るか又はシュートによって投入し、しかる後成形用型を
押圧して光学素子を成形する方法である。
On the other hand, in the direct press method, the necessary amount of molten glass flowing out or extruded from a molten glass outflow orifice is cut by a cutting blade, and the cut is directly dropped into a mold or charged into a chute, and then molded. This is a method of molding an optical element by pressing a mold.

又、を記のリヒートプレス法において、切断及び砂ずり
等のような生産性の低い工程を経ずに上記のダイレクト
プレス法における如ぐ、溶融ガラスを成形用型に入れて
プレス成形し、最終製品に近似した形状の予備成形品(
プリフォーム)を得たしで該プリフォームを最終製品の
形状及び面積度と同じか若しくはそれ以上に精度の高い
光学機能面を有する成形用型に入れてプレス成形を行な
う方法がある。
In addition, in the reheat press method described above, the molten glass is put into a mold and press-formed, as in the above-mentioned direct press method, without going through low-productivity steps such as cutting and sanding. Preformed products with shapes similar to products (
There is a method in which press molding is performed by obtaining a preform and placing the preform into a mold having an optical functional surface with a precision equal to or higher than the shape and area of the final product.

(発明が解決しようとする問題点) これらの成形方法により得られた光学素子は、良好な像
形成品質が得られるよう所定の面精度及び寸法精度が要
求され、又このため上記のいずれの方法においても最終
製品を得るためのプレス成形に供給されるガラス材料は
部分に重量調整がなされていなければならない。
(Problems to be Solved by the Invention) Optical elements obtained by these molding methods are required to have predetermined surface accuracy and dimensional accuracy in order to obtain good image forming quality, and for this reason, neither of the above methods Also, the glass material fed to the press molding to obtain the final product must be weight-adjusted in parts.

しかしながら、上記のガラス小塊を用いてプレス成形す
る方法では、ガラス小塊の重に調整を切断及び砂ヤり等
により行なうため、成形品の表面に砂目が残留したり、
プレス成形前にガラス小塊を加熱する際、ガラスと加熱
用受面との融着を防11、するために塗布した離型済が
プレス時に成形品の表面に食い込んで該成形品の表面精
度が著しく悪化するという問題がある。
However, in the above-mentioned method of press molding using small glass lumps, the weight of the glass small lumps is adjusted by cutting, sanding, etc., so that grains may remain on the surface of the molded product.
When heating a small glass lump before press molding, the mold release agent applied to prevent fusion between the glass and the heating receiving surface bites into the surface of the molded product during pressing, resulting in poor surface accuracy of the molded product. There is a problem that the condition deteriorates significantly.

又、直接溶融ガラスを用いてプレス成形する方法では、
切断刃による切断の際、成形品にシャーマークと称せら
れる切断痕が生じ、成形品の面精度が劣化するという問
題がある。又、このプレス成形法においては、成形品の
重量調整を溶融ガラス流の切断によって行なうため、こ
の溶融ガラス流の温度変化や切断タイミング或いはガラ
ス流の脈動等により成形品に重量変動が生じ、所定の寸
法精度が得られないという問題点もある。
In addition, in the method of press forming directly using molten glass,
When cutting with a cutting blade, cutting marks called shear marks are generated on the molded product, which causes a problem in that the surface precision of the molded product deteriorates. In addition, in this press molding method, the weight of the molded product is adjusted by cutting the molten glass flow, so weight fluctuations occur in the molded product due to temperature changes in the molten glass flow, cutting timing, pulsation of the glass flow, etc. There is also the problem that dimensional accuracy cannot be obtained.

なお、特にシャーマークの発生を防+hLだプレス成形
法としては、特公昭41−9190号公報或いは特開昭
61−132523号公報に記載されたものがある。
In addition, as a press molding method which particularly prevents the occurrence of shear marks, there is a method described in Japanese Patent Publication No. 41-9190 or Japanese Patent Application Laid-Open No. 61-132523.

特公昭41−9190号公報に記載された成形方法ては
、成形用型を溶融ガラスの流下方向に直角の方向に押圧
して型空所内に溶融ガラスを充填′させてプレス成形す
る方法であるが、成形用型の押圧時に型空所内の余剰ガ
ラスが成形用型とこれに対向するアンビルとの間から流
出するという現象が生じる。この余剰ガラスは成形用型
の抑圧動作が進行するに伴い、その流出抵抗を増大する
とともに成形用型により冷却されて粘性を増し、これが
成形用型とこれに対向するアンビル間で完全に切取られ
ないまま冷却されて成形品の外周にはみ出し部分を形成
するにのため、プレス成形後においてこのはみ出し部分
の破断及び破断面を仕1・、ける作業が必要となる。又
、溶融ガラス流の大きさが変動することにより上記した
成形品とはみ出し部分との間のガラス厚さが変動して成
形品の厚さにバラツキが生じてしまい1重量調整が高精
度に行なえないという問題もある。
The molding method described in Japanese Patent Publication No. 41-9190 is a method of press-forming by pressing a mold in a direction perpendicular to the direction of flow of molten glass to fill the mold cavity with molten glass. However, when the mold is pressed, a phenomenon occurs in which excess glass in the mold cavity flows out from between the mold and the anvil facing the mold. As the suppression action of the mold progresses, this excess glass increases its outflow resistance and is cooled by the mold, increasing its viscosity, until it is completely cut off between the mold and the opposing anvil. Since the molded product is cooled without being cooled and a protruding portion is formed on the outer periphery of the molded product, it is necessary to break the protruding portion and trim the fractured surface after press molding. Furthermore, due to variations in the size of the molten glass flow, the thickness of the glass between the above-mentioned molded product and the protruding portion changes, causing variations in the thickness of the molded product, making it difficult to perform weight adjustment with high precision. There is also the problem of not having one.

一方、特開昭61−132523号公報に記載された成
形方法では、成形品の精度は流動するガラス体を打抜く
前の該ガラス体の大きさ等に依存しておりK f+1度
の寸法形状を有するロッド又はガラスシートが必要とな
る。
On the other hand, in the molding method described in JP-A No. 61-132523, the accuracy of the molded product depends on the size of the flowing glass body before punching it, and the dimensional shape of K f + 1 degrees A rod or glass sheet with .

本発明者等は、上述のような問題点を解決すべく、成形
品にシャーマーク等の表面欠陥がなく。
The present inventors aimed to solve the above-mentioned problems by creating a molded product free from surface defects such as shear marks.

寸法精度及び重量精度がすこぶる良好な光学素子の製造
方法について既に提案しである。
A method for manufacturing an optical element with very good dimensional and weight accuracy has already been proposed.

本発明は、この製造方法に関するものである。The present invention relates to this manufacturing method.

一般に、プレス成形後のガラス成形品は、冷却過程にお
いて、その表面温度は形をくずさない程度に冷却されて
いるが、内部の温度は高く温度分布も不均一である。こ
のため、型から取り出された後の冷却過程で収縮が均一
に行なわれず、比較的温度の高い部分に収縮が集中して
、ガラス素材の表面を内側に引っ張り、表面にひけと称
せられる四部を生ずる。このようなひけは、成形品の形
状低下の原因となり成形品の光学性能を著しく悪化して
しまう。又、このひけは、ガラス温度が高温であればあ
るほど生じやすく、又成形品の肉厚が厚いほど生じやす
い。
Generally, in the cooling process of a glass molded product after press molding, the surface temperature is cooled to such an extent that the shape is not lost, but the internal temperature is high and the temperature distribution is uneven. For this reason, the shrinkage does not occur uniformly during the cooling process after being removed from the mold, and the shrinkage concentrates in relatively high-temperature areas, pulling the surface of the glass material inward and creating four parts called sink marks on the surface. arise. Such sink marks cause a deterioration in the shape of the molded product and significantly deteriorate the optical performance of the molded product. Further, the higher the glass temperature, the more likely this sink mark will occur, and the thicker the molded product, the more likely it will occur.

本発明はこのような成形品表面に生じるひけの発生を抑
え高精度な光学素子を得る方法を提供することを目的と
する。
An object of the present invention is to provide a method for suppressing the occurrence of sink marks on the surface of a molded product and obtaining a highly accurate optical element.

(問題点を解決するための手段) E述した目的を達成するために、本発明の光学素子の成
形方法は、ガラス流体を挟むように対向配置され該ガラ
ス流体を押圧して被成形部を形成する一対の成形用型と
、前記成形用型の外周に設けられ1記被成形部とその他
の部分とを切断分離する切断部材と、前記切断部材を加
熱する手段とを備えた光学素子の成形装置において、前
記切断部材を加熱する手段に加熱温度を制御する手段を
設け、前記切断部材により前記被成形部の外周を切断し
た後、前記切断部材の温度を前記成形用型の温度より高
く設定するとともに前記切断部材で前記被成形部を保持
したまま該被成形部を冷却することを特徴とする。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the method for molding an optical element of the present invention involves forming a part to be molded by arranging the parts facing each other so as to sandwich a glass fluid therebetween, and pressing the glass fluid. An optical element comprising: a pair of molds for forming a mold, a cutting member provided on the outer periphery of the mold for cutting and separating the first part to be molded and other parts, and means for heating the cutting member. In the forming apparatus, the means for heating the cutting member is provided with a means for controlling heating temperature, and after the outer periphery of the part to be formed is cut by the cutting member, the temperature of the cutting member is set to be higher than the temperature of the mold. The method is characterized in that the molded part is cooled while being set and the molded part is held by the cutting member.

(作 用) 本発明においては、成形品の外形形状は成形用型の外周
に設けられ被成形部とその他の部分とを切断分離する切
断部材により形成される。この切断部材を冷却時に成形
用型より高温度に制御し、被成形部の外周を切断した後
、該切断部材を被成形部の外周に接触したまま保持する
ことにより、成形品に生じる温度分布は上記切断部材に
接触した成形品の外周におけるほどほど高くなり、冷却
に伴う熱収縮はこの成形品の外周に集中的に生じる。
(Function) In the present invention, the external shape of the molded product is formed by a cutting member provided on the outer periphery of the mold for cutting and separating the molded part from other parts. This cutting member is controlled at a higher temperature than the mold during cooling, and after cutting the outer periphery of the part to be molded, the cutting member is held in contact with the outer periphery of the part to be molded, thereby creating a temperature distribution in the molded product. becomes higher as the outer periphery of the molded article comes into contact with the cutting member, and thermal contraction due to cooling occurs intensively at the outer periphery of the molded article.

しかるに、成形品外周は光学的機能面として使用するこ
とが少なく、このような熱収縮に伴うひけが発生しても
不都合1′i生じない。
However, the outer periphery of the molded product is rarely used as an optically functional surface, so even if sink marks occur due to such heat shrinkage, no inconvenience 1'i occurs.

本発明は、このように成形品の冷却時におけるひけの発
生を該成形品の外周に集中させ成形品の光学的性能の低
下を防止し、特に肉厚の厚いレンズはど本発明の効果を
発揮することができる。
In this way, the present invention concentrates the occurrence of sink marks on the outer periphery of the molded product during cooling of the molded product, thereby preventing deterioration of the optical performance of the molded product. able to demonstrate.

(実施例) 以下、本発明の実施例について図面を参照しながら説明
する。
(Example) Examples of the present invention will be described below with reference to the drawings.

第1図(a)は本発明の実施例に用いられるプレス成形
装置の概略断面図であり、第1図(b)は第1図(a)
に示すプレス成形装置に加熱装置を接続した要部拡大断
面図である。
FIG. 1(a) is a schematic sectional view of a press forming apparatus used in an embodiment of the present invention, and FIG. 1(b) is a schematic sectional view of a press forming apparatus used in an embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view of a main part of the press molding apparatus shown in FIG.

第1図(a)において、1は不図示の溶融炉から溶融ガ
ラスを流出するノズルであり、2はこのノズルから流出
したガラス流体であり、3はガラス流体2の先端に生じ
た切断跡である。4はノズル1の下方に設けられ、不図
示の駆動装置により開閉動作を行なうことによりガラス
流体2を切断する切断刃である。この切断刃4が作動し
てガラス流体2が途中で切断されることにより切断跡3
が発生ずる。
In FIG. 1(a), 1 is a nozzle through which molten glass flows out from a melting furnace (not shown), 2 is a glass fluid flowing out from this nozzle, and 3 is a cut mark produced at the tip of the glass fluid 2. be. Reference numeral 4 denotes a cutting blade that is provided below the nozzle 1 and cuts the glass fluid 2 by opening and closing operations by a drive device (not shown). This cutting blade 4 operates and cuts the glass fluid 2 midway, resulting in a cut mark 3.
occurs.

本実施例に示すプレス成形装置は、ガラス流体2がノズ
ルlから流下する形式のものに対して構成してあり、l
対の成形用型を構成する第1の型部材5と第2の型部材
6とがガラス流体2を略直角方向から挟むように互いに
対向した状態で配置しである。各々の型部材5.6は、
対向する夫々の面に鏡面加1か施された成形面5a、6
aを有している。
The press molding apparatus shown in this embodiment is configured for a type in which the glass fluid 2 flows down from a nozzle l.
A first mold member 5 and a second mold member 6 constituting a pair of molding molds are arranged to face each other so as to sandwich the glass fluid 2 from substantially perpendicular directions. Each mold member 5.6 is
Molded surfaces 5a and 6 each having a mirror finish 1 applied to the opposing surfaces.
It has a.

第1の型部材5はスライダー14に保持され、このスラ
イダー14はスライドシャフト18に摺動可能に支持さ
れている。16はスライダー14を駆動1°るシリンダ
ーであり、このシリンダー16の作動によりスライダー
14はスライドシャフト18の摺動方向に移動して第1
の型部材5の押圧動作が行なわれる。
The first mold member 5 is held by a slider 14, which is slidably supported by a slide shaft 18. Reference numeral 16 denotes a cylinder that drives the slider 14 by 1 degree, and the operation of this cylinder 16 causes the slider 14 to move in the sliding direction of the slide shaft 18 and move to the first position.
The pressing operation of the mold member 5 is performed.

一方、第2の型部材6はナダブタ−12を介してシリン
ダー13に連結され、このシリンダー13の作動により
第2の型部材6の抑圧動作が行なわれる。
On the other hand, the second mold member 6 is connected to a cylinder 13 via a pad 12, and the operation of the cylinder 13 causes the second mold member 6 to be suppressed.

これら型部材5.6の各成形面5a、6aにより形成さ
れるキャビティは、各シリンダー13゜16のストロー
クにより設定することができる。
The cavity formed by each molding surface 5a, 6a of these mold parts 5.6 can be defined by the stroke of each cylinder 13.16.

又、第2の型部材6の外周には、第1の型部材5の側に
切断刃が形成された切断リング7が設けられ、この切断
リング7はスライドシャフト18に摺動6(能に支持さ
れたスライダー15に連結されている。さらに、スライ
ダー15はシリンダー17に連結され、このシリンダー
17の作動により、切断リング7は第2の型部材6とは
独立した動作で該第2の型部材6の外周を摺動すること
ができる。
Further, a cutting ring 7 having a cutting blade formed on the side of the first mold member 5 is provided on the outer periphery of the second mold member 6. The slider 15 is connected to a supported slider 15. Furthermore, the slider 15 is connected to a cylinder 17 whose actuation causes the cutting ring 7 to cut into the second mold member 6 in an independent motion. It can slide on the outer periphery of the member 6.

又、19は本装置全体のベースであり、シリンダー13
.16.17及びスライドシャフト18を堅固に支持し
ている。
Also, 19 is the base of the entire device, and the cylinder 13
.. 16, 17 and the slide shaft 18 are firmly supported.

さらに、第1図(b)に示すように、第1の型部材5及
び第2の型部材6には型温測定用の熱電対が内蔵された
加熱用のヒーター30.31が内蔵されている。32.
33は夫々のヒータに接続された導線である。又、切断
リング7にはヒーター34.35及び熱電対39が内蔵
されている。36.37.38は夫々のヒーター及び熱
電対に接続された導線である。これらの導線は本成形装
置の外部に設置6されたコントローラー40に接続され
ている。このコントローラーには、電力調節器41、温
度調節器42、電力調節器41の外部電源43が備えら
れている。
Furthermore, as shown in FIG. 1(b), the first mold member 5 and the second mold member 6 have built-in heaters 30 and 31 for heating, each having a built-in thermocouple for measuring mold temperature. There is. 32.
33 is a conducting wire connected to each heater. Furthermore, heaters 34, 35 and a thermocouple 39 are built into the cutting ring 7. 36, 37, and 38 are conductive wires connected to each heater and thermocouple. These conductive wires are connected to a controller 40 installed 6 outside the molding apparatus. This controller is equipped with a power regulator 41, a temperature regulator 42, and an external power source 43 for the power regulator 41.

熱電対39は温度調節器42に接続され、熱電対39で
検出された測定値を出力制御信号として温度調節器42
に送られ、そして電力調節器41にて制御きれてヒータ
ー34.35により切断リング7が加熱される。
The thermocouple 39 is connected to the temperature controller 42, and the measured value detected by the thermocouple 39 is used as an output control signal to output the temperature controller 42.
The cutting ring 7 is heated by the heaters 34 and 35 under the control of the power regulator 41.

上述したのコントローラー40は、切断リング7に接続
されたものであるが、型部材5.6にもこれと同様のコ
ントローラー(不図示)が接続されている。
Although the controller 40 described above is connected to the cutting ring 7, a similar controller (not shown) is also connected to the mold member 5.6.

これらのコントローラーは成形工程に応じて型部材5.
6に温度変化を与え、又型部材5.6の温度に応じて切
断リング7の温度を制御する6次に本装置の動作につい
て第2〜7図及び第8図を用いて説明する。
These controllers control the mold member 5 depending on the molding process.
The operation of this apparatus will now be described with reference to FIGS. 2 to 7 and FIG. 8.

第2〜7図は1本装置の各工程順における作動状態を示
す要部断面図であり、第8図は、本装置における作動部
、即ち第1の型部材5、第2の型部材6、切断刃4及び
切断リング7の各部の作動タイミングを示すタイミング
チャートであり、横軸は時間Tを示す。これら作動部の
作動タイミングは、各作動部を接続した不図示のコント
ローラーにより制御することができる。
2 to 7 are main part sectional views showing the operating state of this device in each process order, and FIG. 8 is a sectional view of the operating portion of this device, that is, the first mold member 5, the second mold member 6. , is a timing chart showing the operation timing of each part of the cutting blade 4 and the cutting ring 7, and the horizontal axis shows time T. The operation timing of these actuating parts can be controlled by a controller (not shown) connected to each actuating part.

本装置を作動するにあたり、コントローラー40により
、切断リング7を型部材5.6と同温か、又はそれより
も高温度に加熱しておく。
To operate this device, the controller 40 heats the cutting ring 7 to the same temperature as the mold member 5.6 or to a higher temperature.

第2図はプレス成形直前の状態であり、ノズルlからは
ガラス流体2が流下している。このガラス流体2の先端
、即ち切断跡3が対向する各成形面5a、6aより下方
に流下した時点で、第1の型部材5及び第2の型部材6
の抑圧動作を開始する。第8図においてT=Oはこの両
型部材5.6の作動開始時期を示す、これら型部材5.
6の作動開始時期は双方において同時でよいが、型部材
5.6のガラス流体2に対する抑圧動作終了時期]°、
は双方において同時か多くとも±0.05sの誤差に収
めるのが好ましい。この誤差が大きいと型部材5.6の
片方のみがガラス流体2に衝突して該ガラス流体2に横
ブレが生じ好ましくない。その後、型部材5.6は、第
3図に示すように、ガラス流体2の被成形部21を押圧
したままの状態を所定時間保ち、この間被成形部21の
両表面に対して夫々の成形面5a、6aによる抑圧転写
が行なわれる。
FIG. 2 shows the state immediately before press molding, with glass fluid 2 flowing down from nozzle l. At the point when the tip of the glass fluid 2, that is, the cutting mark 3 flows downward from each opposing molding surface 5a, 6a, the first mold member 5 and the second mold member 6
starts suppressing operation. In FIG. 8, T=O indicates the start time of operation of both mold members 5.6.
6 may be started at the same time on both sides, but the timing at which the suppression operation of the mold member 5.6 for the glass fluid 2 ends]°,
It is preferable for both to be at the same time or within an error of ±0.05 seconds at most. If this error is large, only one side of the mold member 5.6 collides with the glass fluid 2, causing lateral wobbling of the glass fluid 2, which is not preferable. Thereafter, as shown in FIG. 3, the mold member 5.6 keeps pressing the molded part 21 of the glass fluid 2 for a predetermined period of time, and during this period, molds the glass fluid 2 on both surfaces of the molded part 21, respectively. Suppressive transfer is performed using surfaces 5a and 6a.

切断刃4の作動開始時期及び切断開始時期は、夫々型部
材5.6の作動開始時期T=Oと同時であってよいが、
この切断刃4によるガラス流体2の切断終了時期1゛、
・は型部材5.6がガラス流体2を保持すると同時か少
なくとも保持した後でなければならない。
The operation start time of the cutting blade 4 and the cutting start time may be the same as the operation start time T=O of the mold member 5.6, respectively.
Timing 1゛ when the cutting blade 4 finishes cutting the glass fluid 2;
- at the same time or at least after the mold part 5.6 retains the glass fluid 2.

その後、切断刃4は元の状態に復帰せしめられる。第8
図には、この切断刃4の復帰開始時期なT4とし、復帰
終了時期をT、として示しである。好ましくは、切断刃
4の作動開始時期′r=0から復帰開始時期゛「4まで
に要する時間を0.3〜0.45とする。
Thereafter, the cutting blade 4 is returned to its original state. 8th
In the figure, the return start time of the cutting blade 4 is shown as T4, and the return end time is shown as T. Preferably, the time required from the operation start time 'r=0 of the cutting blade 4 to the return start time '4' is set to 0.3 to 0.45.

切断リング7の作動開始時期T1は、第5図に示すよう
に、少なくとも切断リング7による被成形部21の外周
切断終了(T、)前に切断刃4によるガラス流体2の切
断が終了(T、・)した状態となるようにするのが好ま
しい。こうすることにより、切断リング7の切断動作が
終了した時点においてガラス流体2は切断刃4により既
に切り離された状態にあり、切断リング7で切取られた
切断片22は容易に第1の型部材5の外部に移動するこ
とができる。かくして、切断リング7は第2の型部材6
の外周に沿って摺動しつつ被成形部21の外周を切断し
、該被成形部21の外周形状を形成する。
As shown in FIG. 5, the operation start timing T1 of the cutting ring 7 is determined at least when the cutting blade 4 finishes cutting the glass fluid 2 (T) before the cutting ring 7 finishes cutting the outer periphery of the molded part 21 (T). , . ) is preferable. By doing this, the glass fluid 2 is already cut off by the cutting blade 4 when the cutting operation of the cutting ring 7 is finished, and the cut piece 22 cut by the cutting ring 7 is easily attached to the first mold member. 5 can be moved outside. Thus, the cutting ring 7 is connected to the second mold member 6
The outer periphery of the molded part 21 is cut while sliding along the outer periphery of the molded part 21, thereby forming the outer peripheral shape of the molded part 21.

その後、切断リング7は切断終了時(’r、l)の状態
を維持し、被成形部21の外周を保持したままその温度
差により被成形部21を外周から冷却し、該被成形部2
1の外周付近は粘度を増してその形状が定着する。一方
、型部材5.6と被成形部21の温度差により該被成形
部21は両表面から冷却されて粘度を増し、表面形状が
安定化する6又、プレス成形後切断リング7及び型部材
5.6を被成形部21に接触保持した状態でこの被成形
部21の冷却を行なう時、切断リング7は予め型部材5
.6よりも高温度に加熱された状態にあるため、被成形
部21の中央部よりも切断リング7に接触した被成形部
2Iの外周周辺においてより高温であり、L記の冷却に
ともない被成形部21の外周周辺は被成形部21の中央
部より高被成形部21の外周周辺に集中し1表面中央部
にはほとんど生じない。
Thereafter, the cutting ring 7 maintains the state at the end of cutting ('r, l), and cools the molded part 21 from the outer periphery by the temperature difference while holding the outer periphery of the molded part 21.
The viscosity near the outer periphery of 1 increases and the shape is fixed. On the other hand, due to the temperature difference between the mold member 5.6 and the molded part 21, the molded part 21 is cooled from both surfaces, increasing its viscosity and stabilizing the surface shape. When cooling the molded part 21 while holding the molded part 5.6 in contact with the molded part 21, the cutting ring 7 is attached to the mold member 5 in advance.
.. 6, the temperature is higher around the outer periphery of the part 2I that is in contact with the cutting ring 7 than in the center of the part 21. The outer periphery of the portion 21 is concentrated around the outer periphery of the higher molded portion 21 than the central portion of the molded portion 21, and hardly occurs at the center of one surface.

次いで、第6図に示すように、第1の型部材5を元の状
態に復帰する。この作動開始時期をT6とし1作動終了
時期をT、とし、切断リング7を元の状態に作動する開
始時期を第1の型部材5の復帰終了時期T7と同時かそ
の終了後とすると、切断リング7の作動開始前において
被成形部21は該切断リング7により保持された状態に
あり、自然に落下することがない。
Next, as shown in FIG. 6, the first mold member 5 is returned to its original state. Assuming that the operation start time is T6, the first operation end time is T, and the start time for returning the cutting ring 7 to its original state is at the same time as or after the return end time T7 of the first mold member 5, cutting Before the ring 7 starts operating, the part to be formed 21 is held by the cutting ring 7 and does not fall off naturally.

そして、切断リング7の復帰終了時期T8と同時に、被
成形部即ち成形品23を取出す、これは、周知の吸着ハ
ンド等を用いて行なうことができる。この取出し作業の
終了後、第2の型部材6を元の状態に復帰せしめる。第
8図には、この第2の型部材6の復帰開始時期をT、と
し、復帰終了時期をT、。としである。
Then, at the same time as the return completion time T8 of the cutting ring 7, the part to be molded, that is, the molded product 23 is taken out.This can be done using a well-known suction hand or the like. After this removal operation is completed, the second mold member 6 is returned to its original state. In FIG. 8, the return start time of the second mold member 6 is T, and the return end time is T. It's Toshide.

なお、第7図は切断リング7を復帰した状態を示しであ
るが、この時成形品23は切断リング7の保持を解除さ
れて自然落下する。
Note that FIG. 7 shows a state in which the cutting ring 7 is returned to its original position, and at this time the molded product 23 is released from the holding of the cutting ring 7 and falls naturally.

なお、以上のような動作において、成形用型5.6によ
るプレス成形は、ガラス流体2の先端即ち切断跡3を除
いた部分に対して行なわれるため、得られた成形品23
にシャーマーク等の表面欠陥が生じない。
In addition, in the above-mentioned operation, press molding by the molding die 5.6 is performed on the tip of the glass fluid 2, that is, the portion excluding the cutting trace 3, so that the obtained molded product 23
No surface defects such as shear marks occur.

又、成形用型5.6により形成されるキャビティ容9は
、各シリンダー13.16のストロークにより設定する
ことができる。即ち、設定されたシリンダー13.16
のストロークによって、押LE時における各成形部材5
.6間の最短接近幅が決まり、これが成形用型5.6の
各成形面間隔を規制する。従って、成形品23の肉厚は
この成形面間隔により決定されるものであるから、シリ
ンダー13.16のストロークを製造すべき成形品23
の肉厚に応じて設定することにより常に所定の肉厚を有
する成形品が得られる。又、成形品23の表面形状及び
性状は各成形部材5.6の夫々の成形面5a、6aによ
り決まる。さらに、成形品23の外周形状は切断リング
7の内周形状により決薫り、該切断リング7の切断動作
と同時に成形品21の外周が形成される。
The cavity volume 9 formed by the mold 5.6 can also be set by the stroke of each cylinder 13.16. i.e. set cylinder 13.16
With the stroke of
.. The shortest approach width between the molds 6 and 6 is determined, and this regulates the distance between each molding surface of the mold 5.6. Therefore, since the wall thickness of the molded product 23 is determined by this molding surface spacing, the stroke of the cylinder 13.16 is determined by the molded product 23 to be manufactured.
By setting the thickness according to the wall thickness, a molded product having a predetermined wall thickness can always be obtained. Further, the surface shape and properties of the molded article 23 are determined by the respective molding surfaces 5a, 6a of each molded member 5.6. Further, the outer peripheral shape of the molded product 23 is determined by the inner peripheral shape of the cutting ring 7, and the outer periphery of the molded product 21 is formed simultaneously with the cutting operation of the cutting ring 7.

なお、以上説明したプレス成形装置は、成形用素材たる
ガラス流体が下方に流下するノズルに対応して左右横方
向から押圧動作を行なう成形用型が用いであるが1本発
明はこのような流下形式及び成形用型に限定されるもの
ではなく、例えば横方向或いは傾斜方向に供給されるガ
ラス流体に対して構成される成形用型を用いることもで
きる。
The press molding apparatus described above uses a mold that performs pressing operations from the left and right directions in response to the nozzle through which the glass fluid, which is the molding material, flows downward. The type and mold are not limited; for example, molds configured for transversely or obliquely supplied glass fluid may also be used.

次に1.E述のようなプレス成形法を用いて比較的肉厚
の厚い成形品を成形する具体例について第1図〜第8図
を参照しながら説明する。
Next 1. A specific example of molding a relatively thick molded product using the press molding method as described in E will be described with reference to FIGS. 1 to 8.

この実施例においては、通常カメラレンズ等に使用され
る光学ガラスSF8 (Tg=443℃、比重4.22
)の溶融ガラスを用い、」二記の方法により外径6mm
、中心肉厚4關、コバ厚3.08mm。
In this example, optical glass SF8 (Tg=443°C, specific gravity 4.22
) using the method described in ``2'' to obtain an outer diameter of 6 mm.
, center wall thickness 4mm, edge thickness 3.08mm.

曲率がR,=R* =IOmm、ガラス容置0. l1
lOcc、重量422 m gの両凸形状のリヒートプ
レス用プリフォームの成形を非酸素雰囲気中で行なった
Curvature is R, =R* =IOmm, glass container 0. l1
A double-convex reheat press preform having a weight of 1Occ and a weight of 422 mg was molded in a non-oxygen atmosphere.

型部材5.6としては炭化タングステンにより形成して
夫々の成形面5a、6aは光字鏡面に研磨し、この型温
か510℃(SF8の粘度で約10″ポアズに相当する
温度)となるようヒーター30.31の調整を行なった
。又、切断リング7の温度は型部材5.6と同じ温度で
ある510℃となるようヒーター34.35の調整を行
なった。
The mold member 5.6 is made of tungsten carbide, and the respective molding surfaces 5a and 6a are polished to an optical mirror surface, so that the mold temperature is 510° C. (temperature corresponding to about 10″ poise with the viscosity of SF8). The heaters 30 and 31 were adjusted. Also, the heaters 34 and 35 were adjusted so that the temperature of the cutting ring 7 was 510° C., which was the same temperature as the mold member 5.6.

又、不図示の溶融炉にて溶融されたガラスをガラス流体
2の粘度が10’ポアズ(約775℃)となるように調
整した。
Further, the glass was melted in a melting furnace (not shown) and the viscosity of the glass fluid 2 was adjusted to 10' poise (approximately 775° C.).

そして、各シリンダー13.16.17の作動圧力を夫
々150kg、 350kg、  100kgに設定し
、」−記の方法によりプレス成形及び切断処理を行ない
、この切断処理から460℃位まで切断リング7の温度
が型部材5,6の温度より20℃高くなるように制御し
ながら冷却した。その後、ガラス粘度が1013ポアズ
(443℃)に達するまでの間に型部vi5.6及び切
断リング7の温度か同一にな°る゛ように制御し、その
ままこの同一温度で400℃まで冷却した。得られた成
形品23は、所望の成形品に対して外径精度で±0.O
1mn+。
Then, the operating pressures of the cylinders 13, 16, and 17 were set to 150 kg, 350 kg, and 100 kg, respectively, and press forming and cutting were performed by the method described in "-", and the temperature of the cutting ring 7 was raised to about 460°C from this cutting process. The mold members 5 and 6 were cooled while being controlled so that the temperature was 20° C. higher than the temperature of the mold members 5 and 6. Thereafter, the temperature of the mold part VI5.6 and the cutting ring 7 were controlled to be the same until the glass viscosity reached 1013 poise (443°C), and the temperature was cooled to 400°C at this same temperature. . The obtained molded product 23 has an outer diameter accuracy of ±0. O
1mn+.

中心肉厚で±0.02.重量で13mg(10,7%)
のバラツキ内に収り、表面中心部にひけは全く生ぜず1
表面状態も良好であり、このままで通常のレンズとして
十分使用できる精度のものであった。
Center thickness: ±0.02. 13mg (10.7%) by weight
It falls within the variation of 1, and no sink marks occur in the center of the surface.
The surface condition was also good, and the precision was sufficient to allow it to be used as a normal lens as it is.

又1本実施例においては、成形品の肉厚が4mmと比較
的厚いにもかかわらず、熱収縮に伴うひけの発生を成形
品外周に集中させて成形品の表面中心部にひけが生じる
のを防止している。
In addition, in this example, although the wall thickness of the molded product is relatively thick at 4 mm, the occurrence of sink marks due to heat shrinkage is concentrated on the outer periphery of the molded product, and sink marks occur in the center of the surface of the molded product. is prevented.

ちなみに、ト記実施例の第1及び第2の型部材5.6、
切断リング7及び被成形部21を成すガラスの温度及び
粘度についての関係を第9図に示す。
By the way, the first and second mold members 5.6 of Example 5,
FIG. 9 shows the relationship between the temperature and viscosity of the glass forming the cutting ring 7 and the molded part 21.

プレス成形開始時期(第8図においてT2O)において
、型部材5,6は、510℃(ガラス粘度で約109ポ
アズ)に調整された。又、切断リング7の温度は、型部
材5.6と同じ510℃に調整された。又、ノズル菖か
ら流化するガラス流体2の粘度は約10’ポアズ(約7
75℃)となるように調整された。
At the start of press molding (T2O in FIG. 8), the mold members 5 and 6 were adjusted to 510° C. (glass viscosity: about 109 poise). Further, the temperature of the cutting ring 7 was adjusted to 510° C., which is the same as that of the mold member 5.6. Further, the viscosity of the glass fluid 2 flowing from the nozzle irises is about 10' poise (about 7
The temperature was adjusted to 75°C.

」―2型部材5.6の抑圧動作終了時期T2から復帰動
作開始時期1゛6までの成形時間(約10秒間)におい
て、被成形部21のガラスは、型部材5.6及び切断リ
ング7の温度差により急激に冷却され、粘度は約106
ボアズから1014・6ポアズ以ヒになる。この間にお
いて、切断から約460℃位までは、切断リング7が型
部JF45.6より20℃高くなるようにし、その後4
43℃(=Tg点)までの間に型部材5.6及び切断リ
ング7を−・致させそのまま同一温度に保ちながら40
0℃まで冷却した。この時成形品23のガラス温度はこ
の型部材5.6と略同様となる。
”-During the forming time (approximately 10 seconds) from the end time T2 of the suppression operation of the second mold member 5.6 to the start time 1゛6 of the return operation, the glass of the molded part 21 is It is rapidly cooled due to the temperature difference, and the viscosity is about 106
It becomes 1014.6 poise from Boaz. During this period, the cutting ring 7 should be 20°C higher than the mold part JF45.6 until about 460°C after cutting, and then 460°C.
The mold member 5.6 and the cutting ring 7 are heated to 43°C (= Tg point) while maintaining the same temperature.
Cooled to 0°C. At this time, the glass temperature of the molded product 23 is approximately the same as that of the mold member 5.6.

(発明の効果) 以上説明したように、本発明によれば、プレス成形後の
成形品を冷却するa%成形品の不均一な温度分布に起因
して生ずる成形品表面のひけを先約性能にあまり影響の
ない成形面外周に集中さて成形品の表面中央部にひけが
発生することを防止。
(Effects of the Invention) As explained above, according to the present invention, sink marks on the surface of a molded product caused by non-uniform temperature distribution of the a% molded product during cooling of the molded product after press molding can be reduced. Concentrate on the outer periphery of the molded surface where it does not have much of an effect, and prevent sink marks from occurring in the center of the surface of the molded product.

し、高精度な光学表面を有する光学素子を得ることが可
能である。
However, it is possible to obtain an optical element having a highly precise optical surface.

特に本発明においてば、比較的肉厚の厚い光学レンズに
おける光7表面のひけの発生を防止するのに効果的であ
る。
In particular, the present invention is effective in preventing the occurrence of sink marks on the surface of the light beam 7 in a relatively thick optical lens.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の実施例を示すプレス成形装置の
概略的断面図である。 第1図(b)は?!1図(a)に示す装置に加熱装置を
加えた要部拡大断面図である。 第2図〜第7図は第1図に示す装置の要部断面図であり
、同装置の工程順の作動状態が示しである。 第8図は第1図に示すプレス成形製r〃の各作動部のタ
イミングチャートを示す図である。 第9図は本発明の実施例におけるプレス成形時の型部材
、切断リング及びガラスの温度の時間的変化を示すグラ
フである。 l・−ノズル 2・・・ガラス流体 3・・・切断跡 4・・・切断刃 5・・・第1の型部材 6・・・第2の型部材 7・・・切断リング 21・−被成形部 22 ・・・切断片 23−・・成形品 30 ・・・第1の型部材の加熱用ヒーター31・・・
第2の型部材の加熱用ヒーター:S4.35・・・切断
リングの加熱用ヒーター40・・・コントローラー 代理人  弁理ト 山 下 穣 平 第1図(a) 第1図(b) 第2図 第3図 第4図 第5図 第6図 第7ス 第8回
FIG. 1(a) is a schematic sectional view of a press molding apparatus showing an embodiment of the present invention. What about Figure 1(b)? ! FIG. 1 is an enlarged sectional view of a main part of the apparatus shown in FIG. 1(a) with a heating device added thereto. FIGS. 2 to 7 are sectional views of essential parts of the apparatus shown in FIG. 1, and show the operating state of the apparatus in the order of steps. FIG. 8 is a diagram showing a timing chart of each operating part of the press-formed R shown in FIG. FIG. 9 is a graph showing temporal changes in temperature of the mold member, cutting ring, and glass during press molding in an example of the present invention. l・-Nozzle 2... Glass fluid 3... Cutting mark 4... Cutting blade 5... First mold member 6... Second mold member 7... Cutting ring 21... Molding section 22... Cut piece 23... Molded product 30... Heater 31 for heating the first mold member...
Heater for heating the second mold member: S4.35... Heater 40 for heating the cutting ring... Controller Representative Patent Attorney Jo Yamashita Figure 1 (a) Figure 1 (b) Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 8th

Claims (3)

【特許請求の範囲】[Claims] (1)ガラス流体を狭むように対向配置され該ガラス流
体を押圧して被成形部を形成する一対の成形用型と、前
記成形用型の外周に設けられ前記被成形部とその他の部
分とを切断分離する切断部材と、前記切断部材を加熱す
る手段とを備えた光学素子の成形装置において、前記切
断部材を加熱する手段に加熱温度を制御する手段を設け
、前記切断部材により前記被成形部の外周を切断した後
、前記切断部材の温度を前記成形用型の温度より高く設
定するとともに前記切断部材で前記被成形部を保持した
まま該被成形部を冷却することを特徴とする光学素子の
成形方法。
(1) A pair of molding molds that are arranged opposite to each other so as to narrow the glass fluid and press the glass fluid to form a molded part, and a pair of molding molds that are provided on the outer periphery of the molding mold to separate the molded part and other parts. In an optical element molding apparatus comprising a cutting member for cutting and separating, and means for heating the cutting member, the means for heating the cutting member is provided with means for controlling heating temperature, and the cutting member is used to control the part to be molded. After cutting the outer periphery of the optical element, the temperature of the cutting member is set higher than the temperature of the mold, and the part to be molded is cooled while the part to be molded is held by the cutting member. molding method.
(2)前記ガラス流体がガラス溶融炉の流出ノズルから
流下する溶融ガラス流であることを特徴とする許請求の
範囲第1項記載の光学素子の成形方法。
(2) The method for molding an optical element according to claim 1, wherein the glass fluid is a molten glass flow flowing down from an outflow nozzle of a glass melting furnace.
(3)前記ガラス流体が再加熱されたロッド又はシート
状のガラス材料から成ることを特徴とする特許請求の範
囲第1項記載の光学素子の成形方法。
(3) The method for molding an optical element according to claim 1, wherein the glass fluid is made of a reheated rod or sheet glass material.
JP3540488A 1988-02-19 1988-02-19 Method for molding optical element Pending JPH01212241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3540488A JPH01212241A (en) 1988-02-19 1988-02-19 Method for molding optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3540488A JPH01212241A (en) 1988-02-19 1988-02-19 Method for molding optical element

Publications (1)

Publication Number Publication Date
JPH01212241A true JPH01212241A (en) 1989-08-25

Family

ID=12440964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3540488A Pending JPH01212241A (en) 1988-02-19 1988-02-19 Method for molding optical element

Country Status (1)

Country Link
JP (1) JPH01212241A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5322541A (en) * 1991-03-28 1994-06-21 Matsushita Electric Industrial Co., Ltd. Method of producing glass blank
CN1319884C (en) * 2004-02-06 2007-06-06 亚洲光学股份有限公司 Core taking method of precision moulded glass and moulding device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5322541A (en) * 1991-03-28 1994-06-21 Matsushita Electric Industrial Co., Ltd. Method of producing glass blank
CN1319884C (en) * 2004-02-06 2007-06-06 亚洲光学股份有限公司 Core taking method of precision moulded glass and moulding device

Similar Documents

Publication Publication Date Title
JPH0471853B2 (en)
JP2001180946A (en) Method for forming optical glass element and forming apparatus for optical glass with method
JPH0513096B2 (en)
JPH01212241A (en) Method for molding optical element
JPH0419172B2 (en)
JPH0729780B2 (en) Optical glass molding method
JPH0445454B2 (en)
JPH0472777B2 (en)
JP2008074636A (en) Method and device for producing optical element
JP2651260B2 (en) Manufacturing method of glass optical parts
JPH01212240A (en) Method for molding optical element
JPH01153538A (en) Production of optical element
JPH0445459B2 (en)
JP2662300B2 (en) Manufacturing method and apparatus for glass molded product
JP2504802B2 (en) Method and apparatus for press-molding optical molded body
JP2805715B2 (en) Optical element molding method and glass lens obtained by the method
JP2746450B2 (en) Optical element molding method
JPS63162539A (en) Forming of optical member
JPH01138144A (en) Production of optical element
JPH01148715A (en) Die for forming optical element
JPH0629147B2 (en) Optical element molding method
JPS63310735A (en) Method for forming optical element
JPH01201036A (en) Production of optical element
JPH0729781B2 (en) Optical element manufacturing method
JPH0757697B2 (en) Glass lens molding method