JPH01205041A - Fiber reinforced aluminum alloy composite material - Google Patents

Fiber reinforced aluminum alloy composite material

Info

Publication number
JPH01205041A
JPH01205041A JP2820688A JP2820688A JPH01205041A JP H01205041 A JPH01205041 A JP H01205041A JP 2820688 A JP2820688 A JP 2820688A JP 2820688 A JP2820688 A JP 2820688A JP H01205041 A JPH01205041 A JP H01205041A
Authority
JP
Japan
Prior art keywords
composite material
alloy
aluminum alloy
fiber
short fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2820688A
Other languages
Japanese (ja)
Inventor
Seiichi Koike
精一 小池
Hiroyuki Horimura
弘幸 堀村
Noriaki Matsumoto
松本 規明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2820688A priority Critical patent/JPH01205041A/en
Priority to CA000584522A priority patent/CA1330400C/en
Priority to DE3888308T priority patent/DE3888308T2/en
Priority to US07/278,581 priority patent/US5022918A/en
Priority to EP88311390A priority patent/EP0319295B1/en
Publication of JPH01205041A publication Critical patent/JPH01205041A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title composite material having excellent high temp. strength by subjecting the mixture in which Al alloy fine powder having specific compsn. is regulated as a matrix and ceramic short fiber as reinforcing fiber to pressurizing and molding and thereafter to sintering. CONSTITUTION:The molten metal of Al alloy contg., by weight, 5-12% Cr, 1-5% Fe and 0.5-3% Zr is quenched by a gas atomizing method, etc., to manufacture the Al alloy powder contg. <=10mum deposits and crystalloids of the intermetallic compounds between Cr and Al and having <=40mum maximum diameter. The short fiber of whisker or the like in the ceramics of SiC, Al2O3, Si3N4, C, etc. is uniformly dispersed to the Al alloy powder by 2-30% areal ratio. The short fiber-contg. Al alloy powder is pressurized and molded and is thereafter subjected to a hot isostatic pressing treatment into a sintered body. The Al alloy composite material having excellent high temp. strength in which short fiber is regulated as a reinforcing material can be obtd.

Description

【発明の詳細な説明】 へ〇発明の目的 (1)産業上の利用分野 本発明は繊維強化アルミニウム合金複合材、特に、高温
強度を向上させたものに関する。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (1) Field of Industrial Application The present invention relates to fiber-reinforced aluminum alloy composites, particularly those with improved high-temperature strength.

(2)従来の技術 この種複合材の高温強度はマトリックスのそれに依存す
るため、従来より種々の耐熱性アルミニウム合金が提案
されており、例えばAj!−Fe −Ce、Aj!−F
e−Mo等の、粉末冶金法を適用されるAI!、−Fe
系合金が知られている(特開昭61−52343号公報
参照)。
(2) Prior art Since the high-temperature strength of this type of composite material depends on that of the matrix, various heat-resistant aluminum alloys have been proposed in the past, such as Aj! -Fe -Ce, Aj! -F
AI to which powder metallurgy methods are applied, such as e-Mo! , -Fe
alloys are known (see JP-A-61-52343).

(3)発明が解決しようとする課題 しかしながら、前記のような従来合金をマトリックスと
して用いると、複合材の製造過程において熱間押出し加
工等の熱間加工性が悪く、また複合材の高温強度も十分
ではないといつ、た改良すべき問題がある。
(3) Problems to be Solved by the Invention However, when the above conventional alloys are used as a matrix, hot workability such as hot extrusion processing during the manufacturing process of the composite material is poor, and the high temperature strength of the composite material is also deteriorated. Whenever something is not good enough, there is a problem that needs improvement.

本発明は前記に鑑み、改良されたアルミニウム合金をマ
トリックスとして用いることにより複合材製造過程にお
ける熱間加工性を改善し、また優れた高温強度を有する
前記複合材を提供することを目的とする。
In view of the above, an object of the present invention is to improve hot workability in the process of manufacturing a composite material by using an improved aluminum alloy as a matrix, and to provide a composite material having excellent high-temperature strength.

B0発明の構成 (1)課題を解決するための手段 本発明に係る繊維強化アルミニウム合金複合材は、マト
リックスがCr  5〜12重量%、Fe1〜5重量%
およびZr0.5〜3重景重量含有するアルミニウム合
金であり、また強化用繊維が短繊維で、その繊維体積率
が2〜30%であることを特徴とする。
B0 Structure of the Invention (1) Means for Solving the Problems The fiber-reinforced aluminum alloy composite material according to the present invention has a matrix containing 5 to 12% by weight of Cr and 1 to 5% by weight of Fe.
It is an aluminum alloy containing 0.5 to 3 times the weight of Zr and Zr, and is characterized in that the reinforcing fibers are short fibers and the fiber volume percentage is 2 to 30%.

(2)作 用 前記のように構成すると、複合材製造過程における熱間
加工性を改善し、また複合材の高温強度を向上させるこ
とができる。
(2) Effect With the above structure, hot workability in the composite material manufacturing process can be improved, and high temperature strength of the composite material can be improved.

添加元素のうち、CrはAfへの拡散係数が最も小さい
元素の1つであり、微細な金属間化合物を析出および晶
出してマトリックスの高温強度向上に寄与する。たりし
、含有量が5重量%を下回ると、高温強度が不十分とな
り、一方、122重丸を上回ると、伸びが小さく、また
熱間加工性か低下する。
Among the additive elements, Cr is one of the elements with the smallest diffusion coefficient to Af, and contributes to improving the high-temperature strength of the matrix by precipitating and crystallizing fine intermetallic compounds. On the other hand, if the content is less than 5% by weight, the high temperature strength will be insufficient, while if it exceeds 122 circles, the elongation will be small and the hot workability will decrease.

Feは複合材の常温強度、高温強度およびヤング率を向
上させる上に有効である。た\′し、添加量が1重量%
を下回ると、Feの添加効果が少なくなり、一方、5重
量%を上回ると、切欠き感度が高くなると共に伸びも小
さくなる。
Fe is effective in improving the room temperature strength, high temperature strength, and Young's modulus of composite materials. The amount added is 1% by weight.
If it is less than 5% by weight, the effect of adding Fe will be reduced, while if it is more than 5% by weight, notch sensitivity will increase and elongation will also decrease.

Zrは展延性およびクリープ特性を改善し、また時効硬
化により高温強度を向上させる効果を有する。た\゛し
、添加量が0.5重量%を下回ると、前記効果が少なく
、一方、3重量%を上回ると、展延性が低下する。
Zr has the effect of improving malleability and creep properties, and also improves high temperature strength through age hardening. However, if the amount added is less than 0.5% by weight, the above effects will be small, while if it exceeds 3% by weight, the spreadability will decrease.

短繊維の繊維体積率(Vf)は、その繊維強化能を十分
に発揮させるためには前記範囲が適当である。たりし、
繊維体積率が2%を下回ると、繊維強化能が得られず、
一方、30%を上回ると、複合材の脆化を招来する。
The fiber volume fraction (Vf) of the short fibers is preferably within the above range in order to fully exhibit its fiber reinforcing ability. Tarishi,
When the fiber volume fraction is less than 2%, fiber reinforcement ability cannot be obtained,
On the other hand, if it exceeds 30%, the composite material becomes brittle.

(3)実施例 本発明に係る繊維強化アルミニウム合金複合材の製造に
は粉末冶金法が適用される。したがって前記アルミニウ
ム合金は粉末状で用いられ、その粉、末の製造にはガス
アトマイズ法、ロール法、遠心噴霧法等が適用される。
(3) Example A powder metallurgy method is applied to manufacture the fiber-reinforced aluminum alloy composite material according to the present invention. Therefore, the aluminum alloy is used in powder form, and the gas atomization method, roll method, centrifugal spray method, etc. are applied to produce the powder.

この場合の冷却速度は102〜106°(/secであ
る。
The cooling rate in this case is 102 to 106 degrees (/sec).

強化用繊維としての短繊維(ウィスカを含む)にはSi
Cウィスカ、アルミナウィスカ、Si。
Short fibers (including whiskers) as reinforcing fibers contain Si.
C whisker, alumina whisker, Si.

N4ウイスカ、カーボンウィスカまたはチョツプドSi
C繊維、チョツプドアルミナ繊維、ナツツブトSi、N
、繊維、チョツプドカーボン繊維等が該当する。
N4 whisker, carbon whisker or chopped Si
C fiber, chopped alumina fiber, Natsubutu Si, N
, fiber, chopped carbon fiber, etc.

前記複合材は以下に述べる手法により製造される。The composite material is manufactured by the method described below.

SiCウィスカに溶媒を混合して開繊処理を行なう。こ
の場合、溶媒としては粘性が小さく、前記アルミニウム
合金と反応せず、低沸点のものが好ましく、例えば、ア
セトンと13%n−ブタノールの混合液が用いられる。
A solvent is mixed with SiC whiskers and fiber opening processing is performed. In this case, the solvent preferably has low viscosity, does not react with the aluminum alloy, and has a low boiling point. For example, a mixed solution of acetone and 13% n-butanol is used.

開、繊後のSiCウィスカにアルミニウム合金粉末を混
合して圧粉成形材料を得る。
Aluminum alloy powder is mixed with SiC whiskers after opening and fibers to obtain a powder compacting material.

前記材料を用い、真空加圧成形法を適用して圧粉体を得
る。成形条件は、例えば加圧力  180kg/lll
l112、加圧保持時間 1分間であり、また成形後圧
粉体には真空下で80°C,10時間の乾燥処理が施さ
れる。
A green compact is obtained using the above material and applying a vacuum pressure molding method. The molding conditions are, for example, a pressure of 180 kg/lll.
1112, the pressure and holding time was 1 minute, and after molding, the green compact was dried under vacuum at 80° C. for 10 hours.

圧粉体を極薄のゴム袋に入れ、その圧粉体にCIP処理
(冷間静水圧プレス処理)を施して中間体を得る。処理
条件は、例えば加圧力 4000kg/mm” 、加圧
保持時間 1分間である。
The green compact is placed in an extremely thin rubber bag, and the green compact is subjected to CIP treatment (cold isostatic pressing) to obtain an intermediate. The processing conditions are, for example, a pressurizing force of 4000 kg/mm'' and a pressurizing holding time of 1 minute.

中間体に脱ガス処理(例えば450°C11時間)を施
す。
The intermediate is subjected to a degassing treatment (for example, at 450° C. for 11 hours).

中間体にHIP処理(熱間静水圧プレス処理)を施して
焼結体を得る。条理条件は、例えば加圧力 2000気
圧、加熱温度 450°C1加圧保持時間 1時間であ
る。
The intermediate body is subjected to HIP treatment (hot isostatic pressing treatment) to obtain a sintered body. The conditioning conditions are, for example, a pressure of 2000 atm, a heating temperature of 450° C., and a pressure holding time of 1 hour.

焼結体を用い、熱間押出し法を適用してSiCウィスカ
により強化されたアルミニウム合金棒材を得る。押出し
加工条件は、例えば加熱温度450〜490°C1押出
し比10以上である。
Using the sintered body, a hot extrusion method is applied to obtain an aluminum alloy bar reinforced with SiC whiskers. The extrusion processing conditions are, for example, a heating temperature of 450 to 490° C. and an extrusion ratio of 10 or more.

表1は前記手法により得られた本発明複合材A〜Fと比
較例G−Lの組成および物性を示す。
Table 1 shows the compositions and physical properties of the composites A to F of the present invention and Comparative Examples GL obtained by the above method.

表Iより明らかなように本発明複合材A−Fは常温およ
び高温(300°C)下において優れた引張強さおよび
伸びを有するものである。この場合、析出、晶出物の最
大直径は10μm以下であることが望ましい。
As is clear from Table I, the composite materials A to F of the present invention have excellent tensile strength and elongation at room temperature and high temperature (300°C). In this case, it is desirable that the maximum diameter of the precipitated or crystallized material is 10 μm or less.

なお、比較例において、Kは高繊維体積率であり、また
Lは鋳物であることに起因して高温下で塑性域に入る前
に破断し、また伸びも極めて少なく、その結果高温下に
おける引張強さおよび伸びの測定値が一定しない。
In addition, in the comparative example, K has a high fiber volume fraction, and L is a cast metal, which causes it to break before entering the plastic region at high temperatures, and has extremely low elongation, resulting in low tensile strength at high temperatures. Inconsistent strength and elongation measurements.

表■、■は本発明において用いられるアルミニウム合金
a、bと比較例c−hの組成および各種物性を示す。テ
ストピースは、冷却速度102〜103°C/secの
条件の下にヘリウムガスアトマイズ法を適用して得られ
たアルミニウム合金粉末を用い、前記と略同様の手法に
より得られたものである。但し、HI P処理は省かれ
ており、また熱間押出し加工は直径50IIII11、
長さ100maの棒材を用い、アルゴンガス雰囲気下、
450 ”Cにて押出し比14の条件の下に行われた。
Tables (1) and (2) show the compositions and various physical properties of aluminum alloys a and b used in the present invention and comparative examples c to h. The test piece was obtained in substantially the same manner as described above, using aluminum alloy powder obtained by applying a helium gas atomization method under conditions of a cooling rate of 102 to 103°C/sec. However, the HIP process is omitted, and the hot extrusion process has a diameter of 50III11,
Using a bar with a length of 100 ma, under an argon gas atmosphere,
The extrusion ratio was 14 at 450"C.

表    ■ 表   ■ 前記表If、  Illから明らかなように、本発明に
用いられるアルミニウム合金a、bは常温および高温下
において優れた引張り強さを有し、また伸びも比較的大
きく、さらに熱間加工性も良好である。
Table ■ Table ■ As is clear from the above Tables If and Ill, aluminum alloys a and b used in the present invention have excellent tensile strength at room temperature and high temperature, and also have relatively high elongation, and are Workability is also good.

その上、特に、時効条件を400’C,10時間に設定
することにより時効後の引張り強さを大幅に向上させる
ことができ、また熱処理により硬さを増すことができる
Moreover, especially by setting the aging conditions to 400'C for 10 hours, the tensile strength after aging can be significantly improved, and the hardness can be increased by heat treatment.

第1図は前記合金すにおける熱処理温度と硬さ(1−1
m v、荷重300g)との関係を示す。テストピース
は各温度にて1時間保持されたもので、450 ”Cに
おいて硬さのピークが見られる。
Figure 1 shows the heat treatment temperature and hardness (1-1
mv, load 300g). The test pieces were held at each temperature for 1 hour, and the peak hardness was observed at 450''C.

第2図は前記合金すにおける高温保持時間と硬さ(Hm
v、荷重3ong)との関係を示す。線X、が400”
C(7)場合に、また線Yが450°Cの場合に、さら
に線Zが500°Cの場合にそれぞれ該当する。
Figure 2 shows the high temperature holding time and hardness (Hm) of the alloy steel.
v, load 3 ong). Line X is 400"
C(7), line Y is 450°C, and line Z is 500°C.

第1.第2図より、合金すの製造および複合材の製造に
当り、脱ガス処理、HIP処理、熱間押出し加工等の操
作は300〜500°c1好ましくは400〜500°
Cにて行うことが推奨される。
1st. From Figure 2, in manufacturing alloy steel and composite materials, operations such as degassing treatment, HIP treatment, hot extrusion processing, etc.
It is recommended to use C.

また前記温度条件にて熱処理を施すことも可能である。It is also possible to perform heat treatment under the above temperature conditions.

表■は、前記合金すと繊維体積率(Vf)20%のSi
Cウィスカとよりなる複合材における合金すの粉末状態
での最大直径と物性の関係を示す。
Table 3 shows the Si alloy with a fiber volume fraction (Vf) of 20%.
This figure shows the relationship between the maximum diameter of an alloy glass in a powder state and its physical properties in a composite material made of C whiskers.

複合材は前記手法により得られたものである。ただし、
押出し加工条件は加熱温度450 ’C1押出し比20
である。
The composite material was obtained by the method described above. however,
Extrusion processing conditions are heating temperature 450'C1 extrusion ratio 20
It is.

表    ■ 表■より明らかなように、合金すの最大直径が40μm
以下であれば、優れた物性を有する複合材を得ることが
できる。
Table ■ As is clear from Table ■, the maximum diameter of the alloy is 40 μm.
If it is below, a composite material having excellent physical properties can be obtained.

表■は、平均直径20μmの前記合金すの粉末を用いて
複合材を得る場合における押出し比と物性との関係を示
す。
Table (2) shows the relationship between extrusion ratio and physical properties when a composite material is obtained using the above-mentioned alloy tin powder having an average diameter of 20 μm.

表     V 表■より明らかなように、押出し比は10以上、また加
工温度は450°C程度であることが望ましい。
Table V As is clear from Table ■, it is desirable that the extrusion ratio is 10 or more and the processing temperature is about 450°C.

前記複合材の適用例としては、エンジン用ピストンピン
、バルブ等を挙げることができる。
Application examples of the composite material include engine piston pins, valves, and the like.

C0発明の効果 本発明によれば、アルミニウム合金マトリックスにおい
て、Cr、Fe、Zrの各含有量を前記のように特定し
、また強化用繊維として短繊維を用いてその繊維体積率
を前記のように特定することによって、複合材製造過程
における熱間加工性を改善し、また優れた高温強度を有
する前記複合材を提供することができる。
Effects of the C0 Invention According to the present invention, in the aluminum alloy matrix, the respective contents of Cr, Fe, and Zr are specified as described above, and short fibers are used as reinforcing fibers, and the fiber volume percentage is determined as described above. By specifying this, it is possible to improve hot workability in the composite material manufacturing process and provide the composite material having excellent high temperature strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱処理温度と硬さの関係を示すグラフ、第2図
は高温保持時間と硬さの関係を示すグラフである。 硬さ(Hmv) 硬さ(Hmv) 手続補正書(岐) 1.事件の表示 昭和63年 特許 願第28206号 2、発”jll(Q 名 称     繊、イ、ア7.
2.ウェ合金?M合ヰ第3、補正をする者 事件との関係  特許出願人 名 称    (532)本田技研工業株式会社4、代
   理   人  〒105 5、補正の対象 明!lI書の「発明の詳細な説明」の欄?+i正の内容 (1)明細書の第11頁を下記の通り訂正する。 記 表   m 前記表■、■から明らかなように、本発明に用いられる
アルミニウム合金a、bは常温および高温下において優
れた引張強さを有し、また伸びも比較的大きく、さらに
熱間加工性も良好である。」以上
FIG. 1 is a graph showing the relationship between heat treatment temperature and hardness, and FIG. 2 is a graph showing the relationship between high temperature holding time and hardness. Hardness (Hmv) Hardness (Hmv) Procedural Amendment (Ki) 1. Indication of the incident 1988 Patent Application No. 28206 2, Issued "jll (Q Name Sen, I, A7.
2. Wa alloy? 3. Relationship with the case of the person making the amendment Name of patent applicant (532) Honda Motor Co., Ltd. 4, Agent 〒105 5, Subject of amendment clearly! The “Detailed Description of the Invention” column in Book II? +i Correct contents (1) Page 11 of the specification is corrected as follows. Table m As is clear from the above Tables ■ and ■, aluminum alloys a and b used in the present invention have excellent tensile strength at room temperature and high temperature, and have relatively high elongation, and are also resistant to hot working. The properties are also good. "that's all

Claims (3)

【特許請求の範囲】[Claims] (1)マトリックスがCr5〜12重量%、Fe1〜5
重量%およびZr0.5〜3重量%を含有するアルミニ
ウム合金であり、また強化用繊維が短繊維で、その繊維
体積率が2〜30%であることを特徴とする繊維強化ア
ルミニウム合金複合材。
(1) Matrix is Cr5-12% by weight, Fe1-5
1. A fiber-reinforced aluminum alloy composite material, which is an aluminum alloy containing 0.5 to 3% by weight of Zr, and the reinforcing fibers are short fibers, and the fiber volume fraction thereof is 2 to 30%.
(2)前記アルミニウム合金は、最大直径40μm以下
の粉末である、第(1)項記載の繊維強化アルミニウム
合金複合材。
(2) The fiber-reinforced aluminum alloy composite material according to item (1), wherein the aluminum alloy is a powder having a maximum diameter of 40 μm or less.
(3)前記アルミニウム合金における析出、晶出物の最
大直径が10μm以下である、第(1)または第(2)
項記載の繊維強化アルミニウム合金複合材。
(3) No. (1) or No. (2) wherein the maximum diameter of precipitated or crystallized substances in the aluminum alloy is 10 μm or less
Fiber-reinforced aluminum alloy composite material as described in .
JP2820688A 1987-12-01 1988-02-09 Fiber reinforced aluminum alloy composite material Pending JPH01205041A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2820688A JPH01205041A (en) 1988-02-09 1988-02-09 Fiber reinforced aluminum alloy composite material
CA000584522A CA1330400C (en) 1987-12-01 1988-11-30 Heat-resistant aluminum alloy sinter and process for production of the same
DE3888308T DE3888308T2 (en) 1987-12-01 1988-12-01 Heat-resistant, sintered aluminum alloy and process for its production.
US07/278,581 US5022918A (en) 1987-12-01 1988-12-01 Heat-resistant aluminum alloy sinter and process for production of the same
EP88311390A EP0319295B1 (en) 1987-12-01 1988-12-01 Heat-resistant aluminum alloy sinter and process for production of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2820688A JPH01205041A (en) 1988-02-09 1988-02-09 Fiber reinforced aluminum alloy composite material

Publications (1)

Publication Number Publication Date
JPH01205041A true JPH01205041A (en) 1989-08-17

Family

ID=12242187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2820688A Pending JPH01205041A (en) 1987-12-01 1988-02-09 Fiber reinforced aluminum alloy composite material

Country Status (1)

Country Link
JP (1) JPH01205041A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230739A (en) * 1988-03-09 1989-09-14 Toyota Motor Corp Aluminum alloy cast containing composite material component
JPH01230738A (en) * 1988-03-09 1989-09-14 Toyota Motor Corp Aluminum alloy composite material
JP2002178130A (en) * 2000-09-12 2002-06-25 Jason Sin Hin Lo Hybrid metal matrix composition and method of manufacturing the same
CN103981468A (en) * 2014-05-26 2014-08-13 中国科学院上海硅酸盐研究所 Skutterudite-based thermoelectricity composite material with high mechanical property and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230739A (en) * 1988-03-09 1989-09-14 Toyota Motor Corp Aluminum alloy cast containing composite material component
JPH01230738A (en) * 1988-03-09 1989-09-14 Toyota Motor Corp Aluminum alloy composite material
JP2002178130A (en) * 2000-09-12 2002-06-25 Jason Sin Hin Lo Hybrid metal matrix composition and method of manufacturing the same
CN103981468A (en) * 2014-05-26 2014-08-13 中国科学院上海硅酸盐研究所 Skutterudite-based thermoelectricity composite material with high mechanical property and preparation method thereof

Similar Documents

Publication Publication Date Title
US5693156A (en) Oxidation resistant molybdenum alloy
US5433799A (en) Method of making Cr-bearing gamma titanium aluminides
JP2001181767A (en) High strength aluminum alloy
US5435825A (en) Aluminum matrix composite powder
JPH01205041A (en) Fiber reinforced aluminum alloy composite material
JPS63312901A (en) Heat resistant high tensile al alloy powder and composite ceramics reinforced heat resistant al alloy material using said powder
JPH01198444A (en) Aluminum alloy material, especially, rod material having improved fatique strength
JPH01152229A (en) Fiber reinforced heat-resistant al alloy powder sintered material
JPH02270931A (en) Ceramic grains reinforced titanium composite material
JP3985036B2 (en) Zirconium aluminide reinforced composite material using reaction synthesis of zirconia and aluminum and method for producing the same
WO1999039016A1 (en) Iron aluminide composite and method of manufacture thereof
JP2580689B2 (en) Ti-Al alloy powder sintered body and method for producing the same
JPH01177340A (en) Thermo-mechanical treatment of high-strength and wear-resistant al powder alloy
JPS6357734A (en) Fiber reinforced metal and its production
JPS5980745A (en) Molybdenum alloy
JPH01238770A (en) Fiber reinforced piston pin for internal combustion engine
JPS63297277A (en) Sic whisker-reinforced metallic composite material and production thereof
JP2686342B2 (en) High strength heat resistant alloy for injection molding powder metallurgy for high temperature structural members
JP2824519B2 (en) Alumina-dispersed aluminum-titanium intermetallic compound composite material and method for producing the same
JPH02258948A (en) Ceramic grain reinforced titanium composite material
KR100252277B1 (en) The manufacturing method for composite material
JPH0280537A (en) High strength al alloy composite material
JPS63255329A (en) Manufacture of oxidation-resistant tungsten-base sintered alloy
JPH05209201A (en) Aluminum-based composite powder
JPS6267141A (en) Production of metallic composite material