JPH01201482A - Vacuum vapor growth device - Google Patents

Vacuum vapor growth device

Info

Publication number
JPH01201482A
JPH01201482A JP11566388A JP11566388A JPH01201482A JP H01201482 A JPH01201482 A JP H01201482A JP 11566388 A JP11566388 A JP 11566388A JP 11566388 A JP11566388 A JP 11566388A JP H01201482 A JPH01201482 A JP H01201482A
Authority
JP
Japan
Prior art keywords
substrate
susceptor
reduced pressure
gas
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11566388A
Other languages
Japanese (ja)
Other versions
JP2721888B2 (en
Inventor
Kenji Numajiri
憲二 沼尻
Isamu Morisako
勇 森迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON ANERUBA KK
Original Assignee
NIPPON ANERUBA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON ANERUBA KK filed Critical NIPPON ANERUBA KK
Priority to JP63115663A priority Critical patent/JP2721888B2/en
Publication of JPH01201482A publication Critical patent/JPH01201482A/en
Application granted granted Critical
Publication of JP2721888B2 publication Critical patent/JP2721888B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To prevent temp. rise of a light transparent susceptor and to stabilize the temp. of a substrate by supplying a reaction gas under a reduced pressure to a reaction chamber and forcibly cooling the susceptor while while subjecting a substrate to radiation heating with IR lamps via the susceptor. CONSTITUTION:The substrate 4 disposed in an aperture 11 in the reaction chamber 1 is supported by the light transparent susceptor 5 which closes the aperture 11. The reaction gas is supplied from a gas supply port 2 into this reaction chamber 1 and the gas after the reaction is discharged from a gas discharge port 3 to reduce the pressure in the reaction chamber 1. The substrate 4 is simultaneously subjected to the radiation heating by the IR lamps 6 via the susceptor 5 to a prescribed temp. and the reaction gas is brought into chemical reaction to form a thin film on the surface of the substrate 4. A light transparent plate 7 is disposed between the susceptor 5 and the IR lamps 6 to form a cooling chamber 8 between the susceptor 5. The cooling medium such as light transparent inert gas is passed in this cooling chamber 8 to forcibly cool the susceptor 5. The temp. rise of the susceptor 5 is thereby prevented and the temp. of the substrate 4 supported by the susceptor is stabilized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、およそ0.1〜10Torrの減圧下で基板
表面に薄膜を形成する減圧気相成長装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a reduced pressure vapor phase growth apparatus for forming a thin film on a substrate surface under a reduced pressure of about 0.1 to 10 Torr.

(従来の技術と発明が解決しようとする問題点)近年、
半導体回路の微細化に伴い、より高性能な減圧気相成長
装置が要求されるようになってきた。従来、コールドウ
オール型の減圧気相成長装置では、基板の加熱方法とし
て間接加熱方式が用いられていた。これは、基板を載置
するホルダーを加熱し、ホルダーと基板との接触による
熱伝達によって基板を加熱する方式のものである。この
間接加熱方式では、薄膜を形成する圧力範囲(例えば、
0.1〜0.5To r r)において、上記基板の温
度は、ホルダーの温度と比較して60〜80%になる。
(Problems to be solved by conventional technology and invention) In recent years,
With the miniaturization of semiconductor circuits, there has been a demand for higher performance low pressure vapor phase growth equipment. Conventionally, in a cold wall type low pressure vapor phase growth apparatus, an indirect heating method has been used as a method of heating a substrate. This is a method in which a holder on which a substrate is placed is heated, and the substrate is heated by heat transfer due to contact between the holder and the substrate. In this indirect heating method, the pressure range for forming a thin film (e.g.
0.1-0.5 Torr), the temperature of the substrate will be 60-80% compared to the temperature of the holder.

このため、ホルダーの設定温度を所望の基板温度よりも
25〜67%高くして、より高温域での薄膜形成を行う
必要がある。例えば、タングステン膜の高速成膜の場合
、ホルダーの温度は800〜1000’Cになる。この
ようにホルダーの温度が高くなるに従い、以下のような
問題が発生する。
Therefore, it is necessary to set the temperature of the holder 25 to 67% higher than the desired substrate temperature to form a thin film in a higher temperature range. For example, in the case of high-speed deposition of a tungsten film, the temperature of the holder is 800-1000'C. As the temperature of the holder increases in this way, the following problems occur.

■ホルダーの熱膨張に伴い、ソリが生じ、基板との密着
性が悪化し、その結果、基板の温度分布が悪くなる。
- As the holder thermally expands, warping occurs and the adhesion to the substrate deteriorates, resulting in poor temperature distribution on the substrate.

■H20、CO等の脱ガスの増加による膜中不純物濃度
が増加する。
(2) The concentration of impurities in the film increases due to an increase in outgassing such as H20 and CO.

■ホルダー回りの固定方法が複雑化する。■The fixing method around the holder becomes complicated.

そのため、上記問題点を解決するために、基板を載置す
る従来のホルダーに代えて、光透過性の支持台を用い、
基板のみを直接的に加熱する、いわゆる直接加熱方式を
採用している。
Therefore, in order to solve the above problems, a light-transparent support stand was used instead of the conventional holder on which the substrate was placed.
It uses a so-called direct heating method, which directly heats only the substrate.

第5図(aXb)は、上記光透過性支持台を用いた従来
の一般的な直接加熱方式の減圧気相成長装置を示したも
のである。
FIG. 5 (aXb) shows a conventional general direct heating type low pressure vapor phase growth apparatus using the above-mentioned light-transmitting support.

第5図(a)は、反応室1の下端に開口部11を設ける
とともに、これに当該開口部11よりも径の大きい光透
過性支持台5に載置した基板4を設置し、゛基板4の表
面が反応室1内に臨むようにしている。そして、基板4
の裏面側であって、上記光透過性支持台5に近接した位
置に赤外線ラップ6を設置している。そして、当該赤外
線ラップ6からの照射光が光透過性支持台5を通過して
基板4の裏面に照射されることによって基板4が直接加
熱される。ガス供給口2から反応室l内に供給された反
応ガスは、基板40表面上で化学反応を起こし、所望の
薄膜を形成する一方、反応済ガス等をガス排出口3から
排出するようにしている。
In FIG. 5(a), an opening 11 is provided at the lower end of the reaction chamber 1, and a substrate 4 placed on a light-transmitting support 5 having a diameter larger than that of the opening 11 is placed therein. 4 faces into the reaction chamber 1. And the board 4
An infrared wrap 6 is installed on the back side of the holder 5 and close to the light-transmissive support 5. Then, the irradiated light from the infrared wrap 6 passes through the light-transmissive support base 5 and is irradiated onto the back surface of the substrate 4, whereby the substrate 4 is directly heated. The reaction gas supplied into the reaction chamber l from the gas supply port 2 causes a chemical reaction on the surface of the substrate 40 to form a desired thin film, while the reacted gas etc. is discharged from the gas discharge port 3. There is.

また、第5図(b)は、上端に間口部を設けた反応室1
内に支持台5′に載置された基板4を設置している。上
記開口部12の外側に当該開口部12の径より大きな径
を有する光透過性プレート7を固着するとともに、光透
過性プレート7に近接して赤外線ラップ6を設置してい
る。そして、当該赤外線ラップ6からの照射光が光透過
性プレート7を通過して基板4の表面に照射されること
によって基板4が直接加熱される。成膜の過程について
は上記第5図(a)の場合と同様である。
In addition, FIG. 5(b) shows a reaction chamber 1 with a frontage provided at the upper end.
A substrate 4 placed on a support stand 5' is installed inside. A light-transmitting plate 7 having a diameter larger than that of the opening 12 is fixed to the outside of the opening 12, and an infrared wrap 6 is placed close to the light-transmitting plate 7. Then, the irradiated light from the infrared wrap 6 passes through the light-transmitting plate 7 and is irradiated onto the surface of the substrate 4, whereby the substrate 4 is directly heated. The process of film formation is the same as that shown in FIG. 5(a) above.

上記ような基板の加熱方法において、基板の温度を制御
するには、クローズループ温度制御とオープンループ温
度制御のいずれかの制御方法が現在採用されている。ク
ローズループ温度制御は、熱電対あるいは放射温度計を
用い、基板が所定の温度に維持されるように、上記熱電
対あるいは放射温度計からの信号を赤外線ラップにフィ
ードバックさせて基板温度を調節するフィードバック制
御である。これは、フィードバックループを用いるため
、温度の再現性、安定性が良い。しかし、熱電対を基板
に直接接触させた場合、コンタミネーションや接触力の
再現性不良が生じる。また、放射温度計を用いた基板温
度測定においても成膜前の基板の放射率と、成膜後の基
板の放射率とは、様々なパラメータ(薄膜の種類、厚さ
、粒子の大きさ、基板裏面皮膜等)により一定ではなく
校正が非常に困難であった。
In the above-described substrate heating method, one of closed-loop temperature control and open-loop temperature control is currently employed to control the temperature of the substrate. Close-loop temperature control uses a thermocouple or radiation thermometer, and feedback signals from the thermocouple or radiation thermometer are fed back to the infrared wrap to adjust the substrate temperature so that the substrate is maintained at a predetermined temperature. It is control. Since this uses a feedback loop, the temperature reproducibility and stability are good. However, when a thermocouple is brought into direct contact with a substrate, contamination and poor reproducibility of contact force occur. In addition, when measuring substrate temperature using a radiation thermometer, the emissivity of the substrate before film formation and the emissivity of the substrate after film formation are determined by various parameters (type of thin film, thickness, particle size, It was not constant due to the film on the back surface of the substrate, etc., and calibration was extremely difficult.

一方、オーブンループ温度制御は電力制御方法である。On the other hand, oven loop temperature control is a power control method.

上記クローズループ温度制御に比べると、当該温度制御
における基板温度は供給電力量のみで決定し、正確な温
度の実測を必要としないという利点がある。しかし、透
過性支持台の温度が時間経過とともに上昇すると、それ
につれて、その熱伝達によって基板温度も上昇する。従
って、上記のように電力のみを制御の対象とする従来の
方法では、基板の温度を安定化させるのが困難であった
。この点については、基板4の温度特性を示した第2図
を参照しながら説明する。曲線(a)は第5図(a)で
説明した従来技術において電力(赤外線ラップヒータの
パワー)を一定としたときの基板の温度特性である。こ
れによると、時間の経過に従って基板温度は上昇する。
Compared to the closed-loop temperature control described above, this temperature control has the advantage that the substrate temperature is determined only by the amount of supplied power and does not require accurate temperature measurement. However, as the temperature of the transparent support increases over time, the temperature of the substrate also increases due to the heat transfer. Therefore, with the conventional method in which only electric power is controlled as described above, it is difficult to stabilize the temperature of the substrate. This point will be explained with reference to FIG. 2, which shows the temperature characteristics of the substrate 4. Curve (a) is the temperature characteristic of the substrate when the electric power (the power of the infrared lap heater) is constant in the conventional technique explained in FIG. 5(a). According to this, the substrate temperature increases as time passes.

これは赤外線ラップヒータ6の熱輻射により基板4は急
速に加熱されるが、基板4と比較して光の吸収率の小さ
い光透過性支持台5は徐々に加熱されるため、当該基板
4は熱伝達による熱エネルギーを光透過性支持台5に奪
われながら温度上昇を続ける。そのため、光透過性支持
台5の温度が一定になるまで基板4の温度上昇は続くこ
とになる。
This is because the substrate 4 is rapidly heated by the thermal radiation of the infrared lap heater 6, but the light-transmitting support 5, which has a lower light absorption rate than the substrate 4, is gradually heated. The temperature continues to rise while the light-transmitting support base 5 absorbs thermal energy due to heat transfer. Therefore, the temperature of the substrate 4 continues to rise until the temperature of the light-transmitting support 5 becomes constant.

(本発明の目的) 本発明の目的は、オープンループ温度制御によって基板
の温度の安定化を達成した減圧気相成長装置の提供にあ
る。
(Object of the present invention) An object of the present invention is to provide a reduced pressure vapor phase growth apparatus that achieves stabilization of the temperature of a substrate through open-loop temperature control.

(問題点を解決するための手段) 本発明は、上記目的を達成するために次のように構成さ
れている。
(Means for Solving the Problems) In order to achieve the above object, the present invention is configured as follows.

すなわち、基板を載置する支持台と、前記基板に対し反
応ガスを供給するガス供給部と、前記支持台を透過して
前記基板を輻射加熱する赤外線ラップを備えた加熱部と
排気部を備え、前記ガス供給部から所定の反応ガスを供
給することによって、減圧下における反応ガスを基板表
面上で化学反応を起こさせ薄膜を形成する減圧気相成長
装置において、前記支持台を強制的に冷却する冷却機構
を備えたことを特徴とする。
That is, it includes a support table on which a substrate is placed, a gas supply unit that supplies a reaction gas to the substrate, a heating unit including an infrared wrap that transmits through the support table and heats the substrate by radiation, and an exhaust unit. , in a reduced pressure vapor phase growth apparatus in which a predetermined reaction gas is supplied from the gas supply section to cause the reaction gas under reduced pressure to cause a chemical reaction on the substrate surface to form a thin film, the support base is forcibly cooled. It is characterized by being equipped with a cooling mechanism.

また、冷却機構が支持台とプレート間に形成された冷却
室から成り、当該冷却室に冷却媒体を供、給するようし
ている。又は、冷却機構が支持台内に形成した冷却室か
ら成り、当該冷却室に冷却媒体を供給するようしている
。また、支持台及びプレートが光透過性を有するように
している。
Further, the cooling mechanism includes a cooling chamber formed between the support base and the plate, and a cooling medium is supplied to the cooling chamber. Alternatively, the cooling mechanism consists of a cooling chamber formed within the support, and a cooling medium is supplied to the cooling chamber. Further, the support base and the plate are made to have light transmittance.

更に、冷却媒体として光透過性を有する不活性ガス、熱
伝導率の高い不活性ガス、空気、水を使用している。
Furthermore, as a cooling medium, an inert gas having optical transparency, an inert gas having high thermal conductivity, air, and water are used.

(作用) 上記のように構成された減圧気相成長装置において、反
応室内の光透過性支持台上に載置された基板は、赤外線
ラップからの照射光を吸収して加熱されるが、光透過性
支持台に接し、または光透過性舎内に形成した冷却室に
冷却媒体を導入することによって冷却効果が光透過性支
持台を介して基板に伝達する。
(Function) In the reduced pressure vapor phase growth apparatus configured as described above, the substrate placed on the light-transmitting support in the reaction chamber is heated by absorbing the irradiation light from the infrared wrap. By introducing a cooling medium into a cooling chamber formed in contact with the transparent support or within the light-transparent chamber, the cooling effect is transmitted to the substrate via the light-transparent support.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。なお
、従来技術と同一の構成部材については同一符号をもっ
て説明する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings. Note that the same components as those in the prior art will be described using the same reference numerals.

第1図は、本発明の第1実施例を示したものである。反
応室1の下端には間口部11を設けるとともに、反応ガ
ス及びキャリーガスを供給排気するためのガス供給口2
及びガス排出口3が接続されている。基板4は、前記第
5図(a)と同様、上記開口部11よりも径の大きい光
透過性支持台5に載置され、基板4の表面が光透過性支
持台5とともに反応室1内を臨むように設置し、これに
より開口部11を塞いでいる。当該光透過性支持台5は
、生成膜が基板裏面に付着堆積するのを防止するために
、上記のように基板4よりその面積を大きく形成してい
る。また、光透過性支持台5の外側には、光透過性プレ
ート7と光透過性支持台5の両者で挟み形成した冷却室
8を設けている。
FIG. 1 shows a first embodiment of the present invention. A frontage 11 is provided at the lower end of the reaction chamber 1, and a gas supply port 2 is provided for supplying and exhausting reaction gas and carry gas.
and a gas exhaust port 3 are connected. As in FIG. 5(a), the substrate 4 is placed on a light-transmitting support 5 having a diameter larger than the opening 11, and the surface of the substrate 4 is placed inside the reaction chamber 1 together with the light-transmitting support 5. The opening 11 is thus closed. The light-transmitting support 5 is formed to have a larger area than the substrate 4, as described above, in order to prevent the generated film from adhering and depositing on the back surface of the substrate. Furthermore, a cooling chamber 8 formed between the light-transmitting plate 7 and the light-transmitting support 5 is provided outside the light-transmitting support 5 .

当該冷却室8は、光透過性支持台5の温度上昇を防ぐ目
的で当該支持台5に接して設けられたものである。冷却
室8は、不活性ガスの供給口9とその排出口10とを備
えている。
The cooling chamber 8 is provided in contact with the support base 5 for the purpose of preventing the temperature of the light-transmitting support base 5 from rising. The cooling chamber 8 includes an inert gas supply port 9 and an inert gas discharge port 10 .

そして、基板4は、光透過性プレート7及び光透過性支
持台5を介し・て赤外線ラップ6からの照射光によて加
熱される。
Then, the substrate 4 is heated by the irradiation light from the infrared wrap 6 via the light-transmitting plate 7 and the light-transmitting support base 5.

以下には本実施例に係る減圧気相成長装置の動作を説明
する。
The operation of the reduced pressure vapor phase growth apparatus according to this embodiment will be explained below.

光透過性支持台5上に載置された基板4は、光透過性プ
レート7、冷却室8及び光透過性支持台5を通過する赤
外線ラップ6からの照射光を吸収して300〜6506
Cに加熱される。冷却室8には、ガス供給口9から光透
過性の不活性ガスを供給し、排出口10からそのガスを
排出する。これによって、光透過性支持台5は、冷却室
8内に導入された冷却媒体で冷却される。
The substrate 4 placed on the light-transmitting support 5 absorbs the irradiated light from the infrared wrap 6 that passes through the light-transparent plate 7, the cooling chamber 8, and the light-transparent support 5, and absorbs the irradiation light from 300 to 6506.
heated to C. A light-transmitting inert gas is supplied to the cooling chamber 8 from a gas supply port 9 and the gas is discharged from a discharge port 10. As a result, the light-transmitting support base 5 is cooled by the cooling medium introduced into the cooling chamber 8 .

第2図中、曲線(b)は、基板4を載置する光透過性支
持−台5を強制的に冷却した場合の基板の温度特性を示
している。これによると、上記従来の場合と同一電力で
は最高到達温度は低いが、約10分でほぼ安定になって
いることがわかる。また、成膜開始点Aから成膜終了点
Bまでの時間(例えばタングステンの通常成膜プロセス
では約10分)内においての温度差は、30°C以内で
あり、実用上許容範囲内である。さらに、繰り返し加熱
を行った場合、基板温度の再現性は±1.5%以内であ
り、基板の温度特性について再現性を見いだすことがで
きる。このように基板の温度特性に再現性があるのは、
赤外線ラップヒータ6の熱輻射に対して吸収率の小さい
光透過性支持台5が光透過性支持台の冷却効果により吸
収熱エネルギーの殆どを奪われるため、光透過性支持台
5の真空側(基板載置側)の表面温度は上昇せず、その
ため時間経過に対する基板温度の上昇を抑えることがで
きる。
In FIG. 2, the curve (b) shows the temperature characteristics of the substrate when the light-transmissive support table 5 on which the substrate 4 is placed is forcibly cooled. According to this, it can be seen that although the maximum temperature reached is low with the same power as in the conventional case, it becomes almost stable in about 10 minutes. In addition, the temperature difference within the time from the deposition start point A to the deposition end point B (for example, about 10 minutes in a normal tungsten deposition process) is within 30°C, which is within a practically acceptable range. . Furthermore, when repeated heating is performed, the reproducibility of the substrate temperature is within ±1.5%, and it is possible to find reproducibility in the temperature characteristics of the substrate. This reproducibility of the temperature characteristics of the substrate is due to
The light-transmitting support 5, which has a low absorption rate for the thermal radiation of the infrared wrap heater 6, loses most of the absorbed thermal energy due to the cooling effect of the light-transmitting support 5, so the vacuum side of the light-transmitting support 5 ( The surface temperature on the substrate mounting side (on the substrate mounting side) does not rise, and therefore the rise in substrate temperature over time can be suppressed.

なお、冷却室8内に供給する冷却媒体は、上記のような
不活性ガスの代わりに、光透過性さえ十分であれば、空
気、水を導入することも可能である。
Note that, instead of the above-mentioned inert gas, air or water may be introduced as the cooling medium supplied into the cooling chamber 8 as long as it has sufficient optical transparency.

第3図は、−本発明の第2実施例を示したものである。FIG. 3 shows a second embodiment of the present invention.

当該実施例における冷却機構は上記第1実施例と同じ構
成であるが、赤外線ラップ6による照射位置が第1実施
例と相違する。即ち、当該実施例における赤外線ラップ
6の照射位置は、前記第5図(b)で示したと同様、反
応室1の上端開口部12の外側から赤外線ラップ6から
の照射光が光透過性プレート7を通過して基板4の表面
に照射されて加熱するようにしている。
The cooling mechanism in this embodiment has the same configuration as the first embodiment, but the irradiation position by the infrared wrap 6 is different from that in the first embodiment. That is, the irradiation position of the infrared wrap 6 in this embodiment is the same as that shown in FIG. The light passes through and is irradiated onto the surface of the substrate 4 to heat it.

なお、上記のように赤外線ラップ6の照射位置が第1実
施例と相違することに伴い、冷却室8を構成する支持台
δ′及びプレート7′は、第1実施例のように必ずしも
光透過性を有する部材である必要はない。
Note that since the irradiation position of the infrared wrap 6 is different from the first embodiment as described above, the support base δ' and the plate 7' constituting the cooling chamber 8 do not necessarily transmit light as in the first embodiment. It does not need to be a member that has properties.

第4図は本発明の第3実施例を示したものである。当該
実施例における支持台5′を強制的に冷却する機構とし
て、支持台5゛の内部に空隙を設け、これを冷却室8と
し、当該冷却室8内にガス供給口13から熱伝導率の高
い不活性ガス若しくは油、水、空気を供給し、当該冷却
室8内を循環させ、排出口14から排出させるような構
成にしている。このため、基板4を載置する支持台5′
は強制的に冷却され、赤外線ラップ6からの照射光を受
けて加熱された基板4の温度上昇を抑えることができる
FIG. 4 shows a third embodiment of the present invention. As a mechanism for forcibly cooling the support stand 5' in this embodiment, a gap is provided inside the support stand 5', this is used as a cooling chamber 8, and a gas supply port 13 is introduced into the cooling chamber 8 to increase the thermal conductivity. The cooling chamber 8 is configured to supply high-quality inert gas or oil, water, and air, circulate within the cooling chamber 8, and discharge from the discharge port 14. For this reason, the support stand 5' on which the substrate 4 is placed
is forcibly cooled, thereby suppressing the temperature rise of the substrate 4 that has been heated by the irradiation light from the infrared wrap 6.

(発明の効果) 本発明の請求項(1)乃至(6)に係る減圧気相成長装
置によれば、冷却室内に供給された冷却媒体が冷却効果
を発揮することによフて薄膜作製中に光透過性支持台の
温度上昇を防ぎ、結果として基板の温度の安定化を達成
することができる。
(Effects of the Invention) According to the reduced pressure vapor phase growth apparatus according to claims (1) to (6) of the present invention, the cooling medium supplied into the cooling chamber exerts a cooling effect, so that the cooling medium can be used during thin film production. This prevents the temperature of the light-transmitting support from rising, and as a result stabilizes the temperature of the substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示した減圧気相成長装置の概
略図、第2図は基板の温度特性を示したグラフ、第3図
は本発明の第2実施例を示した減圧気相成長装置の概略
図、第4図は本発明の第3実施例を示した減圧気相成長
装置の概略図、第5図(a)及び(b)は従来の減圧気
相成長装置の概略図である。 1・・・反応室、2・・・ガス供給口、3・・・ガス排
出口、4・・・基板、5・・・光透過性支持台、6・・
・赤外線ラップ、7・・・光透過性プレート、8・・・
冷却室、9.13・・・ガス供給口、10.14・舎・
ガス排出口。 特許出願人 日電アネルバ株式会社 代理人   弁理士 村上 健次 ;?1 図 才2図 椅 閏
FIG. 1 is a schematic diagram of a reduced pressure vapor phase growth apparatus showing an embodiment of the present invention, FIG. A schematic diagram of a phase growth apparatus, FIG. 4 is a schematic diagram of a reduced pressure vapor phase growth apparatus showing a third embodiment of the present invention, and FIGS. 5(a) and (b) are schematic diagrams of a conventional reduced pressure vapor phase growth apparatus. It is a diagram. DESCRIPTION OF SYMBOLS 1... Reaction chamber, 2... Gas supply port, 3... Gas discharge port, 4... Substrate, 5... Light-transmissive support stand, 6...
・Infrared wrap, 7...Light transmitting plate, 8...
Cooling room, 9.13... Gas supply port, 10.14. Building.
Gas outlet. Patent applicant Kenji Murakami, agent of Nichiden Anelva Co., Ltd.;? 1 Illustration 2 Illustration Chair Leap

Claims (6)

【特許請求の範囲】[Claims] (1)基板を載置する支持台と、前記基板に対し反応ガ
スを供給するガス供給部と、前記支持台を透過して前記
基板を輻射加熱する赤外線ラップを備えた加熱部と排気
部を備え、前記ガス供給部から所定の反応ガスを供給す
ることによって、減圧下における反応ガスを基板表面上
で化学反応を起こさせ薄膜を形成する減圧気相成長装置
において、前記支持台を強制的に冷却する冷却機構を備
えたことを特徴とする減圧気相成長装置。
(1) A support table on which a substrate is placed, a gas supply section that supplies a reaction gas to the substrate, a heating section and an exhaust section that include an infrared wrap that transmits through the support table and heats the substrate by radiation. In a reduced pressure vapor phase growth apparatus that causes a chemical reaction of the reaction gas under reduced pressure on the substrate surface to form a thin film by supplying a predetermined reaction gas from the gas supply section, the support table is forcibly moved. A reduced pressure vapor phase growth apparatus characterized by being equipped with a cooling mechanism.
(2)冷却機構を、支持台とプレート間に冷却室を形成
し、当該冷却室に冷却媒体を供給するように構成したこ
とを特徴とする請求項(1)項記載の減圧気相成長装置
(2) The reduced pressure vapor phase growth apparatus according to claim (1), wherein the cooling mechanism is configured to form a cooling chamber between the support stand and the plate, and supply a cooling medium to the cooling chamber. .
(3)支持台及びプレートが光透過性を有することを特
徴とする請求項(2)項記載の減圧気相成長装置。
(3) The reduced pressure vapor phase growth apparatus according to claim (2), wherein the support stand and the plate have optical transparency.
(4)冷却機構を、支持台内に冷却室を形成し、当該冷
却室に冷却媒体を供給するように構成したした請求項(
1)項記載の減圧気相成長装置。
(4) Claim (4) wherein the cooling mechanism is configured to form a cooling chamber within the support and supply a cooling medium to the cooling chamber.
1) The reduced pressure vapor phase growth apparatus described in section 1).
(5)冷却媒体が光透過性を有する不活性ガスである請
求項(3)項記載の減圧気相成長装置。
(5) The reduced pressure vapor phase growth apparatus according to claim (3), wherein the cooling medium is an inert gas having optical transparency.
(6)冷却媒体が熱伝導率の高い不活性ガス若しくは油
、水、空気である請求項(2)項又は(4)項記載の減
圧気相成長装置。
(6) The reduced pressure vapor phase growth apparatus according to claim (2) or (4), wherein the cooling medium is an inert gas, oil, water, or air having high thermal conductivity.
JP63115663A 1987-10-01 1988-05-12 Low pressure vapor phase growth equipment Expired - Lifetime JP2721888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63115663A JP2721888B2 (en) 1987-10-01 1988-05-12 Low pressure vapor phase growth equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-248558 1987-10-01
JP24855887 1987-10-01
JP63115663A JP2721888B2 (en) 1987-10-01 1988-05-12 Low pressure vapor phase growth equipment

Publications (2)

Publication Number Publication Date
JPH01201482A true JPH01201482A (en) 1989-08-14
JP2721888B2 JP2721888B2 (en) 1998-03-04

Family

ID=26454143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63115663A Expired - Lifetime JP2721888B2 (en) 1987-10-01 1988-05-12 Low pressure vapor phase growth equipment

Country Status (1)

Country Link
JP (1) JP2721888B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363571U (en) * 1989-10-25 1991-06-20
JP2009010005A (en) * 2007-06-26 2009-01-15 Yac Co Ltd Heating and cooling apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161832A (en) * 1980-05-10 1981-12-12 Sony Corp Gaseous phase treatment device
JPS61155297A (en) * 1984-12-27 1986-07-14 Toshiba Corp Heat treating furnace
JPS61176111A (en) * 1985-01-31 1986-08-07 Seiko Epson Corp Manufacture of compound semiconductor thin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161832A (en) * 1980-05-10 1981-12-12 Sony Corp Gaseous phase treatment device
JPS61155297A (en) * 1984-12-27 1986-07-14 Toshiba Corp Heat treating furnace
JPS61176111A (en) * 1985-01-31 1986-08-07 Seiko Epson Corp Manufacture of compound semiconductor thin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363571U (en) * 1989-10-25 1991-06-20
JP2009010005A (en) * 2007-06-26 2009-01-15 Yac Co Ltd Heating and cooling apparatus

Also Published As

Publication number Publication date
JP2721888B2 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
US6064800A (en) Apparatus for uniform gas and radiant heat dispersion for solid state fabrication processes
US5861609A (en) Method and apparatus for rapid thermal processing
US6222990B1 (en) Heating element for heating the edges of wafers in thermal processing chambers
JPH02213477A (en) Reduced pressure vapor growth device
CN102077320A (en) Plasma processing device, plasma processing method, and mechanism for regulating temperature of dielectric window
JPH0590214A (en) Coaxial type plasma treatment device
US20100023154A1 (en) Compensation techniques for substrate heating processes
JPS5939031A (en) Method of reflowing phosphosilicate glass
US6043450A (en) Method to compensate for non-uniform film growth during chemical vapor deposition
JPH01201482A (en) Vacuum vapor growth device
JPH08316154A (en) Simulated hot wall reaction chamber
JP2697250B2 (en) Thermal CVD equipment
JP4461285B2 (en) Thermal conditioning process
JPS60189927A (en) Vapor phase reactor
JPH10144618A (en) Heater for manufacturing semiconductor device
JP4525871B2 (en) Wafer heat treatment apparatus and wafer heat treatment method using the same
JP3382064B2 (en) Heat treatment equipment
JPS62101021A (en) Semiconductor manufacturing equipment
JPH05217930A (en) Wafer heating apparatus
JPH08148480A (en) Semiconductor manufacturing device and method
JPH09275077A (en) Method of processing, processing device, method of cvd film forming and device for it
JPH07108836B2 (en) Low pressure CVD equipment
JP3099424B2 (en) Single wafer heat treatment equipment
JPH06252094A (en) Semiconductor manufacture device and semiconductor manufacture
JPH0464221A (en) Forming method of thin-film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 11