JPH01201093A - Method for liquid-phase epitaxial growth - Google Patents

Method for liquid-phase epitaxial growth

Info

Publication number
JPH01201093A
JPH01201093A JP2469788A JP2469788A JPH01201093A JP H01201093 A JPH01201093 A JP H01201093A JP 2469788 A JP2469788 A JP 2469788A JP 2469788 A JP2469788 A JP 2469788A JP H01201093 A JPH01201093 A JP H01201093A
Authority
JP
Japan
Prior art keywords
growth
layer
cooling rate
epitaxial
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2469788A
Other languages
Japanese (ja)
Inventor
Tsunehiro Unno
恒弘 海野
Mineo Wajima
峰生 和島
Hisafumi Tate
尚史 楯
Taiichiro Konno
泰一郎 今野
Hiroshi Sugimoto
洋 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2469788A priority Critical patent/JPH01201093A/en
Publication of JPH01201093A publication Critical patent/JPH01201093A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the crystallinity of an active layer in the liquid-phase epitaxial growth of a multi-layer growth phase, by setting the slow cooling rate of an arbitrary layer form the end of growth of the layer to the initial stage of the growth of the subsequent layer to be lower than the slow cooling rates of the preceding and subsequent stages. CONSTITUTION:A growth solution holder 4 containing growth solutions 6, 7, etc., for the 1st to the n-th layers is placed on a freely movable substrate holder 5 supporting a substrate 1. The substrate 1 is made to successively contact with the growth solutions 6, 7, etc., for the 1st to the n-th layers and n-layers of epitaxial growth layer is grown by slowly cooling method. The temperature program of the growth solution during the growth of the (m-1)-th and m-th layers (n>=m>=2) is set in a manner that the slowly cooling rate between the end of the growth of the (m-1)-th layer to the initial stage of the growth of the m-th layer is lower than the slowly cooling rate of the preceding and subsequent stages. An active layer having high crystallinity can be grown by this process.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は液相エピタキシャル成長方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a liquid phase epitaxial growth method.

[従来の技術] 液相エピタキシャル成長方法で成長させたエピタキシャ
ルウェハは気相エピタキシャル(VPE)成長法や有機
金属化合物熱分解法(MOCVD)、分子線エピタキシ
ャル(MBE)成長法で成長させたエピタキシャルウェ
ハに比べ結晶欠陥が少なく、結晶性が良好なので発光ダ
イオードや半導体レーザ用エピタキシャル層の成長に用
いられてきた。発光ダイオードや半導体レーザの素子特
性を改善するためには、結晶性を更に向上させる必要が
ある。
[Prior Art] Epitaxial wafers grown by liquid phase epitaxial growth method are different from epitaxial wafers grown by vapor phase epitaxial (VPE) growth method, metal organic compound pyrolysis (MOCVD), or molecular beam epitaxial (MBE) growth method. Since it has fewer crystal defects and good crystallinity, it has been used for growing epitaxial layers for light-emitting diodes and semiconductor lasers. In order to improve the device characteristics of light emitting diodes and semiconductor lasers, it is necessary to further improve crystallinity.

液相エピタキシャル法で結晶性を向上させるためには成
長温度の適正化、反応管内の蒸気圧制御、ヘテロ界面で
の応用抑止、成長速度の低速化、不鈍物混入の防止など
各種対策がある。この中で成長速度の低速化は結晶性を
向上させるために有効な手段であり、発光ダイオードの
発光出力を向上させるのに役立つ。
In order to improve crystallinity using the liquid phase epitaxial method, there are various measures such as optimizing the growth temperature, controlling the vapor pressure in the reaction tube, inhibiting application at hetero interfaces, slowing the growth rate, and preventing the inclusion of dull substances. . Among these, slowing down the growth rate is an effective means for improving crystallinity and is useful for improving the light emitting output of the light emitting diode.

すなわちGaAlAsのシングルへテロ構造LED用エ
ピタキシャルウェハの構造が示されている第2図に示さ
れているように、このエピタキシャルウェハはキャリア
濃度が1〜4×1019cm−3のP型GaAs基盤1
上に、AfI混晶化が0.35のP型GaAjJAs層
をエピタキシャル成長させたP型GaAJ7Asエピタ
キシャル層2、更にその上Ag混晶化が0.65−のn
型GaAj7As層をエピタキシャル成長させたn型G
aAj7Asエピタキシャル居3を持ったものである。
That is, as shown in FIG. 2, which shows the structure of a GaAlAs single heterostructure epitaxial wafer for LED, this epitaxial wafer is made of a P-type GaAs substrate 1 with a carrier concentration of 1 to 4 x 1019 cm-3.
A P-type GaAJ7As epitaxial layer 2 is formed by epitaxially growing a P-type GaAjJAs layer with an AfI mixed crystallization of 0.35 on top, and a n-type GaAj7As layer with an Ag mixed crystallization of 0.65- is formed on top of the epitaxial layer 2.
n-type G with epitaxial growth of GaAj7As layer
It has aAj7As epitaxial layer 3.

このようなエピタキシャルウェハを成長するために用い
たスライドボートが第3図に示されている。同図に示さ
れているようにスライドボートは2つの成長用溶液溜を
備えた成長用溶液ホルダー4、セットした基板(P型G
aAs基板)1をスライドできる基板ホルダー5および
これらをその」二部に乗置する台座部から構成されてい
る。このスライドボートの基板ホルダー5にP型GaA
s基板1をセットし、P型GaA、9As工ピタキシヤ
ル層成長用の第1層目の成長溶液溜には、第1層目成長
用溶液6 G a s A RSG a A s s 
Z nをセットする。また、n型GaA]Asエピタキ
シャル層成長用の第2層の成長用溶液溜には第2層目成
長用溶液7のGa、AN GaAs、Teをセットする
A slide boat used for growing such epitaxial wafers is shown in FIG. As shown in the figure, the slide boat includes a growth solution holder 4 equipped with two growth solution reservoirs, a substrate (P type G
It consists of a substrate holder 5 on which an aAs substrate 1 can be slid, and a pedestal section on which these two parts are placed. P-type GaA is attached to the substrate holder 5 of this slide boat.
s substrate 1 is set, and the first layer growth solution 6 for growing the P-type GaA, 9As pitaxial layer is filled with the first layer growth solution 6.
Set Zn. Further, Ga, AN GaAs, and Te of the second layer growth solution 7 are set in the second layer growth solution reservoir for growing the n-type GaA]As epitaxial layer.

このスライドボート法で第4図に示されている温度プロ
グラムでエピタキシャル層の成長を行った。すなわち同
図に示しである温度プログラムは一般的に使用されてい
るプログラムであり、同図に示されているように850
℃で第1層目成長用溶液とP型GaAs基板とを接触さ
せて成長を開始し、810℃で基板ホルダーをスライド
させてP型GaAs基板を第1層目成長用溶液から分離
し、第2層目成長用溶液と接触させ、760℃になった
ところでP型GaAs基板を第2届目成長用溶液から分
離する。この場合、冷却速度を第1層目成長開始から0
.5℃/sinで下げている。
Using this slide boat method, an epitaxial layer was grown using the temperature program shown in FIG. In other words, the temperature program shown in the same figure is a commonly used program, and as shown in the same figure, the temperature program is 850.
Growth is started by bringing the first layer growth solution into contact with the P-type GaAs substrate at 810°C, and the P-type GaAs substrate is separated from the first layer growth solution by sliding the substrate holder at 810°C. The P-type GaAs substrate is brought into contact with the second layer growth solution, and when the temperature reaches 760° C., the P-type GaAs substrate is separated from the second layer growth solution. In this case, the cooling rate is set to 0 from the start of the first layer growth.
.. The temperature is lowered at 5°C/sin.

[発明が解決しようとする問題点コ 冷却速度を遅くすれば必要とするエピタキシャル層の膜
厚を得るのに、長時間成長とならざるを得ない。例えば
発光波長が660nmのGaAΩAsシングルへテロ構
造の発光ダイオード用エピタキシャルウェハを成長させ
るのに、冷却速度0.5℃/minで2時間から3時間
を要する。結晶性向上を目的として冷却速度を0.1℃
/sinと下げれば成長時間は10時間から15時間と
なり、成長のスループットを大幅に下げることになる。
[Problems to be Solved by the Invention] If the cooling rate is slowed down, the epitaxial layer will have to grow for a long time to obtain the required film thickness. For example, it takes 2 to 3 hours at a cooling rate of 0.5° C./min to grow an epitaxial wafer for a light emitting diode having a GaAΩAs single heterostructure with an emission wavelength of 660 nm. Cooling rate 0.1℃ to improve crystallinity
If it is lowered to /sin, the growth time will be from 10 hours to 15 hours, which will significantly reduce the growth throughput.

またエピタキシャルウェハは成長中高温で長時間保持さ
れることになり、エピタキシャル層間でのドーパント拡
散によりキャリア濃度プロファイルがくずれてしまう。
Furthermore, the epitaxial wafer is held at high temperature for a long time during growth, and the carrier concentration profile is distorted due to dopant diffusion between the epitaxial layers.

このため発光出力をかえって低下させことになり、高出
力の発光ダイオード用エピタキシャルウェハの成長は困
難となる。
For this reason, the light emitting output is reduced, making it difficult to grow epitaxial wafers for high-output light emitting diodes.

本発明は以上の点に鑑みなされたものであり、活性層の
結晶性を向上させることを可能とした液相エピタキシャ
ル成長方法を提供することを目的とするものである。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a liquid phase epitaxial growth method that makes it possible to improve the crystallinity of an active layer.

[問題点を解決するための手段] 上記目的は、n層成長のうち第(m −1)層目および
第m層目成長中の温度プログラムを、第(m−1)層目
成長中の終りから第m層目成長の開始初期にかけての徐
冷速度をその前後の徐冷速度より遅くすることにより、
達成される。(n≧m≧2) [作 用] 第(m−1)層目成長中の終りから第m層目成長の開始
初期にかけての徐冷速度をその前後の徐冷速度より遅く
したので、活性層の結晶性を向上させるための成長速度
の低速化が適切となって、活性層の結晶性が向上するよ
うになる。
[Means for solving the problem] The above purpose is to change the temperature program during the growth of the (m-1)th layer and the growth of the m-th layer among the growth of the (m-1)th layer. By making the annealing rate from the end to the beginning of the m-th layer growth slower than the annealing rate before and after that,
achieved. (n≧m≧2) [Effect] Since the slow cooling rate from the end of the growth of the (m-1)th layer to the beginning of the beginning of the growth of the mth layer was made slower than the slow cooling rate before and after that, the activity It is appropriate to slow down the growth rate in order to improve the crystallinity of the layer, so that the crystallinity of the active layer can be improved.

[実施例] 以下、図示した実施例に基づいて本発明を説明する。第
1図には本発明の一実施例が示されている。本実施例で
は第1層目および第2層目成長中の温度プログラムを、
第1層目成長中の終りから第2層目成長の開始初期にか
けての徐冷速度をその前後の徐冷速度より遅くし、小さ
い段付となるようにした。このようにすることにより活
性層の結晶性が向上するようになって、活性層の結晶性
を向上させることを可能とした液相エピタキシャル成長
方法を得ることができる。
[Example] The present invention will be described below based on the illustrated example. FIG. 1 shows an embodiment of the invention. In this example, the temperature program during the growth of the first layer and the second layer is as follows:
The annealing rate from the end of the first layer growth to the beginning of the second layer growth was made slower than the annealing rate before and after that, so that small steps were created. By doing so, the crystallinity of the active layer is improved, and a liquid phase epitaxial growth method that makes it possible to improve the crystallinity of the active layer can be obtained.

すなわち、第1図は縦軸に温度をとり横軸に時間をとっ
て第1層目および第2層目成長中の温度プログラムを示
したものである。同図に示されているように850℃で
第1層目成長用溶液と基板とを接触させ成長を開始する
が、第1層目成長中に温度が813℃になったところで
炉の冷却速度を0.5℃/LIIinから0.1℃/m
1nに下げる。
That is, FIG. 1 shows the temperature program during the growth of the first and second layers, with temperature plotted on the vertical axis and time plotted on the horizontal axis. As shown in the figure, growth is started by bringing the first layer growth solution into contact with the substrate at 850°C, but when the temperature reaches 813°C during the first layer growth, the furnace cooling rate increases. from 0.5℃/LIIin to 0.1℃/m
Lower it to 1n.

温度が810℃になったら基板をスライドさせ、第1層
目成長用溶液と基板とを分離し、第2層目成長用溶液と
接触させ成長を開始する。冷却速度0.1℃/minで
30分間成長させ温度が807℃になったら、冷却速度
を0.5℃/sinと速くして成長させる。炉内温度が
754℃になったら第2層目成長用溶液と基板とを分離
し、成長を終了させる。
When the temperature reaches 810° C., the substrate is slid to separate the first layer growth solution from the substrate, and brought into contact with the second layer growth solution to start growth. Growth is performed for 30 minutes at a cooling rate of 0.1° C./min, and when the temperature reaches 807° C., the cooling rate is increased to 0.5° C./sin for growth. When the temperature inside the furnace reaches 754° C., the second layer growth solution and the substrate are separated, and the growth is completed.

このようにして成長させたエピタキシャルウェハにグル
ービング法により溝を形成し、発光出力を測定し従来法
によるものと比較した。その結果、発光波長は本実施例
によるものと従来法によるものとが同じであったが、発
光出力は本実施例によるものが従来法によるものに比べ
平均で1.6倍の値であった、。このように良好な特性
を示したものは従来に比べ結晶性が向上したためである
Grooves were formed in the epitaxial wafer grown in this manner by a grooving method, and the light emission output was measured and compared with that obtained by the conventional method. As a result, although the emission wavelength was the same in this example and that in the conventional method, the emission output in this example was 1.6 times higher on average than that in the conventional method. ,. This is because the crystallinity has improved compared to the conventional one.

このように本実施例によれば成長温度プログラムを変更
し、成長時間を多少長くするだけで素子特性の良好なエ
ピタキシャルウェハを成長させることができる。更に活
性層付近の成長では膜厚の制御が非常に大切となり、例
えばダブルへテロ型のLED用エピタキシャルウェハな
どの場合には、膜厚が発光輝度に直接影響する。従って
活性層付近の成長では冷却速度が非常に遅いため、薄い
膜厚を制御性および再現性よく成長させることが可能と
なる。このため素子特性のばらつきが小さく、歩留りよ
く成長させることができる。
As described above, according to this embodiment, an epitaxial wafer with good device characteristics can be grown by simply changing the growth temperature program and lengthening the growth time to some extent. Furthermore, controlling the film thickness is very important in the growth near the active layer, and for example, in the case of a double hetero type epitaxial wafer for LED, the film thickness directly affects the luminance. Therefore, since the cooling rate is very slow in the growth near the active layer, it is possible to grow a thin film with good controllability and reproducibility. Therefore, variations in device characteristics are small and growth can be achieved with high yield.

なお、本実施例ではシングルへテロ構造のLED用エピ
タキシャルウェハの成長に用いたが、この温度プログラ
ムは結晶性の良好なエピタキシャル層を必要とするすべ
てのLED用エピタキシャルウェハ、LD用エピタキシ
ャルウェハ、フォトダイオード用エピタキシャルウェハ
の成長に適用できる。
Although this example was used to grow a single heterostructure LED epitaxial wafer, this temperature program can be applied to all LED epitaxial wafers, LD epitaxial wafers, and photodiode epitaxial wafers that require an epitaxial layer with good crystallinity. It can be applied to the growth of epitaxial wafers for diodes.

また、本実施例では冷却速度を小さくする工捏を一度だ
け用いたが、n層成長のうちに多数回用いることにより
結晶性の良好な活性層を多層成長させることもできる。
Further, in this example, the process of reducing the cooling rate was used only once, but by using it many times during the growth of the n-layer, it is also possible to grow multiple active layers with good crystallinity.

なおまた、本実施例ではR−0,5℃/m1ni、:対
し、R″をR″−0,1℃/sinとしているが、通常
の徐冷速度Rは1.0〜0.5℃/minであり、本特
許では活性層成長付近でR″をRの115〜1/10程
度に設定することが望ましい。
Furthermore, in this example, R'' is set to R-0.5°C/m1ni, whereas R″ is set to R″-0.1°C/sin, but the normal slow cooling rate R is 1.0 to 0.5°C. /min, and in this patent, it is desirable to set R″ to about 115 to 1/10 of R near the growth of the active layer.

[発明の効果] 上述のように本発明は活性層の結晶性が向上するように
なって、活性層の結晶性を向上させることを可能とした
液相エピタキシャル成長方法を得ることができる。
[Effects of the Invention] As described above, the present invention improves the crystallinity of the active layer, making it possible to obtain a liquid phase epitaxial growth method that makes it possible to improve the crystallinity of the active layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の液相エピタキシャル成長方法の一実施
例の成長温度プログラム図、第2図は液相エピタキシャ
ル成長方法によるGaAj7Asシングルへテロ型LE
D用エピタキシャルウェハの縦断側面図、第3図は液相
エピタキシャルウェハ成長方法によるスライドボートの
縦断側面図、第4図は従来の液Fgエピタキシャル成長
方法の成長温度プログラム図である。 1:P型のGaAs基板、 2:P型GaAj7Asエピタキシャル層、3:n型G
aAJ7Asエピタキシャル層、4:成長用溶液ホルダ
ー、 5:基板ホルダー、 6:第1層目成長用溶液、 7:第2層目成長用溶液。 % 1 口 ぺ+、許開 劃〕 短 2日
Fig. 1 is a growth temperature program diagram of an embodiment of the liquid phase epitaxial growth method of the present invention, and Fig. 2 is a growth temperature program diagram of an embodiment of the liquid phase epitaxial growth method of the present invention.
FIG. 3 is a vertical side view of a slide boat using the liquid phase epitaxial wafer growth method, and FIG. 4 is a growth temperature program diagram of the conventional liquid Fg epitaxial growth method. 1: P-type GaAs substrate, 2: P-type GaAj7As epitaxial layer, 3: n-type G
aAJ7As epitaxial layer, 4: growth solution holder, 5: substrate holder, 6: first layer growth solution, 7: second layer growth solution. % 1 mouth +, open opening㊃] Short 2 days

Claims (1)

【特許請求の範囲】 1、基板を支持した移動自在な基板ホルダーと、この基
板ホルダー上に設けられ、第1層目から第n層目まで成
長用溶液を収納した成長用溶液ホルダーとを備え、前記
基板上に前記第1層目から第n層目までの成長溶液を順
次接触させて徐冷法によりn層のエピタキシャル成長層
を成長させる方法において、前記成長用溶液のうち第(
m−1)層目および第m層目成長中の温度プログラムを
、前記第(m−1)層目成長中の終りから前記第m層目
成長の開始初期にかけての徐冷速度をその前後の徐冷速
度より遅くしたことを特徴とする液相エピタキシャル成
長方法(但し、n及びmは整数、かつn≧m≧2。) 2、前記第(m−1)層目成長中の終りから前記第m層
目成長の開始初期にかけての徐冷速度が0.2℃/mi
nから0.05℃/minである特許請求の範囲第1項
記載の液相エピタキシャル成長方法。
[Claims] 1. A movable substrate holder supporting a substrate, and a growth solution holder provided on the substrate holder and containing growth solutions from the first layer to the nth layer. , in a method of growing n epitaxial growth layers by a slow cooling method by sequentially contacting growth solutions from the first layer to the nth layer on the substrate, the growth solution (
m-1) The temperature program during the growth of the (m-1)th layer and the growth of the m-th layer is determined by the slow cooling rate from the end of the growth of the (m-1)th layer to the beginning of the growth of the m-th layer before and after that. A liquid phase epitaxial growth method characterized in that the cooling rate is slower than the slow cooling rate (however, n and m are integers, and n≧m≧2.) 2. From the end of the (m-1)th layer growth to the second The slow cooling rate during the initial stage of the growth of the m-th layer was 0.2°C/mi.
The liquid phase epitaxial growth method according to claim 1, wherein the rate is 0.05° C./min from n.
JP2469788A 1988-02-04 1988-02-04 Method for liquid-phase epitaxial growth Pending JPH01201093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2469788A JPH01201093A (en) 1988-02-04 1988-02-04 Method for liquid-phase epitaxial growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2469788A JPH01201093A (en) 1988-02-04 1988-02-04 Method for liquid-phase epitaxial growth

Publications (1)

Publication Number Publication Date
JPH01201093A true JPH01201093A (en) 1989-08-14

Family

ID=12145365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2469788A Pending JPH01201093A (en) 1988-02-04 1988-02-04 Method for liquid-phase epitaxial growth

Country Status (1)

Country Link
JP (1) JPH01201093A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840179A (en) * 1997-06-19 1998-11-24 Jtm Industries, Inc. Ultrasonic conditioning and wet scubbing of fly ash

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639538A (en) * 1979-09-07 1981-04-15 Hitachi Ltd Pattern forming method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639538A (en) * 1979-09-07 1981-04-15 Hitachi Ltd Pattern forming method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840179A (en) * 1997-06-19 1998-11-24 Jtm Industries, Inc. Ultrasonic conditioning and wet scubbing of fly ash
US5988396A (en) * 1997-06-19 1999-11-23 Isg Resources, Inc. Ultrasonic conditioning and wet scrubbing of fly ash

Similar Documents

Publication Publication Date Title
US4902356A (en) Epitaxial substrate for high-intensity led, and method of manufacturing same
US20050011432A1 (en) Method of manufacturing Group III nitride crystals, method of manufacturing semiconductor substrate, Group III nitride crystals, semiconductor substrate, and electronic device
JP3143040B2 (en) Epitaxial wafer and method for manufacturing the same
EP0525619B1 (en) Compound semiconductor single crystal
US4218270A (en) Method of fabricating electroluminescent element utilizing multi-stage epitaxial deposition and substrate removal techniques
JPH01201093A (en) Method for liquid-phase epitaxial growth
JPH08139358A (en) Epitaxial wafer
JP3104218B2 (en) Method for growing nitrogen-doped GaP epitaxial layer
JPH08335555A (en) Fabrication of epitaxial wafer
US5653801A (en) Method for reducing contamination in semiconductor by selenium doping
JP2666525B2 (en) GaAs light emitting diode and method of manufacturing the same
JP2000058904A (en) Epitaxial wafer and its manufacture as well as light emitting diode
JPH1065211A (en) Light-emitting diode
US4609411A (en) Liquid-phase epitaxial growth method of a IIIb-Vb group compound
JP2783580B2 (en) Double hetero-type infrared light emitting device
JPH09214052A (en) Organic metal vapor growth method
JP2650436B2 (en) Light emitting diode and method of manufacturing the same
JPH0712093B2 (en) Light emitting semiconductor device substrate and manufacturing method thereof
JP2000183396A (en) Epitaxial wafer and led manufactured using the wafer
JPH09167855A (en) Semiconductor optical device and light-emitting diode
JPH02307889A (en) Liquid phase epitaxy
JPH05235409A (en) Semiconductor optical element, light-emitting diode and manufacture thereof
JPH0251223A (en) Liquid-phase epitaxial growth method
JPH01315174A (en) Semiconductor light-emitting device
JP2001203390A (en) Manufacturing method for photoelectric conversion functional element