JPH01201666A - Exposing method - Google Patents

Exposing method

Info

Publication number
JPH01201666A
JPH01201666A JP63025706A JP2570688A JPH01201666A JP H01201666 A JPH01201666 A JP H01201666A JP 63025706 A JP63025706 A JP 63025706A JP 2570688 A JP2570688 A JP 2570688A JP H01201666 A JPH01201666 A JP H01201666A
Authority
JP
Japan
Prior art keywords
exposure
exposed
filter
exposing
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63025706A
Other languages
Japanese (ja)
Inventor
Etsuko Tanaka
田中 悦子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP63025706A priority Critical patent/JPH01201666A/en
Publication of JPH01201666A publication Critical patent/JPH01201666A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Circuit Boards (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To execute the processing of a uniform exposure quantity by a simple device by dividing a processing object to be exposed having a large area into several blocks and exposing them successively so that an integrating exposure quantity of each exposure partition becomes equal. CONSTITUTION:A filter 7 is divided into plural partitions 9-1, 9-2,...9-n and exposed. That is, when transmittivity of light of the filter 7 is assumed as 100% in the center part (a), transmittivity in the pherical part (b) in which film thickness of a Cr vapor-deposited film increases is lowered, and the film thickness is set in advance so as to show a roughly trapezoid-like transmission characteristic. At the time of exposing a work 9, by projecting a light beam, while executing a scan continuously so that each partition (9-1, 9-2,...9-n) to be exposed is overlapped to each other, the peripheral parts (b) of adjacent partitions (9-1, 9-k, 9-k-1,...) are overlapped to each other and exposed. Accordingly, the film thickness of the vapor-deposited film of the peripheral part (b) is set so that an integrating exposure quantity brought on by a double exposure becomes equal to an exposure quantity of the center part (a). In such a way, at the time of exposing a large area, a uniform exposure can be executed by using an inexpensive and simple device.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えば電子部品の実装等で用いられるプリン
ト基板製作の露光方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an exposure method for manufacturing printed circuit boards used, for example, in mounting electronic components.

[従来の技術] 一般にプリント基板と呼ばれているものには、コンピュ
ータ、テレビ、ステレオ等で用いられるプリンティラド
ワイヤードボード(以下PWBという)や、カメラ、電
卓、VTR等で用いられるフレキシブルプリンティッド
サーキイット(以下FPCという)等が知られている。
[Prior Art] Commonly called printed circuit boards include printed circuit boards (hereinafter referred to as PWBs) used in computers, televisions, stereos, etc., and flexible printed circuit boards used in cameras, calculators, VTRs, etc. It (hereinafter referred to as FPC) and the like are known.

PWBは基板素材としてエポキシ樹脂、フェノール樹脂
、セラミックス等を使用し、厚さが0.8から3.2−
、程度、FPCは基板素材としてポリエステルフィルム
、ポリイミドフィルム等を使用し厚さか25から125
ル、程度である。
PWB uses epoxy resin, phenol resin, ceramics, etc. as the substrate material, and has a thickness of 0.8 to 3.2-
, FPC uses polyester film, polyimide film, etc. as the substrate material and has a thickness of 25 to 125 mm.
This is about the same level.

これらプリント基板の製作には、基板の表面に液状レジ
スト、ドライフィルムレジスト等の薄いフォトレジスト
層を設け、プリントすべきパターンが描かれたフォトマ
スクを通して該フォトレジストの感光波長で露光する工
程を経て所望のパターンを該フォトレジスト層に設ける
To manufacture these printed circuit boards, a thin photoresist layer such as a liquid resist or dry film resist is placed on the surface of the board, and the process of exposing the substrate to light at the photoresist's sensitive wavelength through a photomask on which the pattern to be printed is drawn is performed. A desired pattern is provided in the photoresist layer.

この際、基板素材とフォトマスクの位置関係の違いによ
り、従来方式としてコンタクト方式とプロキシミティ方
式の2つの方式が知られている。
At this time, two conventional methods are known: a contact method and a proximity method, depending on the positional relationship between the substrate material and the photomask.

前者はフォトレジスト層の設けられた基板素材とフォト
マスクとを密着させて配置する露光方式であるのに対し
、後者は基板素材とフォトマスクとの間に一定のわずか
な間隙を設けて配置する露光方式である。また、これら
2つの方式ともフォトマスクと露光されるパターンの倍
率は、実質上等倍である。
The former is an exposure method in which the substrate material on which the photoresist layer is provided and the photomask are placed in close contact with each other, whereas the latter is placed with a certain small gap between the substrate material and the photomask. It is an exposure method. Furthermore, in both of these methods, the magnification of the photomask and the exposed pattern are substantially the same.

最近では、1枚のプリント基板が大型化する傾向がみら
れ、例えばコンピュータメモリボード等で用いられるプ
リント基板は、500□×6001程度の大きさを有し
、この様な基板を一度に露光することが必要となってき
ている。
Recently, there has been a tendency for single printed circuit boards to become larger. For example, printed circuit boards used in computer memory boards, etc. have a size of about 500 x 6001, and it is difficult to expose such a board at once. It has become necessary.

また、このような大型のプリント基板において、露光現
像後に形成される導通部の導通状態の均一性の要請から
、各部に均一な露光量を得ることが必要である。
Further, in such a large-sized printed circuit board, it is necessary to obtain a uniform amount of exposure to each part in order to ensure uniformity of the conductive state of the conductive parts formed after exposure and development.

[発明が解決しようとする課題] 上述の如く露光処理されるプリント基板が大型化するに
伴って、大面積のプリント基板をコンタクト方式または
プロキシミティ方式により一度に等倍露光することが必
要になってきている。
[Problems to be Solved by the Invention] As the size of printed circuit boards to be exposed has increased as described above, it has become necessary to expose large-area printed circuit boards at the same magnification at one time using a contact method or a proximity method. It's coming.

ところか、大面積の被処理物を一度に光照射するための
照明系を装備することは、光の収差及び均一性等光学上
の設計も難しく、コストも高くなり、さらに装置も大型
化するので製作は困難であることか判った。そこで、被
処理物を一度に光照射することなく、複数の区画に分割
して各区画毎に露光することを検討した。
However, equipping an illumination system to irradiate a large area of the workpiece with light at once is difficult to design optically due to light aberrations and uniformity, increases costs, and also increases the size of the equipment. So it turned out that it was difficult to manufacture. Therefore, instead of irradiating the object with light all at once, we considered dividing it into a plurality of sections and exposing each section to light.

一般にランプ等の光源による光の照度分布は中心部に対
して周辺部で弱くなる、いわゆる逆U字形の特性曲線を
描くものである。従って、上記のような各区画に分割し
た露光方法によれば、各区画の川辺端部と中心部で光の
強さが違うので、各区画の周辺部を互いに重複して露光
して各区画の中心部と光の強さを一定にすることが考え
られる。
Generally, the illuminance distribution of light from a light source such as a lamp has a so-called inverted U-shaped characteristic curve, which is weaker at the periphery than at the center. Therefore, according to the exposure method that divides each section as described above, the intensity of light differs between the edge of the riverside and the center of each section, so the periphery of each section is exposed overlapped with each other. It is conceivable to keep the intensity of the light constant at the center of the area.

ところが、重複部分(各区画の周辺部)の光の強さと、
重複しない部分(各区画の中心部)の光の強さを一定す
ることは難しく、均一な露光を行うことは困難であると
いうことが判った。
However, the intensity of light in the overlapping area (periphery of each section)
It has been found that it is difficult to keep the intensity of light constant in non-overlapping areas (the center of each section) and that it is difficult to perform uniform exposure.

この発明はこれらの課題を解決するためになされたもの
で、コンタクト方式またはプロキシミティ方式による大
面積露光において、安価で簡単な装置を用いて均一な露
光をすることのできる露光方法を提供することを目的と
する。
The present invention has been made to solve these problems, and an object of the present invention is to provide an exposure method that can perform uniform exposure using an inexpensive and simple device in large-area exposure using a contact method or a proximity method. With the goal.

[課題を解決するための手段] 上記の目的を達成するために、この発明は被露光処理物
の露光面及びフォトマスクを複数の方形の露光区画に区
画し、これら各露光区画を相互に重なり合うような重複
露光部分を作りつつ、フォトマスク及び被露光処理物の
組か、もしくは照明系を連続的に移動させて順次露光し
、各露光区画における積算露光量がほぼ等しくなるよう
露光するものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention divides the exposure surface of the object to be exposed and the photomask into a plurality of rectangular exposure sections, and overlaps each other with each other. While creating overlapping exposure areas, the combination of the photomask and the object to be exposed, or the illumination system, is continuously moved and exposed in sequence so that the cumulative exposure amount in each exposure section is approximately equal. be.

[作用] この露光方法によれば、各区画の積算露光量が均一にな
って大面積の露光も大規模な装置を用いることなく行う
ことができる。
[Function] According to this exposure method, the cumulative exposure amount of each section becomes uniform, and a large area can be exposed without using a large-scale device.

[実施例] 第1図はこの発明のコンタクト方式によって露光を行う
ための一実施例を説明するための主要部の概略を示す図
て、lは超高圧水銀灯、2は楕円集光鏡、3,5は平面
反射鏡、4はインテグレータレンズ、6はコリメータレ
ンズ、7はフィルタで、これら超高圧水銀灯1乃至ブレ
ード7によって照明系11を形成している。また、8は
フォトマスク、9は露光すべき被処理物(以下ワークと
いう)、10はこのワーク9をx−y (水平)方向に
移動するためのテーブルである。
[Embodiment] Fig. 1 is a diagram schematically showing the main parts for explaining an embodiment of exposure using the contact method of the present invention, in which l is an ultra-high pressure mercury lamp, 2 is an elliptical condenser mirror, and 3 , 5 is a plane reflecting mirror, 4 is an integrator lens, 6 is a collimator lens, and 7 is a filter, and the ultra-high pressure mercury lamp 1 to the blade 7 form an illumination system 11. Further, 8 is a photomask, 9 is an object to be exposed (hereinafter referred to as a work), and 10 is a table for moving this work 9 in the x-y (horizontal) direction.

第2図は第1図で用いるフィルタ7を示した図で、同図
(b)はフィルタフの側面図で、光透過性の薄膜の表面
にCrを膜厚数オングストロームの単位で蒸着し、この
フィルタフの周辺部に遠ざかるにつれてその厚みか増す
ように形成したものてあり、同図(C)はフィルタ7の
膜厚の分布と光の透過率の関係を示した図であり、同図
(d)はこのフィルタ7を複数の区画(9−□ 9− 
、 、 +++9−n)に分割して露光する方法及び露
光順序(矢印)を示した図である。
Fig. 2 shows the filter 7 used in Fig. 1, and Fig. 2(b) is a side view of the filter. The filter 7 is formed so that its thickness increases as it moves away from the periphery of the filter 7. Figure (C) shows the relationship between the film thickness distribution and light transmittance of the filter 7. ) divides this filter 7 into multiple sections (9-□ 9-
, +++9-n) and the exposure order (arrow).

第2図(a)に示すフィルタフについて詳しく説明する
と、フィルタフの光の透過率を中心部イて100%とす
ると、同図(b)に示すようにCr蒸着膜の膜厚か増す
周辺部口ての透過率は低下して、同図(c)に示すよう
なほぼ台形状の透過特性を示すように膜厚を設定してお
く。即ち、フィルタフの周辺部口の透過率を示す曲線か
中心部イに対して直線的に低下して周辺端部ハでは0(
光を全く透過しない)になるようにする。
To explain in detail about the filter shown in Fig. 2(a), if the light transmittance of the filter is set to 100% in the center, the thickness of the Cr vapor deposited film increases at the periphery as shown in Fig. 2(b). The film thickness is set so that the transmittance of each layer decreases and exhibits a substantially trapezoidal transmission characteristic as shown in FIG. 2(c). In other words, the curve showing the transmittance of the peripheral opening of the filter decreases linearly with respect to the center part A and becomes 0 (
so that it does not transmit any light at all.

そして、ワーク9の露光に際しては、露光すべき各区画
(1,,12,−−−−−−1,)が互いに重なり合う
ように連続的にスキャンしながら光を照射することによ
り、隣接する区画(9−1と9−K。
When exposing the workpiece 9, each section (1,, 12,-----1,) to be exposed is continuously scanned and irradiated with light so that each section (1,, 12,----1,) overlaps with the adjacent section. (9-1 and 9-K.

9−2と1K−1,・・・・・・・)の周辺部口が互い
に重複して露光されることになる。従って、周辺部口に
おいて、重複露光によってもたらされる積算露光量か中
心部イの露光量と等しくなるように周辺部口の蒸着膜の
膜厚を設定する。
9-2 and 1K-1, . . . ) are exposed in an overlapping manner. Therefore, the thickness of the vapor deposited film at the peripheral aperture is set so that the cumulative exposure amount brought about by overlapping exposure is equal to the exposure amount at the center A in the peripheral aperture.

以上、第2図(d)に矢印て示す順序に連続的にX−Y
テーブルか照明系を移動して光を照射して露光すること
により、ワーク9の点線で囲った部分9aは均一に露光
される。
As described above, the X-Y
By irradiating and exposing the workpiece 9 with light by moving the table or the illumination system, the portion 9a of the workpiece 9 surrounded by the dotted line is uniformly exposed.

また、第3図はこの発明の他の実施例を説明するための
図て、:53図(a)は第2図(a)に示すフィルタフ
に代えてこの実施例て用いるブレード7′の詳細を示す
図で、ブレード7′の中心部に菱形の切欠穴7’aか設
けられたもので、同図(b)はこの切欠穴7’aを透過
する光の照度分布を示した図であり、同図(c)はワー
ク9′の各区画を順次露光する状態を説明するための図
である。
FIG. 3 is a diagram for explaining another embodiment of the present invention: FIG. 53(a) shows details of a blade 7' used in this embodiment in place of the filter shown in FIG. 2(a). In this figure, a diamond-shaped notch hole 7'a is provided in the center of the blade 7', and FIG. FIG. 9C is a diagram for explaining a state in which each section of the workpiece 9' is sequentially exposed.

第1図、第3図において、X−Yテーブル10を駆動し
てワーク9′の最初の区画9−5°を照明系11の照射
部に移動する。そして、超高圧水銀灯1からの光を楕円
集光鏡2.平面反射鏡3.インテグレータレンズ4.平
面反射鏡5.コリメータレンズ6、プレート7′からな
る照明系11を経て、フォトマスク8に密接したワーク
9′に照射して、ワーク9′の区画9−1′を露光する
。次に、x−Yテーブル10を駆動してワーク9′の区
画9−2°を照射部に移動し、区画9−1°の場合と同
様にして区画9−2°を露光する。以、下、第2図(c
)の矢印の順序にワーク9′を移動して各1、’、・・
・・・・9−o゛を順次露光する。尚、移動は連続的で
も良いし、逐次移動でも良い。逐次移動の場合は、移動
中は不図示のシャッタで光を遮断する。
1 and 3, the X-Y table 10 is driven to move the first section 9-5° of the workpiece 9' to the irradiation section of the illumination system 11. Then, the light from the ultra-high pressure mercury lamp 1 is collected by an elliptical condenser mirror 2. Plane reflector 3. Integrator lens 4. Plane reflector 5. A workpiece 9' in close contact with a photomask 8 is irradiated through an illumination system 11 consisting of a collimator lens 6 and a plate 7' to expose a section 9-1' of the workpiece 9'. Next, the x-y table 10 is driven to move the section 9-2[deg.] of the work 9' to the irradiation section, and the section 9-2[deg.] is exposed in the same manner as the section 9-1[deg.]. Below, Figure 2 (c
), move the workpiece 9' in the order of the arrows and move each 1,',...
...9-o゛ is sequentially exposed. Note that the movement may be continuous or sequential. In the case of sequential movement, a shutter (not shown) blocks light during movement.

上記の露光方法についてさらに詳しく説明すると、超高
圧水銀灯lからの光は照明系11を経て第3図(b)の
如き照度分布て平行光線となって照射されるのて、ブレ
ード7′の切欠穴7’aを通る光の強さか最も強く、か
つ−様な照度分布を有する点の光を用いて露光すること
にすればよい。その結果、各区画9−.+、9−2°、
−−−−−−9−7°の露光量はそれぞれ積算されて、
第3図(C)において点線で囲った区分9’aに照射さ
れる積算露光量はほぼ均一になる。従って、ワーク9″
の露光処理部分を点線で囲った区分9’aに含まれるよ
うに設定することにより、いかなる大面積のプリント基
板であっても、必要な領域は均一に露光することかでき
る。
To explain the above exposure method in more detail, the light from the ultra-high pressure mercury lamp 1 passes through the illumination system 11 and is irradiated as parallel rays with an illuminance distribution as shown in FIG. 3(b). The exposure may be performed using light at a point where the intensity of the light passing through the hole 7'a is the strongest and has a -like illuminance distribution. As a result, each section 9-. +, 9-2°,
−−−−−−The exposure amount of 9-7° is integrated,
In FIG. 3(C), the cumulative amount of exposure applied to the section 9'a surrounded by the dotted line is approximately uniform. Therefore, the workpiece 9″
By setting the exposure processing portion to be included in the section 9'a surrounded by the dotted line, the necessary area can be uniformly exposed no matter how large the printed circuit board is.

尚、上記2つの実施例においてはX−Yテーブル10を
駆動してワーク9.9′を移動させる点について述べた
か、ワーク9.9′は固定しておいて照明系11を移動
させることにより、各区画の順次露光を行ってもよいこ
とは勿論であって、照明系11とワーク9.9′のいず
れを移動させるかは、適宜選択することかできる。
In the above two embodiments, the workpiece 9.9' is moved by driving the X-Y table 10, but the workpiece 9.9' is fixed and the illumination system 11 is moved. Of course, each section may be exposed sequentially, and which of the illumination system 11 and the workpieces 9,9' to be moved can be selected as appropriate.

[発明の効果] 以上説明したとおり、この発明はコンタクト方式または
プロキシミティ方式の露光方法にて、大面積の被露光処
理物を複数区画に分割し、各露光区画の積算露光量がほ
ぼ等しくなるように順次露光するので、光学的に特別大
規模な装置を用いることなく、簡単な装置によって低コ
ストて均一露光量の処理を行うことかできる。
[Effects of the Invention] As explained above, the present invention divides a large-area object to be exposed into a plurality of sections using a contact method or a proximity method, and the cumulative exposure amount of each exposure section is approximately equal. Since the exposure is carried out sequentially in this manner, processing with a uniform exposure amount can be performed at low cost using a simple device without using a particularly large-scale optical device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明のコンタクト方式によって露光を行う
ための一実施例を説明するための主要部の概略を示す図
、第2図は第1図て用いるフィルタを示した図で、同図
(a)は第1図におけるフィルタの詳細を示した図、同
図(b)はフィルタの側面図、同図(C)はフィルタの
膜厚の分布と光の透過率の関係を示した図、同図(d)
はこのフィルタを複数の区画に分割して露光する方法及
び露光順序(矢印)を示した図、第3図はこの発明の他
の実施例を説明するための図で、同図(a)は第2図(
a)に示すフィルタに代えて、この実施例て用いるブレ
ードの詳細を示した図、同図(b)は切欠穴を透過する
光の照度分布を示した図、同図(c)はワークの各区画
を順次露光する状態を説明するための図である。 図中。 l:超高圧水銀灯   2:楕円集光鏡3.5:平面反
射鏡 4:インテグレータレンズ 6:コリメータレンズ 7゛ニブレード8:フォトマス
ク   9,9°:ワーク10:X−Yテーブル 代理人 弁理士 1)北 嵩 晴 第1図 第2図 (C) 第3図
FIG. 1 is a diagram schematically showing the main parts for explaining an embodiment of exposure using the contact method of the present invention, and FIG. 2 is a diagram showing a filter used in FIG. a) is a diagram showing the details of the filter in FIG. 1, FIG. 1(b) is a side view of the filter, and FIG. Same figure (d)
3 is a diagram showing a method of dividing this filter into a plurality of sections for exposure and the exposure order (arrows); FIG. 3 is a diagram for explaining another embodiment of the present invention; FIG. Figure 2 (
A diagram showing the details of the blade used in this example instead of the filter shown in a), FIG. FIG. 6 is a diagram for explaining a state in which each section is sequentially exposed. In the figure. 1: Ultra-high pressure mercury lamp 2: Elliptical condenser mirror 3.5: Plane reflector 4: Integrator lens 6: Collimator lens 7゛ni blade 8: Photomask 9,9°: Work 10: X-Y table agent Patent attorney 1 ) Haru Kitatake Figure 1 Figure 2 (C) Figure 3

Claims (1)

【特許請求の範囲】[Claims]  コンタクト方式またはプロキシミティ方式による露光
方法において、被露光処理物の露光面及びフォトマスク
を複数の方形の露光区画に区画し、これら各露光区画を
相互に重なり合うような重複露光部分を作りつつ、フォ
トマスク及び被露光処理物の組か、もしくは照明系を連
続的に、または逐次移動させて順次露光し、各露光区画
における積算露光量がほぼ等しくなるよう露光すること
を特徴とする露光方法。
In an exposure method using a contact method or a proximity method, the exposure surface of the object to be exposed and a photomask are divided into a plurality of rectangular exposure sections, and each of these exposure sections overlaps each other to create an overlapping exposure area. An exposure method characterized by sequentially exposing a set of a mask and an object to be exposed, or by moving an illumination system continuously or sequentially, so that the cumulative exposure amount in each exposure section is approximately equal.
JP63025706A 1988-02-08 1988-02-08 Exposing method Pending JPH01201666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63025706A JPH01201666A (en) 1988-02-08 1988-02-08 Exposing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63025706A JPH01201666A (en) 1988-02-08 1988-02-08 Exposing method

Publications (1)

Publication Number Publication Date
JPH01201666A true JPH01201666A (en) 1989-08-14

Family

ID=12173229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63025706A Pending JPH01201666A (en) 1988-02-08 1988-02-08 Exposing method

Country Status (1)

Country Link
JP (1) JPH01201666A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300580A (en) * 2008-06-11 2009-12-24 V Technology Co Ltd Proximity exposure apparatus
JP2011033908A (en) * 2009-08-04 2011-02-17 Nikon Corp Exposure apparatus, exposure method, and device manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63174046A (en) * 1987-01-14 1988-07-18 Hitachi Ltd Exposure device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63174046A (en) * 1987-01-14 1988-07-18 Hitachi Ltd Exposure device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300580A (en) * 2008-06-11 2009-12-24 V Technology Co Ltd Proximity exposure apparatus
JP2011033908A (en) * 2009-08-04 2011-02-17 Nikon Corp Exposure apparatus, exposure method, and device manufacturing method

Similar Documents

Publication Publication Date Title
US5442184A (en) System and method for semiconductor processing using polarized radiant energy
KR101359080B1 (en) Lithographic apparatus and method of manufacturing article
JPS6045252A (en) Illuminating system of projecting and exposing device
US5668624A (en) Scan type exposure apparatus
KR100468524B1 (en) Partition exposure method
JPH01201666A (en) Exposing method
JP2006072100A (en) Projection exposing device
JPS6058576B2 (en) Exposure method and exposure equipment used for it
JP2006040915A (en) Method and apparatus of manufacturing semiconductor device, and method of manufacturing electro-optical device
JPH04311025A (en) Exposing method
KR100228570B1 (en) Method of exposure
JP2759890B2 (en) Exposure equipment
JP2593824B2 (en) Exposure method and apparatus for manufacturing printed circuit boards
JPH09306826A (en) Aligner
JP2588860B2 (en) Exposure method for printed circuit board production
JP4528034B2 (en) Shield material manufacturing method
CN1136708A (en) Light exposing device for manufactureing semiconductor device
JP4212094B2 (en) Exposure equipment
JP2593822B2 (en) Exposure equipment
JP2593823B2 (en) Exposure method for printed circuit board production
JPH01101628A (en) Reducing stepper
JP3151915B2 (en) Electron beam exposure system with laser beam for alignment
JPH04305651A (en) Exposure processing method for wiring board
CN115268221A (en) Aperture-adjustable exposure machine and using method thereof
JPS6329930A (en) Reduction stepper