JPH01208446A - Neutron-absorptive aluminum alloy - Google Patents

Neutron-absorptive aluminum alloy

Info

Publication number
JPH01208446A
JPH01208446A JP8834542A JP3454288A JPH01208446A JP H01208446 A JPH01208446 A JP H01208446A JP 8834542 A JP8834542 A JP 8834542A JP 3454288 A JP3454288 A JP 3454288A JP H01208446 A JPH01208446 A JP H01208446A
Authority
JP
Japan
Prior art keywords
neutron
aluminum
base material
concentrated layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8834542A
Other languages
Japanese (ja)
Inventor
Ryoji Asano
浅野 良二
Kaoru Ono
薫 小野
Yutaka Tomono
友野 裕
Mitsunobu Matsumura
松村 光展
Yuichi Takami
高見 祐一
Kishin Sukimoto
鋤本 己信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Altemira Co Ltd
Original Assignee
Hitachi Zosen Corp
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp, Showa Aluminum Corp filed Critical Hitachi Zosen Corp
Priority to JP8834542A priority Critical patent/JPH01208446A/en
Publication of JPH01208446A publication Critical patent/JPH01208446A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To manufacture the title material having desired mechanical characteristics by covering the surface of an aluminum matrix with a concentrated layer of neutron-absorptive elements. CONSTITUTION:The surface of the matrix 1 consisting of aluminum or its metal is covered and formed with the neutron-absorptive elements (B, Sm, Gd, etc.,) or its compounds (B4C, etc.,) by a thermal spraying method, etc. The thickness of the concentrated layer 2, (t), is preferably regulated to 50-1000mu. By this method, the neutron-absorptive aluminum material having the desired characteristics such as strength and workability can be obtd.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、例えば使用済み核燃料貯蔵キャスクの構造
用材料等に使用される中性子吸収性アルミニウム材料に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to neutron-absorbing aluminum materials used, for example, as structural materials for spent nuclear fuel storage casks.

なおこの明細書において、アルミニウムの語はその合金
を含む意味で用いる。
In this specification, the term aluminum is used to include its alloys.

従来の技術及びその問題点 従来、中性子吸収性を有するアルミニウム材料として、
中性子吸収性元素であるBの化合物84Cをアルミニウ
ム中に30〜35%分散状態に含有せしめた分散形合金
が知られているが、構造用材料として使用するには加工
性、強度の点で問題があった。しかもアルミニウムとB
4Cの均一混合が難しいという問題もあった。
Conventional technology and its problems Conventionally, as an aluminum material with neutron absorbing property,
A dispersed alloy containing 30-35% of B compound 84C, which is a neutron-absorbing element, dispersed in aluminum is known, but it has problems in terms of workability and strength when used as a structural material. was there. Moreover, aluminum and B
There was also the problem that uniform mixing of 4C was difficult.

また他の中性子吸収性アルミニウム材料として、アルミ
ニウムに必須添加成分としてBを添加含有せしめたもの
が提供されている。しかしこの場合には鋳造時に溶湯の
流れが悪く、また86度を増すとビレット、スラブの鋳
造が困難となるというような問題があった。さらにB濃
度が高くなるにつれ、材料の加工、熱処理が困難となる
というような問題もあった。さらにまた、該材料を溶接
した場合、溶接部のB濃度が低くなり、その部分におい
て中性子吸収性に劣るものとなるというような欠点もあ
った。
Further, as another neutron-absorbing aluminum material, one in which B is added as an essential additive component to aluminum has been provided. However, in this case, there were problems such as poor flow of the molten metal during casting, and when the temperature increased to 86 degrees, it became difficult to cast billets and slabs. Furthermore, as the B concentration increases, processing and heat treatment of the material become difficult. Furthermore, when the material is welded, the B concentration in the welded part becomes low, resulting in poor neutron absorption in that part.

このように、従来の中性子吸収性アルミニウム材料は、
強度、加工性等の所期する機械的性質を具有させるのは
困難であり、あるいはまた製造簡易性の点で聞届があっ
た。
Thus, conventional neutron-absorbing aluminum materials
It is difficult to provide desired mechanical properties such as strength and workability, and there are also concerns regarding ease of manufacture.

この発明は、かかる従来材料の有する欠点を解消し、所
期する機械的性質の具有を可能とするとともに、その製
造をも容易に行いうる中性子吸収性アルミニウム材料の
提供を目的とするものである。
The object of the present invention is to provide a neutron-absorbing aluminum material that eliminates the drawbacks of such conventional materials, has desired mechanical properties, and is easy to manufacture. .

問題点を解決するための手段 この発明は、従来のアルミニウム材料の有する欠点が、
該アルミニウム材料が中性子吸収性元素またはその化合
物をアルミニウム中に添加含有せられた合金材料として
の形態を有することから派生されるものであることに着
目するとともに、材料に中性子吸収性を具有させるため
には中性子吸収性元素等をアルミニウム中に添加含有せ
しめなくとも、アルミニウム基材表面に中性子吸収性を
有する皮膜層が被覆状態に形成されていれば足りること
に着目してなされたものである。
Means for Solving the Problems This invention solves the drawbacks of conventional aluminum materials.
Focusing on the fact that the aluminum material is derived from the form of an alloy material in which a neutron-absorbing element or its compound is added to aluminum, and in order to make the material possess neutron-absorbing properties. This method was developed based on the fact that it is sufficient to form a coating layer having neutron absorbing properties on the surface of an aluminum base material without adding a neutron absorbing element or the like to the aluminum.

即ちこの発明は、アルミニウム基材表面に、中性子吸収
性元素またはその化合物の濃化層が被覆状態に形成され
てなることを特徴とする中性子吸収性アルミニウム材料
を要旨とするものである。
That is, the gist of the present invention is a neutron-absorbing aluminum material characterized in that the surface of an aluminum base material is coated with a concentrated layer of a neutron-absorbing element or its compound.

作用 農化層によって材料の中性子吸収機能が保障され、アル
ミニウム基材によって材料の機械的性質が保障される。
The active layer ensures the neutron absorption function of the material, and the aluminum substrate ensures the mechanical properties of the material.

実施例 この発明に係るアルミニウム材料の一実施例を示す第1
図において、(1)は材料のベースとなるアルミニウム
基材、(2)は濃化層である。アルミニウム基材(1)
の材質は特に限定されるものではなく、用途との関係で
所期する機械的性質を具有する材質のものを適宜使用す
れば良い。例えばアルミニウム材料に強度が要求される
場合にはへΩ−Mg系、AQ−Mg−3i系、AQ −
Cu系、AQ−Zn−Mg系等の合金材料を用いれば良
く、また耐食性、加工性が要求される場合にはAQ−M
n系、AQ−Mg系等の合金材料を用いれば良い。より
具体的には、例えば使用済み核燃料貯蔵キャスクの構造
用材料として使用する場合には、特に強度、加工性が要
求されることから、AQ−Mg系合金であるA3052
やAQ−Mg−3i系合金であるA6061等を好適に
用いうる。
Example 1 showing an example of the aluminum material according to the present invention.
In the figure, (1) is an aluminum base material that is the base of the material, and (2) is a concentrated layer. Aluminum base material (1)
The material is not particularly limited, and any material having desired mechanical properties may be used depending on the intended use. For example, when strength is required for aluminum materials, Ω-Mg series, AQ-Mg-3i series, AQ-
Alloy materials such as Cu-based and AQ-Zn-Mg-based may be used, and if corrosion resistance and workability are required, AQ-M
An alloy material such as n-based or AQ-Mg-based may be used. More specifically, when used as a structural material for spent nuclear fuel storage casks, for example, A3052, which is an AQ-Mg-based alloy, requires particularly high strength and workability.
or A6061, which is an AQ-Mg-3i alloy.

アルミニウム基材(1)表面に形成される中性子吸収性
元素またはその化合物の濃化層(2)は、アルミニウム
材料に中性子吸収機能を付与するものである。ここで中
性子吸収性元素単体としては、B SS m % G 
d等を挙げうる。また化合物としてはB4C等を挙げう
る。かかる元素または化合物の濃化層(2)はその厚さ
(1)が50〜1000μmであるのが望ましい。50
μm未満では実用上の中性子吸収能力としては不足する
傾向にあり、逆に11000t1を超えて厚くなるとそ
の有効性は飽和する傾向にあるためである。また濃化層
がB等の単独元素からなる場合、熱処理を実施して第2
図に示すように濃化層(2)とアルミニウム基材(1)
との境界部分に中性子吸収元素の拡散層(3)を形成し
て該境界部分を合金化し、濃化層(2)のアルミニウム
基材(1)に対する密着性の向上を図っても良い。この
場合、拡散層(3)の深さ(d)は10〜1000μm
とするのが好ましい。10μm未満では密着性の向上効
果がなく、逆に1000μmを超えても該効果の増大は
なく、却ってエネルギ損失となるからである。
The concentrated layer (2) of a neutron-absorbing element or its compound formed on the surface of the aluminum base material (1) imparts a neutron-absorbing function to the aluminum material. Here, as a single neutron absorbing element, B SS m % G
d etc. Moreover, examples of the compound include B4C. The thickness (1) of the element or compound enriched layer (2) is preferably 50 to 1000 μm. 50
This is because if the thickness is less than μm, the practical neutron absorption capacity tends to be insufficient, and if the thickness exceeds 11,000 t1, the effectiveness tends to be saturated. In addition, when the concentrated layer consists of a single element such as B, heat treatment is performed to
Concentrated layer (2) and aluminum base material (1) as shown in the figure
A diffusion layer (3) of a neutron-absorbing element may be formed at the boundary between the aluminum base material and the aluminum substrate, and the boundary area may be alloyed to improve the adhesion of the concentrated layer (2) to the aluminum base material (1). In this case, the depth (d) of the diffusion layer (3) is 10 to 1000 μm
It is preferable that This is because if the thickness is less than 10 μm, there is no effect of improving adhesion, and if the thickness exceeds 1000 μm, the effect will not increase, but rather result in energy loss.

上記のアルミニウム材料において、アルミニウム基材の
製造方法は既知の溶解鋳造処理により行えば良い。一方
、中性子吸収性元素またはその化合物の濃化層(2)の
形成方法も、特に限定されるものではないが、最も簡易
かつ確実でアルミニウム基材との密着性にも優れた方法
として、溶射法による被覆形成方法を挙げうる。
In the above aluminum material, the aluminum base material may be manufactured by a known melting and casting process. On the other hand, the method for forming the concentrated layer (2) of the neutron-absorbing element or its compound is not particularly limited, but thermal spraying is the simplest and most reliable method and has excellent adhesion to the aluminum base material. For example, a coating formation method may be mentioned.

即ちこの方法は、溶融あるいは半溶融状態に熱せられて
いる中性子吸収性元素またはその化合物をアルミニウム
基材(1)の表面に吹付け、これを積層して溶射皮膜層
としての濃化層(2)を形成するものである。溶射法の
具体的方法としては、例えば公知のガス式溶射法や、ア
ーク式溶射等の電気式溶射法等を挙げうる。ガス式溶射
法には、棒状あるいは線状の溶射材料を酸素・燃料炎で
溶融し、それを周囲からの圧縮空気のジェットで微粒化
して吹飛ばし、アルミニウム基材にたたきつける溶棒式
、溶線式や、中性子吸収性元素等をあらかじめ粉末化し
て該粉末を送給用ガス中に送りこんで、ノズル出口より
の燃焼ガスにのせて加熱しつつ基材表面に吹付ける粉末
式がある。また電気式溶射法にも溶線式、溶棒式、粉末
式がある。このような溶射法のいずれの手段を用いても
良く、また溶射口から基材表面までの距離等の溶射条件
は常法に従い適宜設定すれば良い。
That is, in this method, a neutron-absorbing element or its compound heated to a molten or semi-molten state is sprayed onto the surface of an aluminum base material (1), and this is laminated to form a concentrated layer (2) as a sprayed coating layer. ). Specific examples of the thermal spraying method include known gas thermal spraying methods and electric thermal spraying methods such as arc thermal spraying. Gas spraying methods include the melt rod method and the melt wire method, in which a rod-shaped or wire-shaped spray material is melted with an oxygen/fuel flame, atomized by a jet of compressed air from the surroundings, blown away, and struck onto the aluminum base material. Alternatively, there is a powder type method in which a neutron-absorbing element or the like is powdered in advance, the powder is fed into a feeding gas, and the powder is placed on the combustion gas from the nozzle outlet and sprayed onto the surface of the substrate while being heated. There are also three types of electric thermal spraying methods: molten wire, molten rod, and powder. Any of these thermal spraying methods may be used, and the thermal spraying conditions such as the distance from the thermal spraying port to the surface of the substrate may be appropriately set according to conventional methods.

溶射法により形成した濃化層(2)を拡散する場合には
、溶射後にアルミニウム材料に熱処理を施す必要のある
ことは前述のとおりである。
As described above, when the concentrated layer (2) formed by thermal spraying is diffused, it is necessary to heat-treat the aluminum material after thermal spraying.

なお、濃化層(2)を溶射法により形成する場゛合、ア
ルミニウム基材(1)表面に対する密着性をより向上さ
せるために、溶射に先立ち、ショツトブラスト、エツチ
ング等により基材表面を粗面化しておくのが望ましい。
In addition, when forming the concentrated layer (2) by thermal spraying, in order to further improve the adhesion to the surface of the aluminum base material (1), the surface of the base material is roughened by shot blasting, etching, etc. prior to thermal spraying. It is desirable to keep it in perspective.

発明の効果 この発明は上述の次第で、アルミニウム基材表面に中性
子吸収性元素またはその化合物の濃化層が被覆状態に形
成されてなるものである。
Effects of the Invention As described above, the present invention is formed by forming a concentrated layer of a neutron-absorbing element or its compound on the surface of an aluminum base material in a covering state.

即ち、この発明に係るアルミニウム材料では、中性子吸
収機能はアルミニウム基材表面に形成された濃化層によ
ってのみ付与され、アルミニウム基材の材質とは無関係
となるから、アルミニウム基材の材質として、用途との
関係において所期する機械的性質を有する既知のものを
使用することができる。例えば該アルミニウム材料を核
燃料貯蔵キャスクの構造用材料に使用するような場合に
は、アルミニウム基材として強度及び加工性に優れた既
知の構造材を使用することができる。この結果、所期す
る機械的性質を具有し、かつ中性子吸収機能をも併せ持
つアルミニウム材料となしうる。しかも、従来のように
中性子吸収性元素をアルミニウム中に添加含有させるも
のではなく、アルミニウム基材表面に爾後的に濃化層を
形成すれば良いから、その製造をも容易に行いうる。ま
た、濃化層の厚さを50〜1000μmとすることによ
り確実かつ効果的にアルミニウム材料に中性子吸収性を
付与することができる。さらにまたアルミニウム基材と
濃化層との境界部分に、該元素の拡散層が形成されてい
る場合には、層化層のアルミニウム基材に対する密着性
を向上しうる。さらにはまた、濃化層を溶射皮膜層とし
た場合には、アルミニウム基材と濃化層との密着性に優
れた材料を簡易に提供しうる。ちなみにA6061合金
からなる厚さ5mmのアルミニウム基材表面を粗面化し
たのち、ガス式溶射法によりBを溶射し、厚さ500μ
mの溶射皮膜としてのB濃化層を被覆形成して本発明に
係るアルミニウム材料を得たところ、このアルミニウム
材料は優れた中性子吸収機能を発揮するとともに、強度
等の機械的性質にも優れたものであった。
That is, in the aluminum material according to the present invention, the neutron absorption function is provided only by the concentrated layer formed on the surface of the aluminum base material, and is independent of the material of the aluminum base material. Any known material having the desired mechanical properties in relation to the material can be used. For example, when the aluminum material is used as a structural material for a nuclear fuel storage cask, known structural materials with excellent strength and workability can be used as the aluminum base material. As a result, an aluminum material can be obtained that has the desired mechanical properties and also has a neutron absorption function. Furthermore, unlike conventional methods, a neutron-absorbing element is not added to the aluminum, but a concentrated layer may be formed on the surface of the aluminum base material afterward, making it easy to manufacture. Moreover, by setting the thickness of the concentrated layer to 50 to 1000 μm, neutron absorbability can be imparted to the aluminum material reliably and effectively. Furthermore, when a diffusion layer of the element is formed at the boundary between the aluminum base material and the concentrated layer, the adhesion of the layered layer to the aluminum base material can be improved. Furthermore, when the concentrated layer is a thermally sprayed coating layer, a material with excellent adhesion between the aluminum base material and the concentrated layer can be easily provided. By the way, after roughening the surface of an aluminum base material with a thickness of 5 mm made of A6061 alloy, B was thermally sprayed using a gas spraying method to form a material with a thickness of 500 μm.
When the aluminum material according to the present invention was obtained by coating with a B-enriched layer as a thermal spray coating of It was something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係るアルミニウム材料の一実施例を
示す縦断面図、第2図は他の実施例を示す縦断面図であ
る。 (1)・・・アルミニウム基材、(2)・・・濃化層、
(3)・・拡散層。 以上
FIG. 1 is a longitudinal sectional view showing one embodiment of an aluminum material according to the present invention, and FIG. 2 is a longitudinal sectional view showing another embodiment. (1)... Aluminum base material, (2)... Concentrated layer,
(3) Diffusion layer. that's all

Claims (4)

【特許請求の範囲】[Claims] (1)アルミニウム基材表面に、中性子吸収性元素また
はその化合物の濃化層が被覆状態に形成されてなること
を特徴とする中性子吸収性アルミニウム材料。
(1) A neutron-absorbing aluminum material, characterized in that the surface of an aluminum base material is coated with a concentrated layer of a neutron-absorbing element or its compound.
(2)濃化層はその厚さが50〜1000μmである特
許請求の範囲第1項記載の中性子吸収性アルミニウム材
料。
(2) The neutron absorbing aluminum material according to claim 1, wherein the concentrated layer has a thickness of 50 to 1000 μm.
(3)アルミニウム基材と中性子吸収性元素の濃化層と
の境界部分に、該元素の拡散層が形成されていることを
特徴とする特許請求の範囲第1項または第2項記載の中
性子吸収性アルミニウム材料。
(3) A neutron absorption layer according to claim 1 or 2, characterized in that a diffusion layer of the neutron-absorbing element is formed at the boundary between the aluminum base material and the concentrated layer of the neutron-absorbing element. Absorbent aluminum material.
(4)濃化層が溶射皮膜層からなる特許請求の範囲第1
項〜第3項のいずれか1に記載の中性子吸収性アルミニ
ウム材料。
(4) Claim 1 in which the concentrated layer is a thermally sprayed coating layer
The neutron-absorbing aluminum material according to any one of items 1 to 3.
JP8834542A 1988-02-17 1988-02-17 Neutron-absorptive aluminum alloy Pending JPH01208446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8834542A JPH01208446A (en) 1988-02-17 1988-02-17 Neutron-absorptive aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8834542A JPH01208446A (en) 1988-02-17 1988-02-17 Neutron-absorptive aluminum alloy

Publications (1)

Publication Number Publication Date
JPH01208446A true JPH01208446A (en) 1989-08-22

Family

ID=12417186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8834542A Pending JPH01208446A (en) 1988-02-17 1988-02-17 Neutron-absorptive aluminum alloy

Country Status (1)

Country Link
JP (1) JPH01208446A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995030990A1 (en) * 1994-05-09 1995-11-16 Siemens Aktiengesellschaft Container for absorbing neutron radiation
EP0849767A2 (en) * 1996-12-19 1998-06-24 Applied Materials, Inc. Boron carbide parts and coatings in a plasma reactor
US6630100B1 (en) 1999-10-15 2003-10-07 Mitsubishi Heavy Industries, Ltd. Manufacturing method for spent fuel storage member and mixed power
US6726741B2 (en) 2000-07-12 2004-04-27 Mitsubishi Heavy Industries, Ltd. Aluminum composite material, aluminum composite powder and its manufacturing method
JP2004198431A (en) * 2002-12-19 2004-07-15 Boeing Co:The Radiation shielding system, process for providing radiation shielding housing and shielding electronic system
CN107227454A (en) * 2017-05-18 2017-10-03 江苏广川线缆股份有限公司 A kind of Antiradiation composite

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995030990A1 (en) * 1994-05-09 1995-11-16 Siemens Aktiengesellschaft Container for absorbing neutron radiation
DE4416362C2 (en) * 1994-05-09 2002-09-26 Framatome Anp Gmbh absorber part
EP0849767A2 (en) * 1996-12-19 1998-06-24 Applied Materials, Inc. Boron carbide parts and coatings in a plasma reactor
EP0849767A3 (en) * 1996-12-19 2001-03-21 Applied Materials, Inc. Boron carbide parts and coatings in a plasma reactor
US6808747B1 (en) 1996-12-19 2004-10-26 Hong Shih Coating boron carbide on aluminum
US6630100B1 (en) 1999-10-15 2003-10-07 Mitsubishi Heavy Industries, Ltd. Manufacturing method for spent fuel storage member and mixed power
US6726741B2 (en) 2000-07-12 2004-04-27 Mitsubishi Heavy Industries, Ltd. Aluminum composite material, aluminum composite powder and its manufacturing method
JP2004198431A (en) * 2002-12-19 2004-07-15 Boeing Co:The Radiation shielding system, process for providing radiation shielding housing and shielding electronic system
CN107227454A (en) * 2017-05-18 2017-10-03 江苏广川线缆股份有限公司 A kind of Antiradiation composite
CN107227454B (en) * 2017-05-18 2019-08-23 江苏广川线缆股份有限公司 A kind of Antiradiation composite material

Similar Documents

Publication Publication Date Title
US6344237B1 (en) Method of depositing flux or flux and metal onto a metal brazing substrate
US20150030871A1 (en) Functionally graded thermal barrier coating system
KR20050081252A (en) Porous metal coated member and manufacturing method thereof using cold spray
US6200642B1 (en) Method of producing brazeable aluminum material
JPH01208446A (en) Neutron-absorptive aluminum alloy
JP2008544175A (en) How to coat a cylinder sleeve
KR100512340B1 (en) Method for increasing fracture toughness in aluminum-based diffusion coatings
JPS6039748B2 (en) Bearing laminate with high adhesive strength
JPH1046314A (en) Production of external corrosion resistant tube
JP2621448B2 (en) Cladding method
JPH046465B2 (en)
JPH06344171A (en) Method of welding alloy steel and nonalloy steel with co2 continuous laser under protection gas
JPH0199775A (en) Base treatment method in melt joining
SU954193A1 (en) Composite electrode
JPS5983756A (en) Method for coating of sprayed base film on copper base metal matrix
JP3291111B2 (en) Method for producing hot-dip Al-coated steel sheet having Zn diffusion layer
JPS5459507A (en) Turbine nozzle
AU1838201A (en) Coatings produced by thermal powder-cladding
JPH08224662A (en) Manufacture of aluminum joint
JP3147426B2 (en) Surface modification method for cast iron parts
JPS62183988A (en) Laser beam cladding method
JP2535652B2 (en) Laser cladding and alloying method
JPS61170577A (en) Formation of alloyed layer on al alloy casting surface
JPS6379981A (en) Method for highly alloying surface of aluminum alloy
JPH0741397B2 (en) Manufacturing method of stainless steel coated cast iron pipe