JPH01206614A - Manufacture of capacitor - Google Patents

Manufacture of capacitor

Info

Publication number
JPH01206614A
JPH01206614A JP63032399A JP3239988A JPH01206614A JP H01206614 A JPH01206614 A JP H01206614A JP 63032399 A JP63032399 A JP 63032399A JP 3239988 A JP3239988 A JP 3239988A JP H01206614 A JPH01206614 A JP H01206614A
Authority
JP
Japan
Prior art keywords
electrode
capacitor
conductive layer
thin film
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63032399A
Other languages
Japanese (ja)
Inventor
Sadakimi Oyama
大山 貞公
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsumi Electric Co Ltd
Original Assignee
Mitsumi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsumi Electric Co Ltd filed Critical Mitsumi Electric Co Ltd
Priority to JP63032399A priority Critical patent/JPH01206614A/en
Publication of JPH01206614A publication Critical patent/JPH01206614A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To make it possible to obtain the title capacitor of thin type and a large capacitance by a method wherein electrodes are provided by conducting a plating treatment, and a dielectric thin film is formed between each electrode by sputtering and the like. CONSTITUTION:A nickel film 11 is provided on a ceramic white substrate 10 by conducting a non-electrolytic chemical plating operation, a conductive layer 12 having the prescribed thickness is provided by electroplating copper using said nickel film as an electrode, and the first electrode 13 is formed on the surface by etching. Then, a dielectric thin film 14 of several mum is provided on the prescribed part on the surface by sputtering aluminum oxide. Besides, a conductive layer is provided on both sides by electroplating copper, and the second electrode 15 is provided on the surface by etching. As a result, between the electrodes can be thinned to a high degree, and the capacitor having the value of electrostatic capacitance of large capacity can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、電子回路に使用されるコンデンサの製造法
に関するものであり、特に、銅メッキとスパッタリング
等による薄膜によって形成するコンデンサの製造法に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing capacitors used in electronic circuits, and in particular to a method for manufacturing capacitors formed by thin films such as copper plating and sputtering. It is something.

[従来の技術] 従来のチップコンデンサは別紙添付の第13図に示すよ
うに、銀パラジウム(Ag−Pd)等で形成した端子電
極(IXI)に夫々電極板(2)(2)・・・を突設し
、チタン酸バリウム(3)を介して相互に積層して形成
していた。そして、第14図のように基板(4)上に設
けられた電極(5)(5)へ、前記端子(1)(1)の
下面をハンダ付して固着していた。
[Prior Art] As shown in the attached Figure 13, a conventional chip capacitor has terminal electrodes (IXI) formed of silver-palladium (Ag-Pd), etc., and electrode plates (2), (2), etc., respectively. They were formed by protruding from each other and stacking them on each other with barium titanate (3) interposed therebetween. Then, as shown in FIG. 14, the lower surfaces of the terminals (1) (1) were fixed by soldering to the electrodes (5) (5) provided on the substrate (4).

し発明が解決しようとする課題] 前述した従来のチップコンデンサは、夫々の電極板(2
)(2)・・・間が50〜60μmであり、厚みが大で
あった。依って、大容量のコンデンサを形成する場合は
、電極板(2)(2)・・・の面積を拡大するか或は電
極板(2X2)・・・の積層枚数を増加させねばならず
、コンデンサが大型になるという問題点があった。
[Problems to be Solved by the Invention] The conventional chip capacitor described above has two electrode plates (two
)(2)... The distance was 50 to 60 μm, and the thickness was large. Therefore, when forming a large capacity capacitor, it is necessary to increase the area of the electrode plates (2), (2), etc., or increase the number of laminated electrode plates (2×2), etc. There was a problem that the capacitor became large.

而も、前記チタン酸バリウム(3)の表面は微細な凹凸
があり、稀にピンホールが発生した場合は裏面側と導通
して電気的短絡が生じることがあった。
However, the surface of the barium titanate (3) has minute irregularities, and in rare cases where a pinhole occurs, it may be electrically connected to the back side, causing an electrical short circuit.

又、チタン酸バリウム(3)を焼成しであるので、空気
中の水分が含浸してコンデンサの特性が悪化する虞れを
有していた。そこで、この発明は薄型で大容量であり、
且つ、信頼性の高いコンデンサの製造法を提供すること
を目的とする。
Furthermore, since the barium titanate (3) is fired, there is a risk that moisture in the air may impregnate the capacitor, thereby degrading the characteristics of the capacitor. Therefore, this invention is thin and has a large capacity.
Another object of the present invention is to provide a method for manufacturing a capacitor with high reliability.

[課題を解決するための手段] この発明は、上記目的を達成するために提案せられたも
のであり、基板上に銅メッキにて導電層を設け、エツチ
ングにより第1の電極を形成し、スパッタリングによっ
て前記導電層表面に誘導体の薄膜を設け、更に、その表
面へ銅メッキにて導電層を設けた後エツチングにより第
2の電極を形成し、第1の電極と第2の電極との間に静
電容量を形成できるようにしたことを特徴とするコンデ
ンサの製造法を提供せんとするものである。
[Means for Solving the Problems] The present invention was proposed to achieve the above object, and includes providing a conductive layer on a substrate by copper plating, forming a first electrode by etching, A thin film of a dielectric is provided on the surface of the conductive layer by sputtering, and a conductive layer is further provided on the surface by copper plating, and then a second electrode is formed by etching, and a second electrode is formed between the first electrode and the second electrode. It is an object of the present invention to provide a method for manufacturing a capacitor, which is characterized in that a capacitance can be formed in a capacitor.

[作用] この発明は、基板上にメッキ処理によって導電層を設け
、エツチングによって第1の電極を形成する。そして、
その表面へ例えばスパッタリングにて誘電体の薄膜を設
け、更に、前記基板の表面に導電層を設けてエツチング
により該薄膜の上部に第2の電極を形成する。斯くして
、第1の電極と第2の電極との間に誘電体の薄膜が形成
され、双方の電極間に静電容量が発生してコンデンサが
形成される。而も、メッキ処理によって導電層を設ける
ため製造コストを著しく低減でき、且つ、電極パターン
の形成も容易である。又、電極間を極めて薄くすること
ができ、大容量のコンデンサの製造が可能となる。
[Operation] In the present invention, a conductive layer is provided on a substrate by plating, and a first electrode is formed by etching. and,
A dielectric thin film is provided on the surface by, for example, sputtering, and a conductive layer is further provided on the surface of the substrate, and a second electrode is formed on the thin film by etching. In this way, a dielectric thin film is formed between the first electrode and the second electrode, and capacitance is generated between both electrodes to form a capacitor. Moreover, since the conductive layer is provided by plating, manufacturing costs can be significantly reduced, and electrode patterns can be easily formed. Furthermore, the gap between the electrodes can be made extremely thin, making it possible to manufacture a capacitor with a large capacity.

[実施例] 以下、この発明の一実施例を別紙添付図面に従って詳述
する。第1図(3)(ト)に於て符号Qo)はアルミナ
等を焼成して形成したセラミック白基板を示し、このセ
ラミック白基板θ0)へ無電解の化学メッキでニッケル
被膜Q+)を施し、これを電極として銅の電気メッキに
て所定の厚み(10〜100μm)を有する導電層(1
2を設け、第2図(a)(ハ)の如くエツチングにより
表面へ第1の電極(l■を形成する。そして、第3図(
3)(ハ)の如く、表面の所定部分に高純度(99,9
%)の酸化アルミ(AL20.)をスパッタリングして
数μmの誘電体の薄膜(ゆを設ける。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the accompanying drawings. In Fig. 1 (3) (g), the symbol Qo) indicates a ceramic white substrate formed by firing alumina or the like, and a nickel coating Q+) is applied to this ceramic white substrate θ0) by electroless chemical plating. Using this as an electrode, conductive layer (1
2, and form a first electrode (l) on the surface by etching as shown in FIGS. 2(a) and (c). Then, as shown in FIG.
3) As shown in (c), high purity (99,9
%) aluminum oxide (AL20.) is sputtered to form a dielectric thin film of several micrometers.

更に、銅の電気メッキにて両面に導電層を設け、第4図
(→(ハ)に示す如(、エツチングによって前記表面へ
第2の電極θつを設けた後、必要に応じて表面に樹脂コ
ート等の絶縁被膜を施して腐食を防止する。斯くして、
第5図に示すようなチップコンデンサ(16)が形成さ
れるのである。
Furthermore, a conductive layer is provided on both sides by copper electroplating, and after providing second electrodes θ on the surface by etching, as shown in FIG. Apply an insulating coating such as a resin coat to prevent corrosion.In this way,
A chip capacitor (16) as shown in FIG. 5 is formed.

ここで、前記チップコンデンサ(+19は第4図((至
)(ハ)に於て、第1の電極(1■と第2の電極(I5
i)とが重合する部位の対向面積(S)に応じて静電容
量が決定される。第1の電極(1等と第2の電極(1つ
との間隔、即ち誘電体の薄膜(ロ)の厚みをtとし、誘
電率をεとすれば両電極間の静電容量(C)は次式で表
わ例えば、前記双方の電極θ■θつの対向面積(S)が
1mm2であり、且つ誘電体の薄膜(ロ)の厚みが1μ
mの場合、酸化アルミ(Al2O2)の誘電率(ε)は
約9程度であるので、 (l Xl0−3)2 c、 =8.8 Xl0−12X9 XI Xl0−6 =79XIO−12(F ) 即ち、当該チップコンデンサ(+6)の静電容量(C0
)は80pFとなり、極めて大容量のコンデンサが形成
される。
Here, the chip capacitor (+19) is connected to the first electrode (1■) and the second electrode (I5) in FIG.
The capacitance is determined according to the facing area (S) of the site where the and i) are polymerized. If t is the distance between the first electrode (1st grade) and the second electrode (1st grade), that is, the thickness of the dielectric thin film (b), and ε is the dielectric constant, then the capacitance (C) between the two electrodes is For example, if the opposing area (S) of both electrodes θ■θ is 1 mm2, and the thickness of the dielectric thin film (B) is 1 μ
m, the dielectric constant (ε) of aluminum oxide (Al2O2) is about 9, so (l Xl0-3)2 c, = 8.8 Xl0-12X9 XI Xl0-6 = 79XIO-12(F) That is, the capacitance (C0
) is 80 pF, forming an extremely large capacitor.

次に、本発明の製造法によって同時に多数のコンデンサ
(1@ (+61・・・を製造する手順を説明する。尚
、第1図(a)(ハ)乃至第5図に於ける同一構成部分
には、同一符号を付して説明する。第6図乃至第8図は
セラミックの連結基板(0を示したもので、該連結基板
(rt)の一方向にスリット@(日・−・を穿設してあ
り、このスリット(日(ト)・・・と直交してスナップ
ライン(19)(ハ)・・・が刻設されている。第9図
(a)(ハ)(C)乃至第12図(→(ハ)(C)は、
夫々第6図のB−B線要部を示したものであり、夫々各
図(a)は表面側を示し、各図(ハ)は裏面側を示し、
更に各図(C)は縦断面を示している。そして、前記ス
リット(日(四−・・とスナップライン■(つ・・・に
て夫々セラミック白基板θ0)C0)・・・のチップの
大きさが設定されている。第9図(a)(ハ)(C)の
連結基板(r’)へ無電解の化学メッキでニッケル被膜
θ1)を施し、これを電極として銅の電気メッキにて導
電層(ゆを設ける。然るとき、前記スリット(日内も当
然メッキ処理されて導電層(ゆが設けられる。次に第1
0図(3)(ハ)(C)に示すように、夫々のチップ表
面をエツチングして第1の電極(1■(l■・・・を形
成し、且つ裏面の不要部分を除去する。そして、第11
図(a)(ハ)(C)の如く、表面の所定部分に前記高
純度の酸化アルミ(AhO:+)をスパッタリングして
、数μmの誘電体の薄膜(A)(→・・・を設ける。更
に、銅メッキにて前記連結基板(0の両面に導電層を設
け、エツチングによって第12図(a)(ハ)(C)の
ように、各チップ表面に第2の電極(00ツ・・・を形
成すると共に、裏面の不要部分を除去して端子電極G1
1(n−・・を設ける。然るのち、前記スナップライン
(鴎(+9)・・・を切欠すれば各チップに分割され、
第5図に示したチップコンデンサ(+6)を形成するこ
とができる。  □尚、前記スリット(IF5 (1・
・・によってスリット(ト)内面にも導電層がメッキさ
れ、端子電極(イ)(イ)が形成されるのである。
Next, a procedure for simultaneously manufacturing a large number of capacitors (1@(+61...) using the manufacturing method of the present invention will be explained. 6 to 8 show a ceramic connecting substrate (0 is shown), and a slit @ (day...) is provided in one direction of the connecting substrate (rt). A snap line (19) (c)... is engraved perpendicularly to this slit ((g)). Fig. 9 (a) (c) (c) From Figure 12 (→ (C) (C),
Each figure shows the main part along line B-B in Fig. 6, and each figure (a) shows the front side, each figure (c) shows the back side,
Furthermore, each figure (C) shows a longitudinal section. Then, the size of the chip of the slit (ceramic white substrate θ0) C0 is set at the snap line (4-... and snap line 2) (respectively). Fig. 9(a) (C) A nickel film θ1) is applied to the connection substrate (r') of (C) by electroless chemical plating, and a conductive layer (Y) is provided by copper electroplating using this as an electrode. (Naturally, a conductive layer (distortion) is provided by plating.Next, the first
As shown in FIGS. 0(3)(c) and (c), the surface of each chip is etched to form a first electrode (1) (1), and unnecessary portions of the back surface are removed. And the 11th
As shown in Figures (a), (c), and (c), the high-purity aluminum oxide (AhO:+) is sputtered onto a predetermined portion of the surface to form a dielectric thin film (A) (→...) of several μm. Further, a conductive layer is provided on both sides of the connection board (0) by copper plating, and a second electrode (00) is formed on the surface of each chip by etching as shown in FIGS. . . . and remove unnecessary parts on the back side to form the terminal electrode G1.
1 (n-...). Then, by cutting out the snap line (鴴(+9)...), it is divided into each chip,
A chip capacitor (+6) shown in FIG. 5 can be formed. □In addition, the slit (IF5 (1・
..., the inner surface of the slit (G) is also plated with a conductive layer, and the terminal electrodes (A) and (A) are formed.

[発明の効果] この発明は上記一実施例にて詳述したように、メッキ処
理によって電極を設け、各電極間にスパッタリング等に
よって誘電体の薄膜を形成している。従って、前記電極
間を極めて薄くすることができ大容量の静電容量値を得
ることができる。而も、メッキ処理及びスパッタリング
等による薄膜によって各層を形成するため、連結基板で
同時に複数個のチップコンデンサを製造することが可能
であり、製作コストを著しく低減することができる。又
、スパッタリング等にて形成された誘電体の薄膜表面は
極めて平滑となり、ピンポール等の発生する虞れが防止
でき、且つ、電極間に電気的短絡が生じる憂いがなくな
る。依って、歩留りを良好にして信頼性が向上される等
正に諸種の効果を奏する発明である。尚、この発明の実
施例は叙述せる如き構成を有するものであるが、この発
明の精神を逸脱しない範囲に於て種々の改変を為すこと
ができ、そして、この発明がそれに及ぶことは当然であ
る。
[Effects of the Invention] As described in detail in the above embodiment, the present invention provides electrodes by plating, and forms a dielectric thin film between each electrode by sputtering or the like. Therefore, the distance between the electrodes can be made extremely thin, and a large capacitance value can be obtained. Moreover, since each layer is formed by a thin film formed by plating, sputtering, etc., it is possible to simultaneously manufacture a plurality of chip capacitors using a connecting substrate, and the manufacturing cost can be significantly reduced. Furthermore, the surface of the dielectric thin film formed by sputtering or the like becomes extremely smooth, preventing the possibility of pin poles and the like, and eliminating the fear of electrical short circuits occurring between electrodes. Therefore, this invention has various effects such as improving yield and improving reliability. Although the embodiments of this invention have the configuration described above, various modifications can be made without departing from the spirit of this invention, and it is natural that this invention extends to such modifications. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第2図は本発明の一実施例を示したものであ
る。第1図(a)(ハ)乃至第4図(→(ハ)はチップ
コンデンサの製造手順を示したもので、夫々各図(a)
は縦断面図、各図(ハ)は平面図である。第5図はチッ
プコンデンサの斜面図、第6図は連結基板の平面図、第
7図は同側面図、第8図は第6図のA−A線縦断面図で
ある。第9図(a)(ハ)(C)乃至第12図<a>(
ハ)(C)は連結基板の製造手順を示した第6図B−B
線の要部拡大図で、夫々(→は表面図、各図(ハ)は裏
面図、各図(C)は縦断面図である。第13図及び第1
4図は従来例を示したものであり、第13図はチップコ
ンデンサの縦断面図、第14図はチップコンデンサを基
板へ取付けた状態を示す要部縦断面図である。 10:セラミック白基板 12:導電層13:第1の電
極    14:誘電体の薄膜15:第2の電極  1
6:チップコンデンサ「  ○ r−寸 味 ★1泊
1 and 2 show an embodiment of the present invention. Figures 1 (a) (c) to 4 (→ (c) show the manufacturing procedure of chip capacitors; each figure (a)
is a longitudinal sectional view, and each figure (c) is a plan view. 5 is a perspective view of the chip capacitor, FIG. 6 is a plan view of the connecting board, FIG. 7 is a side view of the same, and FIG. 8 is a longitudinal sectional view taken along the line A--A in FIG. 6. Figures 9(a)(c)(C) to 12<a>(
C) (C) is Figure 6 B-B showing the manufacturing procedure of the connecting board.
These are enlarged views of the main parts of the lines, respectively (→ is a front view, each figure (C) is a back view, and each figure (C) is a longitudinal cross-sectional view.
FIG. 4 shows a conventional example, FIG. 13 is a longitudinal cross-sectional view of a chip capacitor, and FIG. 14 is a longitudinal cross-sectional view of essential parts showing a state in which the chip capacitor is attached to a substrate. 10: Ceramic white substrate 12: Conductive layer 13: First electrode 14: Dielectric thin film 15: Second electrode 1
6: Chip capacitor “○ r-size★1 night

Claims (1)

【特許請求の範囲】[Claims] 基板上に銅メッキにて導電層を設け、エッチングにより
第1の電極を形成し、スパッタリング等によつて前記導
電層表面に誘導体の薄膜を設け、更に、その表面へ銅メ
ッキにて導電層を設けた後エッチングにより第2の電極
を形成し、第1の電極と第2の電極との間に静電容量を
形成できるようにしたことを特徴とするコンデンサの製
造法。
A conductive layer is provided on the substrate by copper plating, a first electrode is formed by etching, a thin film of a dielectric is provided on the surface of the conductive layer by sputtering, etc., and a conductive layer is further applied to the surface by copper plating. A method for manufacturing a capacitor, characterized in that a second electrode is formed by etching after being provided, so that a capacitance can be formed between the first electrode and the second electrode.
JP63032399A 1988-02-15 1988-02-15 Manufacture of capacitor Pending JPH01206614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63032399A JPH01206614A (en) 1988-02-15 1988-02-15 Manufacture of capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63032399A JPH01206614A (en) 1988-02-15 1988-02-15 Manufacture of capacitor

Publications (1)

Publication Number Publication Date
JPH01206614A true JPH01206614A (en) 1989-08-18

Family

ID=12357876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63032399A Pending JPH01206614A (en) 1988-02-15 1988-02-15 Manufacture of capacitor

Country Status (1)

Country Link
JP (1) JPH01206614A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299163A (en) * 2001-03-30 2002-10-11 Kyocera Corp Variable capacitance element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299163A (en) * 2001-03-30 2002-10-11 Kyocera Corp Variable capacitance element

Similar Documents

Publication Publication Date Title
KR100883524B1 (en) Laminated ceramic capacitor
US11848162B2 (en) Multilayer ceramic electronic component with metal terminals for high withstand voltage and reduced mounting area
JPH06268464A (en) Noise filter block
JPH01206614A (en) Manufacture of capacitor
US4568999A (en) Multilayer ceramic capacitor on printed circuit
JP3246166B2 (en) Thin film capacitors
JPH01152712A (en) Formation of external electrode of laminated ceramic capacitor
JPS61139018A (en) Formation of electrode for external connection of chip type electronic component
JP7471040B2 (en) Electronic Components
US11646157B2 (en) Component built-in substrate
JP2839262B2 (en) Chip resistor and manufacturing method thereof
JPH11345734A (en) Laminated ceramic capacitor
JP2006041319A (en) Surface-mounted multiple capacitor and mounting structure thereof
JP2006066443A (en) Surface-mounting multiple capacitor
JPH0992573A (en) Composite electronic part
JPH0945830A (en) Chip electronic component
JPS62242325A (en) Manufacture of chip capacitor
JP4051751B2 (en) Manufacturing method for terminals of electronic components
JP2000058326A (en) Chip inductor and manufacture thereof
JP2020136533A (en) Multilayer ceramic capacitor and mounting structure of multilayer ceramic capacitor
JP3005615U (en) Capacitor array
JPS59914A (en) Method of producing laminated circuit part
JPH07192966A (en) Ceramic capacitor
JPS63252414A (en) High static capacitance bus bar containing multilayer ceramic capacitor
JPH0341711A (en) Laminated type electronic component