JPH01204057A - Manufacture of electrophotographic sensitive body - Google Patents

Manufacture of electrophotographic sensitive body

Info

Publication number
JPH01204057A
JPH01204057A JP63027422A JP2742288A JPH01204057A JP H01204057 A JPH01204057 A JP H01204057A JP 63027422 A JP63027422 A JP 63027422A JP 2742288 A JP2742288 A JP 2742288A JP H01204057 A JPH01204057 A JP H01204057A
Authority
JP
Japan
Prior art keywords
aluminum oxide
film
layer
charge transport
transport layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63027422A
Other languages
Japanese (ja)
Other versions
JPH0810332B2 (en
Inventor
Yuzuru Fukuda
福田 讓
Masayuki Nishikawa
雅之 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP63027422A priority Critical patent/JPH0810332B2/en
Priority to US07/306,979 priority patent/US4965164A/en
Priority to EP89102232A priority patent/EP0328097A3/en
Priority to KR1019890001540A priority patent/KR910006737B1/en
Publication of JPH01204057A publication Critical patent/JPH01204057A/en
Publication of JPH0810332B2 publication Critical patent/JPH0810332B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0433Photoconductive layers characterised by having two or more layers or characterised by their composite structure all layers being inorganic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To enhance potential acceptance and to maintain dark attenuation ratio in a low state by forming an electric charge transfer layer made of aluminum oxide by the ion plating method while heating a substrate at >=50 deg.C. CONSTITUTION:A nondoped film is formed on an aluminum drum substrate and the aluminum oxide layer is formed on it by the following ion plating method; heating said aluminum drum at >=50 deg.C, e.g., at 270 deg.C, using an electron gun as an electrode, and controlling deposition of aluminum oxide to a constant rate in high vacuum by using a quartz oscillator film set near the substrate, thus permitting the transparent charge transfer layer high in film hardness to be obtained by releasing the vacuum, and the electrophotographic sensitive body using this charge transfer layer to be superior in potential acceptance and low in dark attenuation ratio.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、酸化アルミニウムよりなる電荷輸送層を有す
る電子写真感光体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing an electrophotographic photoreceptor having a charge transport layer made of aluminum oxide.

従来の技術 近年、感光層として、非晶質ケイ素を主体とする層を有
するいわゆるアモルファスシリコン系電子写真感光体が
注目されている。これは、アモルファスシリコン材料自
身、従来の電子写真感光体の寿命要因を根本的に改善で
きる可能性を有しており、電子写真感光体に応用するこ
とにより、電気的に安定な繰返特性を有し、高硬度かつ
熱的に安定で長野命の電子写真感光体を得る可能性を有
するためであり、従来これらの点に着目して種々のアモ
ルファスシリコン系電子写真感光体が提案されている。
BACKGROUND OF THE INVENTION In recent years, so-called amorphous silicon-based electrophotographic photoreceptors having a layer mainly composed of amorphous silicon as a photosensitive layer have attracted attention. This means that the amorphous silicon material itself has the potential to fundamentally improve the life cycle factors of conventional electrophotographic photoreceptors, and by applying it to electrophotographic photoreceptors, it can achieve electrically stable repeatability. This is because there is a possibility of obtaining Nagano Life's electrophotographic photoreceptors that have high hardness and thermal stability, and various amorphous silicon-based electrophotographic photoreceptors have been proposed focusing on these points. .

中でも、感光層として、光照射により電荷キャリアを発
生させる電荷発生層と、電荷発生層で生じた電荷キャリ
アを効率よく注入でき、かつ効率的に移動可能な電荷輸
送層とに分離した、いわゆる機能分離型感光層を有する
アモルファスシリコン電子写真感光体が優れたものとし
て提案されている。この様な機能分離型アモルファスシ
リコン電子写真感光体における電荷輸送層としては、例
えば、シラン、ジシラン等のシラン化合物のガスと、炭
素、酸素又は窒素含有ガス及び微量の第■族或いは第V
族元素含有ガス(例えば、ホスフィン必るいはジボラン
等)の混合ガスをグロー放電分解して、上記元素を含ん
だアモルファスシリコン膜を5〜10011m程度の膜
厚に形成したものが用いられている。
Among these, the so-called function is that the photosensitive layer is separated into a charge generation layer that generates charge carriers by light irradiation, and a charge transport layer that can efficiently inject and move the charge carriers generated in the charge generation layer. Amorphous silicon electrophotographic photoreceptors having a separate photosensitive layer have been proposed as superior. The charge transport layer in such a functionally separated amorphous silicon electrophotographic photoreceptor includes, for example, a gas of a silane compound such as silane or disilane, a gas containing carbon, oxygen, or nitrogen, and a trace amount of Group I or V
An amorphous silicon film containing the above-mentioned elements is formed to a thickness of about 5 to 10011 m by glow discharge decomposition of a gas mixture containing group elements (for example, phosphine or diborane).

発明が解決しようとする課題 一般に、電荷輸送層と電荷発生層とに機能分離された電
子写真感光体において、その帯電性には、感光層中で最
も膜厚の大きい電荷輸送層自体の特性が寄与するが、上
に例示したようなシラン化合物のグロー放電分解によっ
て得られる水素化アモルファスシリコン膜の電荷輸送層
を用いた電子写真感光体の帯電性は、略30V/M程度
或いはそれ以下であり、未だ十分とはいえない。又、そ
の暗減衰率は、使用条件によって異なるが、一般的には
少なくとも20%/ Sec程度で、極めて高い。この
為、その様なアモルファスシリコン系電荷輸送層を用い
た電子写真感光体は、用途が比較的に高速なシステムに
限定されたり、或いは十分な帯電電位が得られないため
、特定の現像系を必要とした。帯電電位を増加させるた
めには、電荷輸送層を厚膜にすればよいが、その為には
製造時間を増大させねばならず、ざらには通常の製造法
では、厚膜作成に伴う膜欠陥発生確率の増大による得率
の低下が引き起こされ、感光体は極めて高コストとなる
Problems to be Solved by the Invention In general, in an electrophotographic photoreceptor in which a charge transport layer and a charge generation layer are functionally separated, the chargeability depends on the characteristics of the charge transport layer itself, which is the thickest among the photosensitive layers. However, the chargeability of an electrophotographic photoreceptor using a charge transport layer of a hydrogenated amorphous silicon film obtained by glow discharge decomposition of a silane compound as exemplified above is about 30 V/M or less. , it is still not enough. Further, although the dark decay rate varies depending on the conditions of use, it is generally at least about 20%/Sec, which is extremely high. For this reason, the use of electrophotographic photoreceptors using such amorphous silicon charge transport layers is limited to relatively high-speed systems, or because a sufficient charging potential cannot be obtained, it is difficult to use a specific developing system. I needed it. In order to increase the charging potential, it is possible to make the charge transport layer thicker, but this requires an increase in manufacturing time. The increase in the probability of occurrence causes a decrease in yield, and the cost of the photoreceptor becomes extremely high.

本発明者等は、上記の従来の技術における欠点を解決す
べく、先に、電荷輸送層として酸化アルミニウム膜を用
いた電子写真感光体を提案したが、ざらに検討を進めた
結果、酸化アルミニウム膜を特定の製造法によって形成
した場合には、ざらに好ましい結果が得られることを見
出だし、本発明を完成するに至った。
The present inventors previously proposed an electrophotographic photoreceptor using an aluminum oxide film as a charge transport layer in order to solve the drawbacks of the above-mentioned conventional techniques. The present inventors have discovered that when the film is formed using a specific manufacturing method, substantially preferable results can be obtained, and the present invention has been completed.

したがって、本発明の目的は、電荷輸送層として酸化ア
ルミニウム膜を用いた電子写真感光体の製造方法を提供
することにある。
Therefore, an object of the present invention is to provide a method for manufacturing an electrophotographic photoreceptor using an aluminum oxide film as a charge transport layer.

課題を解決するための手段 本発明は、支持体上に、酸化アルミニウムよりなる電荷
輸送層を形成し、次いで非晶質ケイ素を主体とする電荷
発生層を形成するか、又は、非晶質ケイ素を主体とする
電荷発生層を形成し、次いで酸化アルミニウムよりなる
電荷輸送層を形成する工程を含む電子写真感光体の製造
方法において、酸化アルミニウムを原料として使用し、
支持体を50℃以上に加熱しつつ、イオンブレーティン
グ法によって電荷輸送層を形成することを特徴とする。
Means for Solving the Problems The present invention involves forming a charge transport layer made of aluminum oxide on a support, and then forming a charge generation layer mainly made of amorphous silicon; In a method for manufacturing an electrophotographic photoreceptor, the method includes the steps of forming a charge generation layer mainly consisting of aluminum oxide, and then forming a charge transport layer consisting of aluminum oxide, using aluminum oxide as a raw material,
The method is characterized in that the charge transport layer is formed by an ion blating method while heating the support to 50° C. or higher.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において、支持体としては、導電性、絶縁性のど
ちらのものでも用いることができる。導電性支持体とし
ては、ステンレススチール、アルミニウムなどの金属或
いは合金が用いられる。絶縁性支持体としては、ポリエ
ステル、ポリエチレン、ポリカーボネート、ポリスチレ
ン、ポリアミド等の合成樹脂フィルムまたはシート、ガ
ラス、セラミック、紙等があげられるが、絶縁性支持体
の場合には、少なくとも他の層と接触する面が導電処理
されていることが必要である。これらの導電処理は、導
電性支持体に用いられる金属を蒸着、スパッタリング、
ラミネートなどの処理によって行うことができる。支持
体は、円筒状、ベルト状、板状等、任意の形状を取り得
る。また、支持体は、多層構造のものであってもよい。
In the present invention, the support may be either conductive or insulating. As the conductive support, metals or alloys such as stainless steel and aluminum are used. Examples of the insulating support include synthetic resin films or sheets such as polyester, polyethylene, polycarbonate, polystyrene, and polyamide, glass, ceramic, and paper. It is necessary that the surface to be used is conductive treated. These conductive treatments include vapor deposition, sputtering, and
This can be done by processing such as lamination. The support may have any shape, such as a cylinder, a belt, or a plate. Further, the support may have a multilayer structure.

支持体の厚さは、必要とされる電子写真感光体に応じて
、適宜選択されるが、通常10%以上のものが適してい
る。
The thickness of the support is appropriately selected depending on the required electrophotographic photoreceptor, but a thickness of 10% or more is usually suitable.

支持体上には、電荷輸送層及び電荷発生層よりなる感光
層を形成させるが、そのどちらを最初に形成させてもよ
い。
A photosensitive layer consisting of a charge transport layer and a charge generation layer is formed on the support, either of which may be formed first.

本発明における電荷輸送層は、酸化アルミニウムを構成
成分として構成されるが、可視光領域において実質的に
光感度を有しない。ここでいう光感度とは、可視光領域
の波長の光の照射によって、正孔−電子対からなる電荷
キャリアを発生しないことを意味しており、従来提案さ
れているZnO1T i O2を増感色素と共に樹脂バ
インダ中に分散した電子写真感光層や、Se、5e−T
e、S等のカルコゲン化合物の蒸着膜とa−3i膜を積
層したような電子写真感光層とは全く構成を異にするも
のでおる。本発明にあける電荷輸送層は、紫外光に対し
ては光感度を有してもよい。
The charge transport layer in the present invention is composed of aluminum oxide as a constituent, but has substantially no photosensitivity in the visible light region. Photosensitivity here means that charge carriers consisting of hole-electron pairs are not generated by irradiation with light with wavelengths in the visible light range. Along with the electrophotographic photosensitive layer dispersed in the resin binder, Se, 5e-T
The structure is completely different from an electrophotographic photosensitive layer such as a lamination of a vapor-deposited film of a chalcogen compound such as e, S, etc. and an a-3i film. The charge transport layer provided in the present invention may have photosensitivity to ultraviolet light.

本発明における電荷輸送層は、イオンブレーティング法
によって形成されるが、基板温度を50℃以上に設定し
て行うことが必要でおる。基板温度が50’Cより低い
と、形成される電荷輸送層の膜硬度が低くなり、好まし
くない。好適な基板温度は100〜600’C,より好
ましくは200〜300’Cでおる。以下、電荷輸送層
の形成について具体的に説明する。
The charge transport layer in the present invention is formed by an ion blating method, but it is necessary to set the substrate temperature to 50° C. or higher. If the substrate temperature is lower than 50'C, the film hardness of the formed charge transport layer will be low, which is not preferable. A suitable substrate temperature is 100-600'C, more preferably 200-300'C. Formation of the charge transport layer will be specifically explained below.

真空槽内に設けられた水冷可能な無酸素銅るつぼ内に、
原料の酸化アルミニウムを挿入する。この場合、必要に
よって、更に別に酸素ガスを真空槽内に直接導入しても
よい。成膜時の条件は、真空槽内の真空度10−2〜1
O−7Torr、イオン化電極への印加電圧1〜+70
0V 、基板へのバイアス印加電圧0〜−2000V、
電子銃電圧0.5〜20KV、Ti子銃電流0.5〜1
0100Oである。又、基板温度は、50°C以上に設
定する。酸化アルミニウム膜の膜厚は、イオンブレーテ
ィング時間の調整により適宜設定することができる。本
発明における電荷輸送層の膜厚は、2〜100萌、より
好ましくは、3〜30μmである。
Inside a water-cooled oxygen-free copper crucible installed in a vacuum chamber,
Insert the raw material aluminum oxide. In this case, additional oxygen gas may be introduced directly into the vacuum chamber if necessary. The conditions during film formation were a vacuum degree of 10-2 to 1 in the vacuum chamber.
O-7 Torr, applied voltage to ionization electrode 1 to +70
0V, bias applied voltage to the substrate 0 to -2000V,
Electron gun voltage 0.5~20KV, Ti child gun current 0.5~1
It is 0100O. Further, the substrate temperature is set to 50°C or higher. The thickness of the aluminum oxide film can be appropriately set by adjusting the ion blating time. The thickness of the charge transport layer in the present invention is 2 to 100 μm, more preferably 3 to 30 μm.

電荷発生層としては、ケイ素を主成分として構成されて
いるものが用いられる。この様なケイ素を主成分として
構成される電荷発生層は、グロー放電法、スパッタリン
グ法、イオンプレーテング法、真空蒸着法等により形成
することができる。
As the charge generation layer, one mainly composed of silicon is used. Such a charge generation layer mainly composed of silicon can be formed by a glow discharge method, a sputtering method, an ion plating method, a vacuum evaporation method, or the like.

これらの膜形成方法は目的に応じて適宜選択されるが、
プラズマCVD法によりシラン(S i H4)あるい
はシラン系ガスをグロー放電分解する方法が好ましく、
この方法によれば、膜中に適量の水素を含有した比較的
暗抵抗が高く、かつ光感度も高い膜が形成され、電荷発
生層として好適な特性を1qることができる。
These film forming methods are appropriately selected depending on the purpose, but
A method in which silane (S i H4) or a silane-based gas is decomposed by glow discharge using a plasma CVD method is preferred;
According to this method, a film containing an appropriate amount of hydrogen, a relatively high dark resistance, and a high photosensitivity is formed, and it is possible to obtain 1q of characteristics suitable for a charge generation layer.

以下、プラズマCVD法を例にあげて説明する。The following will explain the plasma CVD method as an example.

ケイ素を主成分とする電荷発生層を作製するための原料
としては、シラン、ジシランをはじめとするシラン類が
必る。又、電荷発生層を形成する際、必要に応じて、例
えば、水素、ヘリウム、アルゴン、ネオン等のキャリヤ
ガスを用いることも可能である。又、電荷発生層の暗抵
抗の制御、あるいは帯電極性の制御を目的として、上記
のガス中に更にジボラン(82H6)ガス、ホスフィン
(PH3)ガス等のドーパントガスを混入させ、膜中へ
のホウ素(B)iるいはリン(P)等の不純物元素の添
加を行なうこともできる。又、さらには、暗抵抗の増加
、光感度の増加、あるいは帯電能(単位膜厚当りの帯電
能力あるいは帯電電位)の増加を目的として、電荷発生
層中にハロゲン原子、炭素原子、酸素原子、窒素原子な
どを含有させてもよい。ざらに又、長波長域感度の増加
を目的として、ゲルマニウム(Ge)、錫等の元素を添
加することも可能である。特に電荷発生層は、ケイ素を
主成分とし、1〜40原子%好ましくは5〜20原子%
の水素を含んだものが望ましい。膜厚としては、0.1
μm〜30/fflの範囲で用いられ0.2即〜5mの
ものが好ましい。電荷発生層は電荷輸送層の上部に設け
ても良く、また、下部に設けてもよい。
Silanes such as silane and disilane are required as raw materials for producing a charge generation layer containing silicon as a main component. Further, when forming the charge generation layer, it is also possible to use a carrier gas such as hydrogen, helium, argon, neon, etc., if necessary. In addition, for the purpose of controlling the dark resistance or charging polarity of the charge generation layer, a dopant gas such as diborane (82H6) gas or phosphine (PH3) gas is further mixed into the above gas to introduce boron into the film. (B) It is also possible to add an impurity element such as i or phosphorus (P). Furthermore, halogen atoms, carbon atoms, oxygen atoms, It may also contain a nitrogen atom or the like. Furthermore, it is also possible to add elements such as germanium (Ge) and tin for the purpose of increasing the sensitivity in the long wavelength region. In particular, the charge generation layer contains silicon as a main component, preferably 1 to 40 atom%, preferably 5 to 20 atom%.
It is preferable to use hydrogen containing hydrogen. The film thickness is 0.1
It is used in the range of μm to 30/ffl, and preferably 0.2 m to 5 m. The charge generation layer may be provided above or below the charge transport layer.

本発明の電子写真感光体は、必要に応じて電荷発生層及
び電荷輸送層の組の上部おるいは下部に隣接して、他の
層を形成してもよい。これらの層としては、例えば次ぎ
のちのがめげられる。
In the electrophotographic photoreceptor of the present invention, another layer may be formed adjacent to the upper or lower portion of the combination of the charge generation layer and the charge transport layer, if necessary. These layers include, for example, the following:

電荷注入阻止層として、例えばアモルファスシリコンに
元素周期律表第■族元素あるいはV族元素を添加してな
るn形半導体層、n形半導体層、あるいは窒化ケイ素、
炭化ケイ素、酸化ケイ素、非晶質炭素等の絶縁層が、又
、接着層としてアモルファスシリコンに窒素、炭素、酸
素などを添加してなる層があげられる。その他、元素周
期律表第1[IB族元素、V族元素を同時に含む層等、
感光体の電気的及び画像的特性を制御できる層がめげら
れる。これら各層の膜厚は任意に決定できるが、通常0
.01Jur1〜1011mの範囲に設定して用いられ
る。
As the charge injection blocking layer, for example, an n-type semiconductor layer formed by adding a group Ⅰ element or a group V element of the periodic table to amorphous silicon, an n-type semiconductor layer, or silicon nitride,
Examples include insulating layers made of silicon carbide, silicon oxide, amorphous carbon, etc., and layers made by adding nitrogen, carbon, oxygen, etc. to amorphous silicon as adhesive layers. In addition, layers containing Group IB elements and Group V elements in the Periodic Table of Elements 1, etc.
A layer is provided that allows control of the electrical and image properties of the photoreceptor. The thickness of each of these layers can be determined arbitrarily, but is usually 0.
.. It is used by setting it in the range of 01Jur1 to 1011m.

本発明の感光体においては、特に、感光体表面と基板側
から電荷輸送層あるいは電荷発生層への電荷注入を抑え
、より十分な帯電能と低い暗減衰を有す感光体を得るた
め、支持基板と電荷発生層又は電荷輸送層の間および/
または感光体表面に電荷注入阻止層を設けてもよい。
In the photoreceptor of the present invention, in particular, in order to suppress charge injection from the photoreceptor surface and substrate side to the charge transport layer or charge generation layer, and to obtain a photoreceptor having more sufficient charging ability and low dark decay, between the substrate and the charge generation layer or charge transport layer and/or
Alternatively, a charge injection blocking layer may be provided on the surface of the photoreceptor.

更に、感光体表面のコロナイオンによる変質を防止する
ための表面保護層を設けてもよい。
Furthermore, a surface protective layer may be provided to prevent the surface of the photoreceptor from being altered by corona ions.

これらの諸層は、プラズマCVD法により形成すること
ができる。電荷発生層の場合に説明したように、不純物
元素を添加する場合は、それら不純物元素を含む物質の
ガス化物をシランガスと共にプラズマCVDB置内に導
入してグロー放電分解を行なう。各層の膜形成手段とし
ては、交流放電及び直流放電のいずれをも、有効に採用
することができるが、交流放電の場合を例にとると、膜
形成条件は次の通りである。すなわち、周波数は、通常
0.1〜308H2,好適には5〜208H2,放電時
の真空度は0.1〜5Torr (13,3〜667P
a) 、基板加熱温度は50〜400℃である。
These layers can be formed by plasma CVD. As explained in the case of the charge generation layer, when impurity elements are added, a gasified substance containing the impurity elements is introduced into a plasma CVDB apparatus together with silane gas to perform glow discharge decomposition. As a film forming means for each layer, both AC discharge and DC discharge can be effectively employed. Taking the case of AC discharge as an example, the film forming conditions are as follows. That is, the frequency is usually 0.1 to 308H2, preferably 5 to 208H2, and the degree of vacuum during discharge is 0.1 to 5 Torr (13,3 to 667P).
a) The substrate heating temperature is 50 to 400°C.

本発明によって得られた電子写真感光体において、酸化
アルミニウム膜が、いかなる理由により電荷輸送層とし
ての機能を有するかは不明でおるが、この酸化物の膜は
、それに接して設けられた電荷発生層で発生した電荷キ
ャリアを、界面にトラップすることなく効率良く注入す
ると共に、基板側からの不要な電荷注入を阻止する機能
を有すると考えられる。それにより、電子写真感光体と
して、略45v/μm以上の帯電性と、5〜15%/S
eC程度の低い暗減衰率を有するものとなる。
In the electrophotographic photoreceptor obtained by the present invention, it is unclear for what reason the aluminum oxide film has a function as a charge transport layer, but this oxide film has a charge generating layer provided in contact with it. It is thought that it has the function of efficiently injecting charge carriers generated in the layer without being trapped at the interface, and also of blocking unnecessary charge injection from the substrate side. As a result, as an electrophotographic photoreceptor, it has a chargeability of approximately 45 V/μm or more and a chargeability of 5 to 15%/S.
It has a dark decay rate as low as eC.

実施例 次に、本発明を実施例によって説明する。Example Next, the present invention will be explained by examples.

実施例1 直径的120mのアルミニウムパイプ上に、a−3i:
H(ノンドープ)膜を1Mの膜厚で成膜した。即ら、容
量結合型プラズマCVD装置にシラン(SiH4)ガス
200cc/l1linを導入し、圧力を1.0Tor
rとした。支持体温度は250℃であった。
Example 1 On an aluminum pipe with a diameter of 120 m, a-3i:
A H (non-doped) film was formed to a thickness of 1M. That is, 200 cc/l 1 lin of silane (SiH4) gas was introduced into a capacitively coupled plasma CVD apparatus, and the pressure was set to 1.0 Torr.
It was set as r. The support temperature was 250°C.

13.56MHzの高周波出力270Wで15分間グロ
ー放電分解を行った。
Glow discharge decomposition was performed for 15 minutes at a high frequency output of 270 W at 13.56 MHz.

続いて、a−3i:l−1膜の上に、イオンブレーティ
ング法により酸化アルミニウムの層を成膜した。すなわ
ち、まず99.99%のアルミナを水冷熱 −駿素銅る
つぼに投入し、真空度を2x 1O−5Torrに保っ
た後、酸素ガスを導入して真空度が2X10’Torr
で一定となるようにガス流量をコントロールした。上記
a−8t:@層が形成されているアルミニウムパイプを
270℃に加熱し、電子銃に電圧8.5KVを印加して
、電流260mAとなるように電源出力を設定した。こ
の時、イオン化電極の電圧を80Vとし、基板自身には
一500Vのバイアス電圧を印加した。基板付近に設置
された水晶振動子膜厚モニタにより、付着速度が36人
/ Secで一定となるよう電子ビームのパワーを制御
した。このようにして、約30分間成膜した後、真空を
破って試料を取り出し、透明膜を得た。この酸化アルミ
ニウム膜の厚さは約5.5IIMであった。得られた電
子写真感光体の表面硬度は、ビッカース硬度(荷重=1
09)で710であった。
Subsequently, a layer of aluminum oxide was formed on the a-3i:l-1 film by an ion blasting method. That is, first, 99.99% alumina is put into a water-cooled, hot-sunrite copper crucible, and the degree of vacuum is maintained at 2x 1O-5 Torr, and then oxygen gas is introduced to raise the degree of vacuum to 2x10'Torr.
The gas flow rate was controlled to be constant. The aluminum pipe on which the a-8t:@ layer was formed was heated to 270° C., a voltage of 8.5 KV was applied to the electron gun, and the power output was set so that the current was 260 mA. At this time, the voltage of the ionization electrode was set to 80V, and a bias voltage of -500V was applied to the substrate itself. A crystal oscillator film thickness monitor installed near the substrate controlled the power of the electron beam so that the deposition rate was constant at 36 people/sec. After forming a film in this manner for about 30 minutes, the vacuum was broken and the sample was taken out to obtain a transparent film. The thickness of this aluminum oxide film was approximately 5.5 IIM. The surface hardness of the obtained electrophotographic photoreceptor is Vickers hardness (load = 1
09), it was 710.

このようにして得られた試料をaorpmで回転させな
がらコロナ帯電を行ったところ、+20μA/cmの感
光体流入電流時に、コロナ帯電から0.1sec俊の表
面電位が、約+295vであった。半減衰露光量は55
0nmの単色光露光時で5.9erg/ cri 、ま
たこの時の残留電位は約+33Vであった。ざらに暗減
衰率は14%/ Secであった。
When the thus obtained sample was corona charged while being rotated at an aorpm, the surface potential 0.1 sec after corona charging was about +295 V when the photoreceptor inflow current was +20 μA/cm. Half-attenuation exposure is 55
When exposed to monochromatic light of 0 nm, it was 5.9 erg/cri, and the residual potential at this time was about +33V. Roughly speaking, the dark decay rate was 14%/Sec.

また、この試料を富士ゼロックス社製3500乾式普通
紙複写機に挿入して画像を形成させたところ、かぶりの
ない鮮明な画像が1qられた。
When this sample was inserted into a Fuji Xerox 3500 dry type plain paper copying machine to form an image, 1q of clear images with no fog were produced.

比較例 アルミニウムパイプを常温に保ったままイオンブレーテ
ィングを実施した以外は、実施例1におけると同様にし
て電子写真感光体を作成した。この表面硬度は、ビッカ
ース硬度(荷重=109)で640であった。
Comparative Example An electrophotographic photoreceptor was prepared in the same manner as in Example 1, except that ion blating was performed while the aluminum pipe was kept at room temperature. The surface hardness was 640 in terms of Vickers hardness (load=109).

実施例2 実施例1とは積層の順序を逆にした以外は同様にして、
5.5Pの酸化アルミニウムの層を形成し、その上に1
即のa−3i:H膜を形成した。ざらに、それに引き続
き、プラズマCVD装置内で表面保護層として500人
のa−3i:N膜を積層した。
Example 2 Same as Example 1 except that the order of lamination was reversed,
Form a layer of 5.5P aluminum oxide, on top of which 1
An immediate a-3i:H film was formed. Roughly, subsequently, 500 a-3i:N films were laminated as a surface protective layer in a plasma CVD apparatus.

a−3i:N膜の製造条件は以下の通りであつた。a-3i: The manufacturing conditions for the N film were as follows.

シラン流量    50cc/min アンモニア流量  30cc/min 水素流m      200 cc/min反応器内圧
    0.5Torr 放電出力     80W 放電時間     6分 支持体温度    250℃ このようにして得られた試料を4Orpmで回転させな
がらコロナ帯電を行ったところ、−20μA/cmの感
光体流入電流時に、コロナ帯電から0.1sec後の表
面電位が、約−340Vであった。半減衰露光量は55
0nmの単色光露光時で7.1erg/CIi、またこ
の時の残留電位は約−50Vであった。ざらに暗減衰率
は13%/ Secでおった。
Silane flow rate 50 cc/min Ammonia flow rate 30 cc/min Hydrogen flow m 200 cc/min Reactor internal pressure 0.5 Torr Discharge output 80 W Discharge time 6 minutes Support temperature 250°C When charging was performed, the surface potential 0.1 sec after corona charging was about -340 V when the photoreceptor inflow current was -20 μA/cm. Half-attenuation exposure is 55
When exposed to 0 nm monochromatic light, the voltage was 7.1 erg/CIi, and the residual potential at this time was about -50 V. The dark decay rate was roughly 13%/Sec.

発明の効果 本発明は、上記のように、酸化アルミニウムを原料とし
て使用し、支持体を50℃以上に加熱しつつ、イオンブ
レーティング法によって電荷輸送層を形成するから、得
られた電荷輸送層は高い膜硬度を有しており、そして股
、1qられた電子写真感光体は、帯電性がよく、又暗減
衰率が低い。即ち、略45V/即以上の帯電性を示し、
5〜15%/ sec程度の低い暗減衰率を有し、又、
高い感度を有する。
Effects of the Invention As described above, the present invention uses aluminum oxide as a raw material and forms a charge transport layer by the ion blating method while heating the support to 50° C. or higher. The electrophotographic photoreceptor has high film hardness, and the electrophotographic photoreceptor has good charging properties and a low dark decay rate. That is, it exhibits a charging property of about 45 V/immediately or more,
It has a low dark decay rate of about 5 to 15%/sec, and
Has high sensitivity.

特許出願人  富士ゼロックス株式会社代理人    
弁理士  製部 剛
Patent applicant Fuji Xerox Co., Ltd. Agent
Patent attorney Tsuyoshi Seibe

Claims (1)

【特許請求の範囲】[Claims] (1)支持体上に、酸化アルミニウムよりなる電荷輸送
層を形成し、次いで非晶質ケイ素を主体とする電荷発生
層を形成するか、又は、非晶質ケイ素を主体とする電荷
発生層を形成し、次いで酸化アルミニウムよりなる電荷
輸送層を形成する工程を含む電子写真感光体の製造方法
において、酸化アルミニウムを原料として使用し、支持
体を50℃以上に加熱しつつ、イオンブレーティング法
によって電荷輸送層を形成することを特徴とする電子写
真感光体の製造方法。
(1) A charge transport layer made of aluminum oxide is formed on a support, and then a charge generation layer made mainly of amorphous silicon is formed, or a charge generation layer made mainly of amorphous silicon is formed. In a method for manufacturing an electrophotographic photoreceptor, the method includes a step of forming a charge transport layer made of aluminum oxide, and then forming a charge transport layer made of aluminum oxide. A method for producing an electrophotographic photoreceptor, comprising forming a charge transport layer.
JP63027422A 1988-02-10 1988-02-10 Method for manufacturing electrophotographic photoreceptor Expired - Lifetime JPH0810332B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63027422A JPH0810332B2 (en) 1988-02-10 1988-02-10 Method for manufacturing electrophotographic photoreceptor
US07/306,979 US4965164A (en) 1988-02-10 1989-02-07 Method for producing electrophotographic photoreceptor
EP89102232A EP0328097A3 (en) 1988-02-10 1989-02-09 Method for producing electrophotographic photoreceptor
KR1019890001540A KR910006737B1 (en) 1988-02-10 1989-02-10 Manufacture of electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63027422A JPH0810332B2 (en) 1988-02-10 1988-02-10 Method for manufacturing electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH01204057A true JPH01204057A (en) 1989-08-16
JPH0810332B2 JPH0810332B2 (en) 1996-01-31

Family

ID=12220664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63027422A Expired - Lifetime JPH0810332B2 (en) 1988-02-10 1988-02-10 Method for manufacturing electrophotographic photoreceptor

Country Status (4)

Country Link
US (1) US4965164A (en)
EP (1) EP0328097A3 (en)
JP (1) JPH0810332B2 (en)
KR (1) KR910006737B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0296178A (en) * 1988-08-17 1990-04-06 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPH077174A (en) * 1993-01-28 1995-01-10 Gold Star Electron Co Ltd Photodiode and preparation thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082760A (en) * 1987-11-10 1992-01-21 Fuji Xerox Co., Ltd. Method for preparing an electrophotographic photoreceptor having a charge transporting layer containing aluminum oxide
JP3155413B2 (en) * 1992-10-23 2001-04-09 キヤノン株式会社 Light receiving member forming method, light receiving member and deposited film forming apparatus by the method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183663A (en) * 1985-02-09 1986-08-16 Minolta Camera Co Ltd Manufacture of photosensitive material having overcoat layer
JPS62254158A (en) * 1986-04-28 1987-11-05 Fuji Electric Co Ltd Production of electrophotographic sensitive body
JPS638748A (en) * 1986-06-26 1988-01-14 ゼロツクス コ−ポレ−シヨン Multi-layer amorphous silicon image forming member
JPS6363051A (en) * 1986-09-04 1988-03-19 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPH01124863A (en) * 1987-11-10 1989-05-17 Fuji Xerox Co Ltd Production of electrophotographic sensitive body
JPH01177555A (en) * 1988-01-07 1989-07-13 Fuji Xerox Co Ltd Manufacture of electrophotographic sensitive body

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2746967C2 (en) * 1977-10-19 1981-09-24 Siemens AG, 1000 Berlin und 8000 München Electrophotographic recording drum
JPS6035059B2 (en) * 1977-12-22 1985-08-12 キヤノン株式会社 Electrophotographic photoreceptor and its manufacturing method
JPS5587155A (en) * 1978-12-23 1980-07-01 Canon Inc Electrophotographic receptor
US4403026A (en) * 1980-10-14 1983-09-06 Canon Kabushiki Kaisha Photoconductive member having an electrically insulating oxide layer
JPS5912446A (en) * 1982-07-13 1984-01-23 Ricoh Co Ltd Photoreceptor for transferring image and its manufacture
US4705733A (en) * 1984-04-24 1987-11-10 Canon Kabushiki Kaisha Member having light receiving layer and substrate with overlapping subprojections
GB2168911B (en) * 1984-12-29 1989-06-07 Tdk Corp Magnetic recording medium
US4634648A (en) * 1985-07-05 1987-01-06 Xerox Corporation Electrophotographic imaging members with amorphous carbon
JPH083645B2 (en) * 1985-12-20 1996-01-17 株式会社小松製作所 Electrophotographic photoreceptor
JPS62294258A (en) * 1986-06-13 1987-12-21 Fuji Electric Co Ltd Electrophotographic sensitive body
US5082760A (en) * 1987-11-10 1992-01-21 Fuji Xerox Co., Ltd. Method for preparing an electrophotographic photoreceptor having a charge transporting layer containing aluminum oxide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183663A (en) * 1985-02-09 1986-08-16 Minolta Camera Co Ltd Manufacture of photosensitive material having overcoat layer
JPS62254158A (en) * 1986-04-28 1987-11-05 Fuji Electric Co Ltd Production of electrophotographic sensitive body
JPS638748A (en) * 1986-06-26 1988-01-14 ゼロツクス コ−ポレ−シヨン Multi-layer amorphous silicon image forming member
JPS6363051A (en) * 1986-09-04 1988-03-19 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPH01124863A (en) * 1987-11-10 1989-05-17 Fuji Xerox Co Ltd Production of electrophotographic sensitive body
JPH01177555A (en) * 1988-01-07 1989-07-13 Fuji Xerox Co Ltd Manufacture of electrophotographic sensitive body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0296178A (en) * 1988-08-17 1990-04-06 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPH077174A (en) * 1993-01-28 1995-01-10 Gold Star Electron Co Ltd Photodiode and preparation thereof

Also Published As

Publication number Publication date
JPH0810332B2 (en) 1996-01-31
KR910006737B1 (en) 1991-09-02
KR890013525A (en) 1989-09-23
EP0328097A2 (en) 1989-08-16
EP0328097A3 (en) 1990-08-22
US4965164A (en) 1990-10-23

Similar Documents

Publication Publication Date Title
JP2629223B2 (en) Manufacturing method of electrophotographic photoreceptor
JPS6363051A (en) Electrophotographic sensitive body
JPH01204057A (en) Manufacture of electrophotographic sensitive body
JP2595575B2 (en) Manufacturing method of electrophotographic photoreceptor
JP2720448B2 (en) Manufacturing method of electrophotographic photoreceptor
JP2595591B2 (en) Electrophotographic photoreceptor
US4851367A (en) Method of making primary current detector using plasma enhanced chemical vapor deposition
JPS62151857A (en) Photoconductive member
US5082760A (en) Method for preparing an electrophotographic photoreceptor having a charge transporting layer containing aluminum oxide
KR910003982B1 (en) Electrophotographic photoreceptor
JP2668407B2 (en) Electrophotographic image forming member
JPS6410066B2 (en)
JPH0241023B2 (en)
JPS62178974A (en) Electrophotographic sensitive body
JPH01156758A (en) Electrophotographic sensitive body
JPH03242653A (en) Electrophotographic sensitive body
JP2668408B2 (en) Electrophotographic image forming member
JPH01277245A (en) Electrophotographic sensitive body
JPH0234863A (en) Electrophotographic sensitive body
JPS62151856A (en) Photoconductive member
JPS60205457A (en) Electrophotographic sensitive body
JPS62151855A (en) Photoconductive member
JPS6033561A (en) Electrophotographic sensitive body
JPH05232731A (en) Electrophotograhic sensitive member
JPH028858A (en) Electrophotographic sensitive body