JPH01207932A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01207932A
JPH01207932A JP3346588A JP3346588A JPH01207932A JP H01207932 A JPH01207932 A JP H01207932A JP 3346588 A JP3346588 A JP 3346588A JP 3346588 A JP3346588 A JP 3346588A JP H01207932 A JPH01207932 A JP H01207932A
Authority
JP
Japan
Prior art keywords
film
films
laminated
thickness
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3346588A
Other languages
Japanese (ja)
Inventor
Yoshihiro Tabuchi
田渕 良弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3346588A priority Critical patent/JPH01207932A/en
Publication of JPH01207932A publication Critical patent/JPH01207932A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To realize blocking effect against impurity and moisture and reduction of stress in films by a method wherein a plurality of laminated films composed of at least two types of silicon nitride films, silicon oxide films and phosphorus glass films are further laminated to form a final protective film. CONSTITUTION:A laminated film is composed of at least two types of a silicon nitride film 5, a silicon oxide film 3 and a phosphorus glass film. A plurality of the laminated films are further laminated on a silicon substrate 1 on which a wiring 2 is provided to form a final protective film. For instance, a double- layer insulating film is composed of the SiO2 film 3 with a thickness of 2000Angstrom and the Si3N4 film 5 with a thickness of 1000Angstrom and three layers of such insulating films are laminated to have a thickness a little less than 1mum as a whole. The silicon oxide film 3 is formed by plasma CVD or depressurized CVD and the silicon nitride film 5 is formed by plasma CVD in a same reaction chamber successively. With this constitution, by laminating a plurality of the laminated films further, blocking effect against impurity and moisture and reduction of stress can be improved and a required film performance can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野〕゛ 本発明は、半導体基板に接してパッシベーション膜を有
し、さらに基板上に設けられる配線を覆って同様なパッ
シベーション機能をもつ最終保護膜を有する半導体装置
に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention has a passivation film in contact with a semiconductor substrate, and a final protective film having a similar passivation function covering wiring provided on the substrate. The present invention relates to a semiconductor device having the present invention.

〔従来の技術〕[Conventional technology]

半導体装置の特性の安定化のために、不安定性の要因の
侵入を阻止し、また半導体基板に内在しているもしくは
内部で発生した不安定性の要因を除去し、不活性化する
ためにパッシベーションが行われる。雰囲気に接する最
終保護膜は特に外気の影響の阻止のほかルこ亀裂の発生
のない耐タラツク性が要求される。
In order to stabilize the characteristics of semiconductor devices, passivation is used to prevent the entry of instability factors, and to remove and inactivate instability factors that are inherent in or have occurred within the semiconductor substrate. It will be done. The final protective film that comes into contact with the atmosphere is particularly required to block the influence of outside air and also to be resistant to scratches without causing cracks.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来、半導体装置の最終保護膜としてりんガラス(PS
G)、酸化珪素(Sift) 、窒化珪素(SiJ4)
+酸窒化珪素(SiON)などが使われてきている。こ
のうち、PSG膜は、りんによる不純物のゲッタリング
効果と耐クランクの点で優れてはいるが、りんを含んで
いるため耐水性の低下による配線金属のMの腐食等を引
き起こす可能性があるため、きびしい条件下では使用で
きない。
Conventionally, phosphor glass (PS) has been used as the final protective film for semiconductor devices.
G), silicon oxide (Sift), silicon nitride (SiJ4)
+Silicon oxynitride (SiON), etc. are being used. Among these, the PSG film is excellent in terms of impurity gettering effect due to phosphorus and crank resistance, but since it contains phosphorus, it may cause corrosion of the M of the wiring metal due to a decrease in water resistance. Therefore, it cannot be used under harsh conditions.

5iJ4は、不純物や水分の阻止効果がきわめて大きい
かわり、膜の応力が大きいため耐クランク性に問題があ
る。また、Si3N4を最終保護膜として用いる場合の
製法は原料ガスにSi■t、’NHs等を用いてのプラ
ズマCVD法によるため、膜中に多量のN−H;’5i
=H基が混入、している。この膜中の多量の水素により
%10.5FETのしきい値電圧を変動させる等の問題
・を、発パ生させている。また、Si3N、膜の応力を
緩和させるために、5i02とSi3N4を混合した膜
として5iON膜が用いられているが、5iON膜は膜
質の再現性等の問題がある。
Although 5iJ4 has a very high effect of blocking impurities and moisture, it has a problem in crank resistance because the stress of the film is large. In addition, since the manufacturing method when using Si3N4 as the final protective film is a plasma CVD method using Si*t, 'NHs, etc. as the raw material gas, a large amount of N-H; '5i
=H group is mixed. A large amount of hydrogen in this film causes problems such as fluctuations in the threshold voltage of the %10.5 FET. Further, in order to relieve the stress of the Si3N film, a 5iON film is used as a mixed film of 5i02 and Si3N4, but the 5iON film has problems such as reproducibility of film quality.

その他、適度な耐水性、耐クラツク性を持つ膜としてS
tO,膜も用いられる場合がある。しかし最近の傾向と
しては、以上述べた各種膜を単体では使わず、第2図に
示すようにM配線2を設けたシリコン基板1上にPSG
S複膜SiO□膜3ではさんだ構造にし、直接MがPS
G膜と接触することを防ぐ方法、または5iO1膜とS
i sNa膜あるいはPSG膜とSiJ*膜の2層構造
とし、5lsNa膜の高い不純物や水分の阻止効果と、
5i02やPSGを積層することによる低応力化とを組
み合わせた方法等がある。
In addition, S is used as a film with appropriate water resistance and crack resistance.
tO, membranes may also be used. However, as a recent trend, the various films mentioned above are not used alone, but PSG
The structure is sandwiched between S double film SiO□ film 3, and M is directly connected to PS.
How to prevent contact with G film or 5iO1 film and S
It has a two-layer structure of i sNa film or PSG film and SiJ* film, and has the high impurity and moisture blocking effect of 5lsNa film,
There is a method that combines stress reduction by laminating 5i02 or PSG.

しかしながら、最近の半導体素子の微細化に伴い、保護
膜の水素の影響を受けやすくなりMOSFETのしきい
値電圧の変動が起こりやすくなったり、M配線の細線化
により保護膜の応力によるM配線の変形や断線が非常に
起きやすくなっている。
However, with the recent miniaturization of semiconductor devices, they are more susceptible to the effects of hydrogen in the protective film, causing fluctuations in the threshold voltage of MOSFETs. Deformation and disconnection are extremely likely to occur.

このため、不純物や水分の高い阻止効果、膜の低応力化
等が非常に強く望まれている。
For this reason, there is a strong desire to have a high impurity and moisture blocking effect and to reduce the stress of the film.

本発明の課題は、外部からの不純物や水分の阻止性が向
上しかつ膜内応力の低下した最終保護膜を有する半導体
装置を提供するものとする。
An object of the present invention is to provide a semiconductor device having a final protective film that has improved blocking properties against external impurities and moisture and reduced internal stress.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題を解決するために、本発明の半導体装置は、
窒化珪素膜、酸化珪素膜およびりんガラス膜のうちの少
なくとも2種からなる積層膜の複数をさらに積層してな
る最終保護膜を有するものとする。
In order to solve the above problems, the semiconductor device of the present invention includes:
The final protective film is formed by further laminating a plurality of laminated films made of at least two of a silicon nitride film, a silicon oxide film, and a phosphorous glass film.

〔作用〕[Effect]

従来用いられていた2種の膜の積層では不十分であった
不純物や水分の阻止効果あるいは応力の低減が積層膜を
さらに複数積層することにより向上し、所要の膜性能を
得るに至る。
The effect of blocking impurities and moisture or the reduction of stress, which was insufficient with the lamination of two types of films conventionally used, is improved by laminating a plurality of laminated films, and the desired film performance can be obtained.

〔実施例〕〔Example〕

以下、第2図を含めて共通の部分には同一の符号を付し
た図を引用して本発明の実施例のいくつかについて述べ
る。
Hereinafter, some embodiments of the present invention will be described with reference to drawings including FIG. 2 in which common parts are given the same reference numerals.

第1図に示した実施例は、配線2を設けたシリコン基板
1の上ニ2ooo人の厚さ(7) 5iOi +!: 
1000人の厚さのSi3N、からなる2層絶縁膜を3
層分積層し、全体で約IInA弱の厚さにしたものであ
る。この酸化膜3と窒化膜5は、プラズマCVD法で窒
化膜を、プラズマCVD法または減圧CVD法で酸化膜
を同一反応槽で連続成膜したものである。この実施例の
最終保護膜を第3図に示したように、6000人の厚さ
ノ5iOz膜3と3000人の厚さの5isNa膜を積
層し、全体の犀さは第1図に示した場合と等しくした最
終保護膜と比較すると、シリコン板1のそりから測った
圧縮応力は第1図の実施例では1. OX 10I0d
yn/ aj、第3図の比較例では1.5×’1Qlo
 dyn/−であった。また2気圧、125℃の水蒸気
中での圧力がま試験の結果では、第1図の実施例で13
00時間で、第3図の比較例では1000時間〜である
から耐水性の向上したことが実証された。
In the embodiment shown in FIG. 1, the thickness of the silicon substrate 1 on which the wiring 2 is provided is 2ooo people (7) 5iOi +! :
A two-layer insulating film made of Si3N with a thickness of 1000 nm is
The layers are laminated to have a total thickness of a little less than IInA. The oxide film 3 and the nitride film 5 are obtained by successively forming a nitride film using a plasma CVD method and an oxide film using a plasma CVD method or a low pressure CVD method in the same reaction tank. As shown in Fig. 3, the final protective film of this example was a 6,000-layer thick 5iOz film 3 and a 3,000-layer-thick 5isNa film, and the overall thickness was as shown in Fig. 1. When compared with the final protective film made equal to the case, the compressive stress measured from the warpage of the silicon plate 1 is 1. OX10I0d
yn/aj, 1.5×'1Qlo in the comparative example in Figure 3
It was dyn/-. In addition, the results of a pressure cooker test in water vapor at 2 atm and 125°C showed that the example shown in Figure 1 was 13
00 hours, and in the comparative example shown in FIG. 3, it was 1000 hours, demonstrating that the water resistance was improved.

第4図は別の実施例を示し、最終保護膜は2000人の
厚さのPSGS複膜上に3層の1000人の厚さの5i
Ja膜5を2000人の厚さの5iO1膜3を介して積
層したもので、全体の厚さは約1μ弱である。PSGS
複膜りん濃度は2〜4%で、プラズマCVD法または減
圧CVD法で形成でき、第1図の実施例の場合と同様に
この最終保護膜も同一反応槽で連続成膜したものである
。第5図はこの実施例に対する比較例で、基板1の上に
6000人の厚さのPSGS複膜3000人の5isN
a膜5を積層したものである。
FIG. 4 shows another example in which the final protective coating is 3 layers of 1000 mm thick 5i on a 2000 mm thick PSGS composite membrane.
A Ja film 5 is laminated with a 5iO1 film 3 having a thickness of 2,000 layers interposed therebetween, and the total thickness is approximately a little less than 1 μm. P.S.G.S.
The double film has a phosphorus concentration of 2 to 4% and can be formed by plasma CVD or low pressure CVD, and the final protective film was also formed continuously in the same reaction tank as in the embodiment shown in FIG. FIG. 5 is a comparative example for this example, in which a PSGS composite film with a thickness of 3000 μm and 5isN of 3000 μm is deposited on the substrate 1.
A-film 5 is laminated.

圧縮応力は第4図の実施例で9.5 X 10”dyn
 / cj、第5図の比較例では7 X 10’dyn
/−でPSG膜の厚い比較例の方が応力吸収効果が大き
いが、第4図の実施例でも第1図の実施例におけるより
低下している。また圧力がま試験では、第4図の実施例
で1100時間、第5図の比較例で700時間のデータ
が得られた。従って水分の阻止効果は第1図の実施例の
方が第4図の実施例より高い。
The compressive stress is 9.5 x 10” dyn in the example shown in Figure 4.
/ cj, 7 x 10'dyn in the comparative example in Figure 5
The stress absorption effect is greater in the comparative example in which the PSG film is thicker than that in the example shown in FIG. 4, but it is lower than that in the example shown in FIG. In the pressure cooker test, data of 1100 hours was obtained for the example shown in FIG. 4 and 700 hours for the comparative example shown in FIG. Therefore, the moisture blocking effect is higher in the embodiment shown in FIG. 1 than in the embodiment shown in FIG.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、最終保護膜を窒化珪素膜、酸化珪素膜
およびりんガラス膜のうちの少なくとも2種の絶縁膜か
らなる積層膜をさらに複数積層して形成することにより
、不純物や水分の阻止性能の向上、膜内応力の低減が実
現でき、信鰭性の向上した半導体装置を得ることができ
た。
According to the present invention, the final protective film is formed by laminating a plurality of laminated films each consisting of at least two types of insulating films selected from silicon nitride, silicon oxide, and phosphorous glass, thereby blocking impurities and moisture. It was possible to improve performance and reduce stress in the film, and to obtain a semiconductor device with improved reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の半導体装置の断面図、第2
図は従来の最終保護膜の一例を備えた半導体装置の断面
図、第3図は第1図との比較例の断面図、第4図は本発
明の別の実施例の断面図、第5図は第4図との比較例の
断面図である。 1:シリコン基板、2:配線、3:酸化珪素膜、(Y)
  (Y)  uつ 1r’ll”I”l   □
FIG. 1 is a sectional view of a semiconductor device according to an embodiment of the present invention, and FIG.
3 is a sectional view of a semiconductor device equipped with an example of a conventional final protective film, FIG. 3 is a sectional view of a comparative example with FIG. 1, FIG. 4 is a sectional view of another embodiment of the present invention, and FIG. The figure is a sectional view of a comparative example with FIG. 4. 1: Silicon substrate, 2: Wiring, 3: Silicon oxide film, (Y)
(Y) utsu1r'll"I"l □

Claims (1)

【特許請求の範囲】[Claims] (1)窒化珪素膜、酸化珪素膜およびりんガラス膜のう
ちの少なくとも2種の絶縁膜からなる積層膜の複数をさ
らに積層してなる最終保護膜を有することを特徴とする
半導体装置。
(1) A semiconductor device characterized by having a final protective film formed by further laminating a plurality of laminated films each made of at least two kinds of insulating films selected from a silicon nitride film, a silicon oxide film, and a phosphorous glass film.
JP3346588A 1988-02-16 1988-02-16 Semiconductor device Pending JPH01207932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3346588A JPH01207932A (en) 1988-02-16 1988-02-16 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3346588A JPH01207932A (en) 1988-02-16 1988-02-16 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH01207932A true JPH01207932A (en) 1989-08-21

Family

ID=12387295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3346588A Pending JPH01207932A (en) 1988-02-16 1988-02-16 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH01207932A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689893A (en) * 1991-11-11 1994-03-29 Nec Corp Semiconductor device
US5536672A (en) * 1987-10-08 1996-07-16 National Semiconductor Corporation Fabrication of ferroelectric capacitor and memory cell
WO1997002594A1 (en) * 1995-07-03 1997-01-23 Intel Corporation Low damage source and drain doping technique
US5780364A (en) * 1994-12-12 1998-07-14 Micron Technology, Inc. Method to cure mobile ion contamination in semiconductor processing
CN1053994C (en) * 1993-04-14 2000-06-28 松下电器产业株式会社 Semiconductor device and method of fabricating the same
US6664612B2 (en) 1998-07-09 2003-12-16 Infineon Technologies Ag Semiconductor component having double passivating layers formed of two passivating layers of different dielectric materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4866777A (en) * 1971-12-15 1973-09-12
JPS5555538A (en) * 1978-10-20 1980-04-23 Hitachi Ltd Semiconductor device
JPS60233829A (en) * 1984-01-19 1985-11-20 Nec Corp Formation of insulation layer
JPS6150375A (en) * 1984-08-20 1986-03-12 Sanyo Electric Co Ltd Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4866777A (en) * 1971-12-15 1973-09-12
JPS5555538A (en) * 1978-10-20 1980-04-23 Hitachi Ltd Semiconductor device
JPS60233829A (en) * 1984-01-19 1985-11-20 Nec Corp Formation of insulation layer
JPS6150375A (en) * 1984-08-20 1986-03-12 Sanyo Electric Co Ltd Semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536672A (en) * 1987-10-08 1996-07-16 National Semiconductor Corporation Fabrication of ferroelectric capacitor and memory cell
JPH0689893A (en) * 1991-11-11 1994-03-29 Nec Corp Semiconductor device
CN1053994C (en) * 1993-04-14 2000-06-28 松下电器产业株式会社 Semiconductor device and method of fabricating the same
US5780364A (en) * 1994-12-12 1998-07-14 Micron Technology, Inc. Method to cure mobile ion contamination in semiconductor processing
US5943602A (en) * 1994-12-12 1999-08-24 Micron Technology, Inc. Method to cure mobile ion contamination in semiconductor processing
US6114222A (en) * 1994-12-12 2000-09-05 Micron Technology, Inc. Method to cure mobile ion contamination in semiconductor processing
WO1997002594A1 (en) * 1995-07-03 1997-01-23 Intel Corporation Low damage source and drain doping technique
US5976939A (en) * 1995-07-03 1999-11-02 Intel Corporation Low damage doping technique for self-aligned source and drain regions
US6664612B2 (en) 1998-07-09 2003-12-16 Infineon Technologies Ag Semiconductor component having double passivating layers formed of two passivating layers of different dielectric materials

Similar Documents

Publication Publication Date Title
US6541370B1 (en) Composite microelectronic dielectric layer with inhibited crack susceptibility
US7928016B2 (en) Method of manufacturing semiconductor device, and semiconductor device
JPH01207932A (en) Semiconductor device
JPH056890A (en) Semiconductor device with passivation multilayer film and manufacture thereof
US5821174A (en) Passivation layer of semiconductor device and method for forming the same
JPH03179778A (en) Insulating board for forming thin film semiconductor
JPH05218015A (en) Semiconductor device
JP2994881B2 (en) Thermal insulation film for diaphragm structure and method of manufacturing the same
JPS61279132A (en) Semiconductor device
JPS5745931A (en) Semiconductor device with multilayer passivation film and manufacture thereof
JPH0689893A (en) Semiconductor device
JPH0499049A (en) Semiconductor device
JPH01293632A (en) Semiconductor device
JPS62287645A (en) Semiconductor integrated circuit
JPH0258353A (en) Semiconductor device
JPS62128128A (en) Semiconductor device
JPH06216118A (en) Manufacture of semiconductor device
JP3223522B2 (en) Method for manufacturing semiconductor device
JPS63120444A (en) Interlayer insulating film
JPH05102326A (en) Semiconductor device
JPH0547744A (en) Manufacture of semiconductor device
JPH01235824A (en) Pressure sensor
JPH07273102A (en) Semiconductor and its fabrication
JPS61222229A (en) Semiconductor device
JPH0669361A (en) Semiconductor device and its manufacture