JPH01199583A - Separation and recovery of erythritol from erythritol-containing culture fluid - Google Patents

Separation and recovery of erythritol from erythritol-containing culture fluid

Info

Publication number
JPH01199583A
JPH01199583A JP63021347A JP2134788A JPH01199583A JP H01199583 A JPH01199583 A JP H01199583A JP 63021347 A JP63021347 A JP 63021347A JP 2134788 A JP2134788 A JP 2134788A JP H01199583 A JPH01199583 A JP H01199583A
Authority
JP
Japan
Prior art keywords
erythritol
exchange resin
fraction
supernatant
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63021347A
Other languages
Japanese (ja)
Other versions
JPH0734748B2 (en
Inventor
Toshihiro Maeda
前田 敏弘
Takashi Konbu
昆布 ▲隆▼
Isao Nakazawa
功 中沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Nikken Chemicals Co Ltd
Original Assignee
Mitsubishi Kasei Corp
Nikken Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp, Nikken Chemicals Co Ltd filed Critical Mitsubishi Kasei Corp
Priority to JP63021347A priority Critical patent/JPH0734748B2/en
Priority to EP19890101623 priority patent/EP0327016B1/en
Priority to DE1989611158 priority patent/DE68911158T2/en
Priority to US07/304,794 priority patent/US4906569A/en
Publication of JPH01199583A publication Critical patent/JPH01199583A/en
Publication of JPH0734748B2 publication Critical patent/JPH0734748B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title erythritol in high yield, by passing, through a special ion exchange resin column, a supernatant produced by eliminating the bacteria from an erythritol-contg. culture solution, carrying out elution with water followed by crystallization of the resultant eluted solution. CONSTITUTION:A supernatant produced by eliminating the bacteria from an erythritol-contg. culture solution obtained by culture of an erythritol-producing strain is passed through a column packed with an alkali metal-type or ammonium-type strongly acidic cation exchange resin. Thence, water is passed this column to carry out elution. A fraction mainly containing erythritol and glycerin is then collected from the resultant eluted solution followed by crystallization, thus obtaining the objective erythritol crystal from said fraction. Prior to passing said supernatant through the column, it is preferable that the high- hardness components contained in the supernatant be eliminated using an alkali metal-type cation exchange resin.

Description

【発明の詳細な説明】 (、)発明の目的 (産業上の利用分野) 本発明はエリスリトール生産菌の培養液から、培地に添
加された原料物質及び添加物質にもとづく各釉不純物及
び副反応生成物等、たとえば各種の塩類、着色成分及び
各種の多糖類等を簡単に分離・除去して、高純度のエリ
スリトールを高い晶析収率で容易に分離・回収する方法
に関する。なお、本明細書に記載する「エリスリトール
」とは、正確には「メソ−エリスリトール」を意味する
ものであり、このエリスIJ )−ルは甘味料、医薬品
や工業薬品等の中間体などとして有用なものである。
Detailed Description of the Invention (,) Purpose of the Invention (Field of Industrial Application) The present invention aims to eliminate various glaze impurities and side reaction formations based on the raw materials and additives added to the culture medium from the culture solution of erythritol-producing bacteria. The present invention relates to a method for easily separating and removing substances such as various salts, coloring components, and various polysaccharides, and easily separating and recovering high-purity erythritol at a high crystallization yield. In addition, "erythritol" described in this specification precisely means "meso-erythritol", and this erythritol is useful as a sweetener, an intermediate for pharmaceuticals, industrial chemicals, etc. It is something.

(従来の技術) 培養法によりエリスIJ )−ルを製造するためのエリ
スリトール産生菌としては、たとえばオーレオパシディ
ウム属(特開昭61−31091号公報、主な副反応生
成物はグリセリン)、モニリエラ・トメントサ・パール
・ポリニス(特開昭60−110295〜8号公報、主
な副反応生成物はグリセリン及び炭素数5の糖アルコー
ルとしてのりビトール)、キャンシダ・ゼイライデス(
ATCC15585)、トルロプシス・ファマタ(AT
CC1586) 等(%開昭49−118889号公報
)、キャンシダ・リポリティカ(米国特許第3,756
,917号明細書)、及びトルロプシス属、キャンシダ
属(特公昭47−41549号公報)等が知られている
(Prior Art) Erythritol-producing bacteria for producing Erys IJ)-l by a culture method include, for example, Aureopacidium (Japanese Patent Application Laid-Open No. 61-31091, main side reaction product is glycerin); Moniliella tomentosa pearl polynis (Japanese Unexamined Patent Publication No. 60-110295-8, the main side reaction products are glycerin and Noribitol as a sugar alcohol with 5 carbon atoms), Cansida zeilides (
ATCC15585), Torulopsis famata (AT
CC1586) etc. (%Kokai No. 49-118889), Cancida lipolytica (U.S. Pat. No. 3,756)
, No. 917), and the genus Torulopsis and Cancida (Japanese Patent Publication No. 47-41549).

従来、これらのエリスリトール産生菌を水性培地で培養
して得られた培養液からエリスリトールを高純度で分離
・回収するには、その前処理として、通常、培養液を活
性炭で脱色処理し、次いでイオン交換樹脂で脱塩、脱色
処理してから濃縮し、冷却・晶析させていた。
Conventionally, in order to separate and recover erythritol in high purity from the culture solution obtained by culturing these erythritol-producing bacteria in an aqueous medium, the culture solution is usually decolorized with activated carbon and then ionized. After desalting and decolorizing with an exchange resin, it was concentrated, cooled, and crystallized.

ところが、エリスリトール産生菌の培養工程では、通常
、その培地にKH2PO4、MgSO4、CaC42、
K2SO4、CaSO4、F e SO4、MnSO4
、Z n SO4、(NH4)2I(PO4等の無機塩
類が多量に添加されるし、また窒素源として(NH4)
2804、尿素、NH4ct1(NH4)2N06等が
、さらに栄養源としてコーン・ステイープリカー、大豆
粉、各種アミノ酸、被プトン、チアミン、酵母エキス等
が多量に添加される。
However, in the culture process of erythritol-producing bacteria, KH2PO4, MgSO4, CaC42,
K2SO4, CaSO4, FeSO4, MnSO4
, Z n SO4, (NH4)2I (PO4 and other inorganic salts are added in large quantities, and (NH4) is used as a nitrogen source.
2804, urea, NH4ct1(NH4)2N06, etc., and furthermore, as nutritional sources, corn staple liquor, soybean flour, various amino acids, acetate, thiamin, yeast extract, etc. are added in large quantities.

特に、コーン・ステープリカーを用いた場合には、培養
液の着色が著しい。そのために、上記の従来法は、培養
液からこれらの各種の添加物にもとづく不純物を完全に
脱色・脱塩するのに、多量の活性炭やイオン交換樹脂や
、さらKはそれらの再生用の薬剤全必要とする欠点があ
った。
In particular, when corn staple liquor is used, the culture solution is significantly colored. For this reason, the conventional method described above requires a large amount of activated carbon, ion exchange resin, and regenerating agents to completely decolorize and desalinate impurities caused by these various additives from the culture solution. There were all the necessary shortcomings.

捷た、その培養工程では、副反応生成物として、たとえ
ばグリセリン、リビトール、多糖類等が生成するばかり
でなく、原料として結晶しょ糖や結晶ぶどう糖の代りに
、でん粉の酵素糖化法等で得られた精製ぶどう糖(これ
はぶどう糖含有率が93〜97%、残りが三糖類、三糖
類、及びそれ以上のオリゴ糖である。)を用いた場合に
は、原料糠中に含まれている三糖類以上のオリゴ糖がそ
のまま又はその反応生成物の形で培養液中に不純物とし
て含まれてくる。そして、これらの各種の不純物は、培
養液の活性炭処理やイオン交換樹脂による脱色・脱塩処
理工程でも除去されないので、エリスIJ )−ルの晶
析収率を高めるための培養液の濃縮時に、これら不純物
濃度も上昇して、晶析をさせる濃縮液が水飴状になシ、
エリスリトールの晶析速度を著しく低下させることにな
る。そのために、上記の従来法はやむをえず、低濃度の
濃縮にとどめて晶析全行なわせざるをえず、ひいてはエ
リスリトールの晶析収率を著しく低下させる欠点があっ
た。
In the cultivation process, not only glycerin, ribitol, polysaccharides, etc. are produced as side reaction products, but also products obtained by enzymatic saccharification of starch, etc., are produced instead of crystalline sucrose or glucose as raw materials. When using refined glucose (which has a glucose content of 93 to 97%, with the remainder being trisaccharides, trisaccharides, and higher oligosaccharides), the amount of trisaccharides contained in the raw material bran or higher These oligosaccharides are contained as impurities in the culture solution, either as they are or in the form of their reaction products. These various impurities are not removed even when the culture solution is treated with activated carbon or decolorized and desalted using an ion exchange resin, so when concentrating the culture solution to increase the crystallization yield of Eris IJ) The concentration of these impurities also increases, and the concentrated liquid used for crystallization becomes starch syrup-like.
This will significantly reduce the crystallization rate of erythritol. For this reason, the conventional method described above has the drawback that the entire crystallization must be carried out only at a low concentration concentration, and as a result, the crystallization yield of erythritol is significantly reduced.

そして、本発明者等の研究によれば、エリスリトール培
養液中のエリスリトールの晶析に影響を与える不純物は
、主として下記の成分であることが判明した。
According to the research conducted by the present inventors, it has been found that the impurities that affect the crystallization of erythritol in the erythritol culture solution are mainly the following components.

(i)  副反応で生成するグリセリン(11)  グ
リセリン以外の副反応生成物< ir )  でん粉の
酵素糖化法等で得られた精製ぶどう糖を原料として用い
た場合には、原料ぶどう糠中に含まれる三糖類以上のオ
リゴ糖及びその反応生成物 (1v)  ぶどう糖を主な構成成分とするβ−1,4
結合をもつ多糖類 このうち、(1)、(11)及び< 1r: )の成分
が多く含まれる場合には、常法により活性炭とイオン交
換樹脂を用いて脱色・脱塩した液を濃縮して晶析を行な
わせると、充分な晶析収率に達しない段階で母液が急激
な粘度上昇を起して水飴状になシ、晶析速度を著しく低
下するとともに、析出した結晶と母液の分離をも困難に
する。
(i) Glycerin produced by side reactions (11) Side reaction products other than glycerin <ir) When purified glucose obtained by enzymatic saccharification of starch is used as a raw material, it is contained in the raw material grape bran. Oligosaccharides of trisaccharide or higher and their reaction products (1v) β-1,4 whose main component is glucose
Among polysaccharides with bonds, if the components (1), (11) and < 1r: When crystallization is carried out, the viscosity of the mother liquor rapidly increases before a sufficient crystallization yield is reached, resulting in a starch syrup-like consistency, which significantly reduces the crystallization rate and causes the separation between the precipitated crystals and the mother liquor. It also makes separation difficult.

また、上記(1■)の多糖類は分子量が数千〜致方のも
ので、その生成量が30〜500 ppm程度と低いが
、活性炭やイオン交換樹脂を用いる通常の脱色・脱塩処
理では除去されず、エリスリトール結晶の晶析工程で析
出し、生成エリスリトール結晶に混入してくる。そのた
めに、得られたエリスIJ )−ル結晶は、これを水に
溶解させたときに白濁し、品質低下の原因となる。
In addition, the polysaccharides mentioned in (1) above have molecular weights ranging from several thousand to six hundred thousand, and the amount produced is as low as 30 to 500 ppm, but normal decolorization and desalination treatments using activated carbon and ion exchange resins It is not removed, but precipitates during the crystallization process of erythritol crystals, and is mixed into the produced erythritol crystals. For this reason, the obtained Eris IJ)-le crystals become cloudy when dissolved in water, causing quality deterioration.

なお、晶析収率を向上させる手段とし、原料糖に、でん
粉の酵素糖化法で得られた三糖類以上のオリゴ糖を多く
含むぶどう糖を用いずに、結晶ぶどう糖や結晶しょ糖を
用いて上記(iil )の原料に由来するオリゴ糖及び
その反応生成物量を少なくする方法を採用することが可
能であるが、しかしこの方法も、(11)グリセリン以
外の副反応生成物が依然として含まれてくるので、なお
充分に満足できる方法でなかった。
In addition, as a means to improve the crystallization yield, the above ( It is possible to adopt a method of reducing the amount of oligosaccharides and their reaction products derived from the raw materials of (11) (iii), but this method still contains side reaction products other than (11) glycerin. However, this method was not completely satisfactory.

(発明が解決しようとする問題点) 本発明は、エリスリトール含有培養液からエリスリトー
ルを分離・回収する方法の改良法、詳しくはエリスリト
ール含有培養液より菌体を分離して得られた上澄液から
、それに含まれる各種の塩類、着色成分及び各種のオリ
ゴ糖及び多糖類等を同時に効率よく分離して除き、高純
度のエリスリトール結晶金高い晶析収率で分離・回収す
る方法を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention provides an improved method for separating and recovering erythritol from an erythritol-containing culture solution, specifically, from a supernatant obtained by separating bacterial cells from an erythritol-containing culture solution. , various salts, coloring components, and various oligosaccharides and polysaccharides contained therein are simultaneously and efficiently separated and removed, thereby providing a method for separating and recovering high-purity erythritol crystalline gold with a high crystallization yield. It is something.

(b)発明の構成 (問題点を解決するための手段) 本発明者等は、前記の問題点を解決するために、さらに
研究を重ねた結果、アルカリ金属型若しくはアンモニア
型の強酸性カチオン交換樹脂を分離剤とするクロマトグ
ラフ分離法によりその目的を達成することができたもの
である。
(b) Structure of the Invention (Means for Solving the Problems) In order to solve the above-mentioned problems, the present inventors have conducted further research and found that alkali metal type or ammonia type strongly acidic cation exchange This objective was achieved using a chromatographic separation method using a resin as a separation agent.

すなわち、本発明のエリスリトール含有培養液からエリ
スリトールを分離・回収する方法は、エリスリトール生
産菌を水性培地中で好気的条件下で培養して得られた培
養液から菌体を除去した上澄液を、アルカリ金属庫型若
しくはアンモニウム型の強酸性カチオン交換樹脂を充填
した分離塔に通し、次いで水で溶離流出させ、その流出
液からエリスIJ )−ルを主成分として含有する画分
を分取し、該画分よりエリスリトールを回収すること全
特徴とする方法である。
That is, the method of separating and recovering erythritol from an erythritol-containing culture solution of the present invention involves culturing erythritol-producing bacteria in an aqueous medium under aerobic conditions, and then removing bacterial cells from the resulting culture solution. is passed through a separation column filled with an alkali metal storage type or ammonium type strongly acidic cation exchange resin, and then eluted with water, and a fraction containing Eris IJ) as a main component is separated from the effluent. This method is characterized in that erythritol is recovered from the fraction.

本発明の分離・回収方法は、エリスIJ )−ル生産菌
を水性培地中で好気的条件下で培養し得られた培養液か
ら菌体を除去した上澄液に対して、アルカリ金属型若し
くはアンモニア型の強酸性カチオン交換樹脂を分離剤と
するクロマトグラフ分離法を適用する方法であるが、そ
の上澄液は、予め硬度成分を除去し、かつ所定の濃度ま
で濃縮しておくのが望ましい。
The separation/recovery method of the present invention involves culturing Erys IJ)-le-producing bacteria in an aqueous medium under aerobic conditions, removing the bacterial cells from the resulting culture solution, and using the supernatant to remove alkali metal Alternatively, a chromatographic separation method using an ammonia-type strongly acidic cation exchange resin as a separating agent is applied, but it is recommended that the supernatant liquid be removed in advance to remove hard components and concentrated to a predetermined concentration. desirable.

その上澄液の硬度成分の除去法(軟化処理法)としては
、通常、スルホン酸型の強酸性カチオン交換樹脂のNa
型のものを用い、このカチオン交換樹脂を充填した塔に
上澄液を通して上澄液中のCaイオンやMgイオンヲN
aイオンと交換させて除き、Ca型及び/又はMg型に
変ったカチオン交換樹脂1Nact水溶液でNa型に再
生させて繰返し使用する方法と、カルボン酸型の弱酸性
カチオン交換樹脂のNa型のものを用い、このカチオン
交換樹脂を充填した塔に上澄液を通して上澄液中の硬度
成分を同様にイオン交換させて除き、Ca及び/又はM
g型に変った同樹脂をHCl又はH2SO4等の強酸で
再生してH型にしたのち、NaOH水溶液を流してNa
型に戻してから繰返し再使用する方法とがある。この二
つの方法のうち、上記上澄液中の全塩濃度が、通常、2
0〜300 meq/を程度と高いので、このような全
塩濃度の高い上澄液から硬度成分を完全に除くには、カ
ルボン酸型弱酸性カチオン交換樹脂のNa型のものを用
いる方法の方がより好ましい。
As a method for removing the hard components of the supernatant liquid (softening treatment method), Na
The supernatant liquid is passed through a column filled with this cation exchange resin to remove Ca ions and Mg ions in the supernatant liquid.
A method in which the cation exchange resin is removed by exchanging it with a ions and changed to the Ca type and/or Mg type, and then regenerated into the Na type with a Nact aqueous solution and used repeatedly, and the Na type of the weakly acidic cation exchange resin in the carboxylic acid type. The hardness components in the supernatant are removed by ion exchange by passing the supernatant through a column filled with this cation exchange resin, and Ca and/or M
The same resin that has changed to G-type is regenerated with HCl or a strong acid such as H2SO4 to make H-type, and then a NaOH aqueous solution is poured to
There is a method of returning it to the mold and then reusing it repeatedly. Of these two methods, the total salt concentration in the supernatant is usually 2.
Since the hardness component is as high as 0 to 300 meq/, in order to completely remove the hardness component from the supernatant liquid with such a high total salt concentration, it is better to use a Na type of carboxylic acid type weakly acidic cation exchange resin. is more preferable.

次に本発明の方法における分離剤のアルカリ金属型若し
くはアンモニウム型の強酸性カチオン交換樹脂としては
、ジビニルベンゼン架橋ポIJI−レンスルホン酸型の
強酸性カチオン交換樹脂(架橋度4〜10チのもの)の
アルカリ金属型若しくはNH4型のものが好ましく、特
にそのNa型のものが最も好ましい。
Next, as the alkali metal type or ammonium type strongly acidic cation exchange resin used as the separating agent in the method of the present invention, a divinylbenzene crosslinked polyJI-lenesulfonic acid type strongly acidic cation exchange resin (with a crosslinking degree of 4 to 10 ) are preferred, and the Na type is most preferred.

かかるアルカリ金属型若しくはアンモニウム型の強酸性
カチオン交換樹脂(以下、これを単に「分離剤」という
ことがちる。)全充填した分離塔に、上記の上澄液、好
ましくは硬度成分を除いた上澄液、より好ましくは硬度
成分を除き、かつ30〜70重量%の濃度(この濃度は
溶存物質濃度を意味する。)にまで濃縮した濃縮上澄液
を、分離剤体積に対して5〜20容量係量供給し、次い
で水で溶離流出させ、その流出液からエリスリましくけ
60〜80℃に保持する。この場合の分離塔等の温度が
低くすぎると分離塔内で微生物が増殖し、通液圧力の損
失が増大するし、かつチャンネリングの原因となシ、分
離能力が低下する。
The above-mentioned supernatant liquid, preferably after removing the hard components, is added to a separation column completely filled with the alkali metal type or ammonium type strongly acidic cation exchange resin (hereinafter simply referred to as "separation agent"). A clear liquid, more preferably a concentrated supernatant liquid after removing hardness components and concentrating to a concentration of 30 to 70% by weight (this concentration refers to the concentration of dissolved substances), is added at a concentration of 5 to 20% by weight based on the volume of the separating agent. The solution is fed at a volumetric rate, then eluted with water, and the effluent is kept in an erythroid tube at 60-80°C. In this case, if the temperature of the separation tower, etc. is too low, microorganisms will proliferate within the separation tower, increasing the loss of liquid passing pressure, causing channeling, and reducing the separation ability.

また、その温度が高すぎると培養液中に含まれる三糖類
以上のオリゴ糖の熱分解を起し、液の着色が著しくなる
。また、分離塔に供給する硬度成分を除いた濃縮液の濃
度が高すぎると、液粘度が上昇して分離性能が低下して
くるし、またその液濃度が低くすぎると、分離塔に供給
すべき液体積が増大し、それにともない溶離液としての
水の使用量が増大するので、分離塔に供給する上澄液濃
度は、上述のように溶存物質濃度として30〜70重量
%とするのが好ましい。さらに、分離塔に供給する濃縮
上澄液量が少ないと分離性能が向上するが、分離剤当り
の分離の生産性が低下してくるし、その濃縮上澄液量が
多すぎると分離性能が低下してくるので、分離塔へ供給
する1回当シの濃縮上澄液量は分離剤体積に対して、上
述のように5〜20容量チとするのが望ましい。
On the other hand, if the temperature is too high, oligosaccharides of trisaccharides or higher contained in the culture solution will thermally decompose, resulting in significant coloration of the solution. In addition, if the concentration of the concentrated liquid excluding hardness components supplied to the separation tower is too high, the liquid viscosity will increase and the separation performance will decrease. Since the liquid volume increases and the amount of water used as an eluent increases accordingly, the concentration of the supernatant liquid supplied to the separation column is preferably 30 to 70% by weight as the dissolved substance concentration as described above. . Furthermore, if the amount of concentrated supernatant liquid supplied to the separation column is small, separation performance will improve, but separation productivity per separation agent will decrease, and if the amount of concentrated supernatant liquid is too large, separation performance will decrease. Therefore, it is desirable that the amount of concentrated supernatant liquid supplied to the separation column at one time be 5 to 20 volumes per volume of separation agent, as described above.

なお、前記培地には、通常、前述のようににイオンや窒
素源としてのNH4イオン等の多量の塩が加えられるた
め罠、これらのイオンは硬度成分の除去工程で一部がN
aイオンに置き換えられるにしても、なおこれらイオン
の大部分は分離塔に流入してくることになる。そのため
に、分離塔に最初はNa型のカチオン交換樹脂を充填し
ておいても、分離操作を繰り返す間に、Na型樹脂の一
部かに型やNH4型に変るが、分離性能上は格別の支障
を生じない。
Note that, as mentioned above, a large amount of salt such as ions and NH4 ions as a nitrogen source is usually added to the medium, and some of these ions are converted to N during the hardness component removal process.
Even if they are replaced by a ions, most of these ions will still flow into the separation column. For this reason, even if the separation column is initially filled with Na-type cation exchange resin, during repeated separation operations, some of the Na-type resin will change to cation exchange resin or NH4 type, but the separation performance will be significantly lower. does not cause any hindrance.

このようにして、上澄液、好ましくは硬度成分を除き、
かつ所定の濃度に濃縮した上澄液を通し、次いでM離液
として水を通して、分離剤に吸着された溶存物質を逐次
に溶離流出させる。すると、まず塩類、着色成分及び分
子量の大きい多糖類が流出し、引続いて原料ぶどう糖中
に含まれていた三糖類以上のオリゴ糖及びグリセリン以
外の副反応生成物が流出し、さらに引続いてエリスリト
ール及びグリセリンが流出してくるから、その流出液を
エリスリトールの流出がはじまる時点の前後の二つの画
分に分けると、塩類、着色成分、副反応で生成する多糖
類、原料ぶどう糖中の三糖類以上のオリゴ糖及びその副
反応生成分等を含む前段の画分と、エリスリトールを主
成分としグリセリンを含む後段の画分とに、容易に分割
することができる。
In this way, the supernatant, preferably the hardness component, is removed;
A supernatant liquid concentrated to a predetermined concentration is passed therethrough, and then water is passed therethrough as an M syneresis liquid, so that the dissolved substances adsorbed on the separation agent are successively eluted out. Then, salts, coloring components, and polysaccharides with large molecular weights flow out, followed by oligosaccharides containing trisaccharides or higher contained in the raw glucose and side reaction products other than glycerin, and then further. Erythritol and glycerin flow out, so if you divide the flow into two fractions, before and after the point at which erythritol begins to flow out, you will find salts, coloring components, polysaccharides produced by side reactions, and trisaccharides in the raw material glucose. It can be easily divided into a former fraction containing the above-mentioned oligosaccharides and their side reaction products, and a latter fraction containing erythritol as a main component and glycerin.

かくして分割して得られたエリスリトールを主成分とす
る画分は、充分に着色成分及び塩類等が除かれているか
ら、そのまま濃縮して晶析を行なわせると、容易に高純
度のエリスリトールを高い晶析収率で析出させて回収す
ることができる。すなわち、上記のエリスリトールを主
成分とする画分は、通常、溶存物質濃度として3〜30
重量%程度の低い濃度のものであシ、かつ副反応生成物
のグリセリンを含むものであるが、この画分は濃縮して
晶析を行なわせれば容易に高純度のエリスリ) −ル結
晶を析出させることができる。たとえば、同画分を溶存
物質濃度が30〜85重量%になるまで濃縮してから、
エリスIJ )−ルの種晶を加えて徐冷しながら結晶を
析出させる冷却晶析法、或いは同画分を減圧下で30〜
80℃の範囲内の一定温度で濃縮させながら結晶を析出
させる方法等の方法を用いれば、容易に高純度のエリ、
% IJ )−ル結晶を高い晶析収率で析出させること
ができる。
Since the fraction containing erythritol as the main component obtained by dividing in this manner has sufficiently removed coloring components and salts, it is easy to concentrate and crystallize it as it is to obtain highly pure erythritol. It can be precipitated and recovered with a crystallization yield. That is, the fraction containing erythritol as the main component usually has a dissolved substance concentration of 3 to 30
Although it has a low concentration of about % by weight and contains glycerin as a side reaction product, this fraction can easily precipitate high-purity erythrile crystals by concentrating and crystallizing it. be able to. For example, after concentrating the same fraction until the dissolved substance concentration is 30 to 85% by weight,
A cooling crystallization method in which seed crystals of Ellis IJ) are added and crystals are precipitated while slowly cooling, or the same fraction is heated under reduced pressure for 30 to 30 minutes.
High purity Eri,
% IJ)-ol crystals can be precipitated with a high crystallization yield.

なお、特に高純度のエリスリトール結晶を収得したい場
合には、前記のエリスIJ )−ルを主成分とする画分
を活性炭で脱色し、さらに常法にしたがってカチオン交
換樹脂塔、アニオン交換樹脂塔、及びカチオン交換樹脂
とアニオン交換樹脂との両樹脂の混床塔で処理して完全
に脱塩したのち、上記したと同様の方法で濃縮・晶析を
行なわせると、より高純度のエリスリトール結晶を析出
させることができる。
In addition, when it is desired to obtain particularly high-purity erythritol crystals, the fraction containing the above-mentioned erythritol as a main component is decolorized with activated carbon, and then added to a cation exchange resin tower, an anion exchange resin tower, After complete desalination by treatment in a mixed bed tower of both cation exchange resin and anion exchange resin, higher purity erythritol crystals can be obtained by concentrating and crystallizing in the same manner as above. It can be precipitated.

上記したエリスリトール結晶を析出させた残シの母液中
には、副反応生成物のグリセリンが含まれているから、
このグリセリンは別途容易に回収することができる。
The mother liquor of the residue from which the above-mentioned erythritol crystals were precipitated contains glycerin, which is a side reaction product.
This glycerin can be easily recovered separately.

このように、本発明の方法を用いれば、培地に添加した
各種塩類、原料ぶどう糠中に含まれる三糖類以上のオリ
ゴ糖、及び副反応等により生成したグリセリン以外の各
種副反応生成物等の上澄液中に含まれる不純物の大部分
は、着色成分をも含めで、溶離工程において分離塔から
初期に溶離流出する画分として、後期に溶離流出するエ
リスリトールを主成分とする画分とに容易に分離できる
ので、そのエリスリトールを主成分とする画分はそれら
の不純物の含有量の著しく少ない画分として得られる。
As described above, by using the method of the present invention, various salts added to the culture medium, oligosaccharides containing trisaccharides or higher contained in the raw material grape bran, and various side reaction products other than glycerin generated by side reactions, etc. Most of the impurities contained in the supernatant liquid, including colored components, are separated into a fraction that elutes out of the separation tower in the early stage and a fraction mainly composed of erythritol that elutes and flows out in the later stage of the elution process. Since it can be easily separated, the fraction containing erythritol as a main component can be obtained as a fraction containing significantly less impurities.

したがって、この後期の画分からエリスリトールを晶析
させれば、母液としてパージされる糖類及び糖アルコー
ル量が著しく減少し、エリスリトールの晶析収率が高く
なるし、得られるエリスリトール結晶の純度も高い。
Therefore, if erythritol is crystallized from this late fraction, the amount of sugars and sugar alcohols purged as a mother liquor will be significantly reduced, the crystallization yield of erythritol will be high, and the purity of the resulting erythritol crystals will be high.

上記説明においては、回分分離法について述べているが
、精製効果という点では一定量の濃縮上澄液を供給し、
次いで溶離水を供給することKより塩類、多糖類及びグ
リセリン以外の副反応生成物 を含む画分とエリスリトール翫含む画分に分離すればよ
いわけであり、アルカリ金属型若しくはアンモニウム型
の強酸性カチオン交換樹脂を用いるかぎりにおいて、ど
のような分離操作法を用いても良い。即ち下記の実施例
1及び2に記載されている方法に限定されることなく、
たとえばコロニアルシュガー社出願の特開昭45−24
807号公報、参松工業株式会社出願の特開昭53−1
49870号公報、三菱化成工業株式会社出願の特開昭
55−61903号公報等に記載の回分分離法や米国U
。0゜P社出願の米国特許第2985589号明細1記
載の擬似移動床方式による連続分離法等のような分離操
作法を採用してもよい。
In the above explanation, the batch separation method is described, but in terms of purification effect, a fixed amount of concentrated supernatant liquid is supplied,
Next, by supplying elution water, it is sufficient to separate the fraction into a fraction containing salts, polysaccharides, and side reaction products other than glycerin, and a fraction containing erythritol. Any separation method may be used as long as an exchange resin is used. That is, without being limited to the methods described in Examples 1 and 2 below,
For example, JP-A-45-24 filed by Colonial Sugar Co.
Publication No. 807, JP-A-53-1 filed by Sanmatsu Kogyo Co., Ltd.
No. 49870, the batch separation method described in Japanese Patent Application Laid-Open No. 55-61903 filed by Mitsubishi Chemical Industries, Ltd., and the U.S.
. A separation operation method such as a continuous separation method using a simulated moving bed method described in US Pat. No. 2,985,589 filed by 0°P may be employed.

以下、省白 (実施例等) 以下に実施例及び比較例をあげてさらに詳述する。Below, Shoubai (Examples, etc.) Further details will be given below with reference to Examples and Comparative Examples.

実施例1 無水結晶ぶどう糖をぶどう糖として300 g/l及び
酵母エススを6.7El/ノ含む培地に、オーレオバシ
ジウム5N−G42株を加え、30℃で72時間振とう
培養して得た種培地1.51を、無水結晶ぶどう糖を3
401 / l %及びコーン・ステイープ・リカーを
55 Fl/l、を含む培地(初期−4、2) 251
に加え、通気量251/朋、攪拌速度600rpm、温
度35℃、圧力0.5 ky/m” Gで93時間培養
し、ぶどう糖が完全になくなった時点を確認して培養を
停止し、直ちに加熱殺菌したのう、遠心分離により菌体
を分離した。得られた上澄液はエリスリトールを1 s
 7 i / A 、グリセリンを25 g/l含有し
ていた。
Example 1 Seed medium obtained by adding Aureobasidium 5N-G42 strain to a medium containing 300 g/l of anhydrous crystalline glucose and 6.7 El/l of yeast S, and culturing with shaking at 30°C for 72 hours. 1.51, anhydrous crystalline glucose 3
401/l % and corn staple liquor at 55 Fl/l (Initial-4, 2) 251
In addition, the cells were cultured for 93 hours at an aeration rate of 251/m, a stirring speed of 600 rpm, a temperature of 35°C, and a pressure of 0.5 ky/m"G. When the glucose was completely exhausted, the culture was stopped and immediately heated. After sterilization, the bacterial cells were separated by centrifugation.The resulting supernatant was treated with erythritol for 1 s.
7 i/A and contained 25 g/l glycerin.

この上澄液(19,97りをカルボン酸型弱カチオン交
換樹脂(三菱化成工業株式会社商品名 ダイヤイオンW
K−20)のNa型を充填した塔に通してCa及びMg
等の硬度成分をNaイオンと交換したのち、溶存物質濃
度が45重量%になるまで濃縮した。
This supernatant liquid (19,97 ri
Ca and Mg are passed through a column packed with Na type of K-20).
After exchanging hardness components such as Na ions with Na ions, it was concentrated until the concentration of dissolved substances became 45% by weight.

分離塔(直径1フインチ(呼び寸法)×高さ200 c
m )に、ジビニルベンゼン架橋ポリスチレンスルホン
酸のNa型樹脂(三菱化成工業株式会社商品名 ダイヤ
イオンUBK−530)を1.24/充填し、75℃に
保持しながら、上記の濃度45重量%の濃縮液(温度7
5℃)0.1241を塔頂から供給速度0.461./
hrで供給し、次いで引続き同じ速度で塔頂から水を供
給した。その際の塔底流出液の分析結果は、第1図に示
すとおシであった。
Separation tower (1 inch diameter (nominal dimensions) x height 200 cm
m) was filled with Na-type resin of divinylbenzene cross-linked polystyrene sulfonic acid (Mitsubishi Chemical Industries, Ltd. trade name: Diaion UBK-530) at 1.24/m), and while maintaining the temperature at 75°C, the above concentration of 45% by weight was added. Concentrate (temperature 7
5°C) 0.1241 from the top of the column at a rate of 0.461. /
hr followed by water from the top at the same rate. The analysis results of the bottom effluent at that time were as shown in FIG.

第1図のBにおける不明物Iは、主として塩類、着色物
質及びグルコースを主たる構成成分とするβ−1,4結
合をもつ多糖類からなシ、同図面かられかるように、こ
れら不明物■は初期の流出画分中に含まれて流出してく
る。次いで流出してくる不明物■は、主としてグリセリ
ン以外の副反応生成物、三糖類以上のオリが糖及びその
反応生成物であるが、これらも比較的初期の流出液中に
含まれて流出してくる。なお、この実施例では原料ぶど
う糖として結晶ぶどう糖が用いられたので、不明物■に
は、原料ぶどう糖に由来する三糖類以上のオリゴ糖及び
その反応生成物が含まれていなく、その不明物■は、主
としてグリセリン以外の副反応生成物であった。そして
、後期の流出液としてエリスリトールとグリセリンが流
出してくる。
Unknown substance I in B of Fig. 1 is mainly composed of polysaccharides with β-1,4 bonds whose main constituents are salts, coloring substances, and glucose. is contained in the initial effluent fraction and flows out. The unknown substances that flow out next are mainly side reaction products other than glycerin, trisaccharides and higher sugars, and their reaction products, but these are also contained in the effluent at a relatively early stage and flow out. It's coming. In addition, since crystalline glucose was used as the raw material glucose in this example, the unknown substance (2) does not include oligosaccharides higher than trisaccharides derived from the raw material glucose and their reaction products, and the unknown substance (2) is , which were mainly side reaction products other than glycerin. Erythritol and glycerin then flow out as effluent in the latter stage.

また、第1図のAから明らかなように、着色成分は、そ
の大部分が前期の流出液中に含まれている。
Moreover, as is clear from A in FIG. 1, most of the colored components are contained in the effluent from the first stage.

したがって、第1図から明らかなように、その流出液を
、流出液床容量0.54を境にして前段と後段の二つの
画分に分けると、前段の画分には着色物質の大部分と不
明物I及び■の殆んど全部とが含まれ、後段の画分には
エリスリトールとグリセリンの殆んど全部が含まれてく
るから、この後段の画分をエリスリトールを主成分とす
る画分として収得すれば、これには着色成分や塩類や多
糖類が殆んど含まれていない。換言すれば、上澄液から
エリスリトール及びグリセリンを含み、不純物を殆んど
含まない画分を後段の画分として容易に分離できるので
ある。
Therefore, as is clear from Fig. 1, when the effluent is divided into two fractions, the former and the latter, with the effluent bed volume of 0.54 as the border, most of the colored substances are contained in the former fraction. and almost all of Unknown Substances I and If obtained as a fraction, it contains almost no coloring components, salts, or polysaccharides. In other words, a fraction containing erythritol and glycerin and almost no impurities can be easily separated from the supernatant as a subsequent fraction.

前記の流出液床容量0.54を境にして前段と後段の二
つの画分に分けた場合の各段の画分の液量は、前段が0
.671であシ、後段が0.471であった。
When dividing into two fractions, the front stage and the rear stage, with the above-mentioned effluent bed volume of 0.54 as the boundary, the liquid volume of the fraction in each stage is 0.
.. The score was 671, and the second half was 0.471.

次いで、この操作を70回繰シ返し、後段流出液として
合計33ノを得る。その液組成はエリスリトール濃度1
061j/l、グリセリン濃度14.2 /1/l、不
明物■濃度0−98&/Mであった。この液に粉末活性
炭66、Pを加え30分間攪拌後、活性炭を濾過し、P
液を常法に従ってH型強酸性カチオン交換樹脂(三菱化
成工業株式会社商品名ダイヤイオン5KIB)を充填し
た塔、OH型の弱塩基性アニオン交換樹脂(三菱化成工
業株式会社商品名 ダイヤイオンWA30)を充填した
塔、及び前記のH型強酸性カチオン交換樹脂とOH型強
塩基性アニオン交換樹脂(三菱化成工業株式会社商品名
 ダイヤイオンPA408 )を充填した混床塔に順次
通して、さらに脱塩・脱色したのち、減圧下80℃で溶
存物質濃度が53重量%になるまで濃縮した。
Next, this operation was repeated 70 times to obtain a total of 33 pieces of effluent as the latter stage effluent. The liquid composition is erythritol concentration 1
061j/l, glycerin concentration 14.2/1/l, unknown substance concentration 0-98&/M. Powdered activated carbon 66, P was added to this liquid and after stirring for 30 minutes, the activated carbon was filtered and P
The solution was transferred to a column filled with H-type strongly acidic cation exchange resin (Mitsubishi Chemical Industries, Ltd., trade name: Diaion 5KIB), and an OH-type weakly basic anion exchange resin (Mitsubishi Chemical Industries, Ltd., trade name: Diaion WA30). and a mixed-bed column filled with the above-mentioned H-type strongly acidic cation exchange resin and OH-type strongly basic anion exchange resin (trade name: Diaion PA408, manufactured by Mitsubishi Chemical Industries, Ltd.) for further desalination. - After decolorization, it was concentrated under reduced pressure at 80°C until the concentration of dissolved substances was 53% by weight.

次いで、この80℃の濃縮液を2時間かけて15℃まで
徐冷し、さらに15℃に2時間保存して結晶を成長させ
た。生成結晶を炉別し、得られた湿潤結晶をその0.6
倍量の15℃の水で洗浄し、純度100%のエリスリト
ール結晶が1.66ky得られた。この場合の前記の5
3重量%の濃縮液中のエリスリトールに対する晶析収率
は47.5%であった。また得られた結晶を水に溶解し
、10重量%の溶液をつくったが、にごシは認められな
かりだ。
Next, this 80°C concentrated solution was slowly cooled to 15°C over 2 hours, and further stored at 15°C for 2 hours to grow crystals. The produced crystals are separated by furnace, and the obtained wet crystals are 0.6
By washing with twice the amount of water at 15°C, 1.66 ky of erythritol crystals with 100% purity were obtained. In this case, the above 5
The crystallization yield for erythritol in the 3% by weight concentrate was 47.5%. I also dissolved the obtained crystals in water to make a 10% by weight solution, but no cloudiness was observed.

実施例2 原料ぶどう糖として純度96.8重量%(残93.2重
量%が三糖類以上のオリゴ糖)の精製ぶどう糖を用い、
このぶどう糖を純ぶどう糖として4009/11コーン
・ステイープ・リカーを671711含み、−が4.2
の初期培地25A’に、実施例1におけると同一の種菌
培養液1.51を加え、温度35℃、通気量131/”
z圧力0.5 kg7cm2、攪拌速度600 rpm
の条件で培養を行なったところ、95時間の培養でぶど
う糖が全く々くなったので、直ちに培養を停止し、加熱
殺菌後、菌体を分離した。
Example 2 Using purified glucose with a purity of 96.8% by weight (the remaining 93.2% by weight is oligosaccharides of trisaccharides or higher) as the raw material glucose,
This glucose is pure glucose and contains 671,711 4009/11 corn steep liquor, - is 4.2
To 25 A' of initial culture medium, 1.5 l of the same inoculum culture solution as in Example 1 was added, and the temperature was 35°C and the aeration rate was 131/''.
Z pressure 0.5 kg7cm2, stirring speed 600 rpm
When culturing was carried out under the following conditions, the amount of glucose decreased completely after 95 hours of culture, so the culture was immediately stopped, and after heat sterilization, the bacterial cells were isolated.

得られた上澄液(約19.97)の分析結果は、エリス
リトールが213117A’、グリセリンが17.5g
/ノ、不明物Iが18 g/l、不明物■が16 g/
lであった。
The analysis results of the obtained supernatant liquid (approximately 19.97 g) showed that erythritol was 213117 A' and glycerin was 17.5 g.
/ノ, unknown substance I is 18 g/l, unknown substance ■ is 16 g/l
It was l.

この上澄液をダイヤイオンWK−20(三菱化成工業株
式会社商品名)のNa型樹脂を充填した塔に通して軟化
処理をしたのち、溶存物質濃度が45重量%になるまで
濃縮した。その濃縮量は約10.21であった。
This supernatant liquid was softened by passing through a column filled with Na-type resin of Diaion WK-20 (trade name of Mitsubishi Chemical Industries, Ltd.), and then concentrated until the concentration of dissolved substances became 45% by weight. The concentration amount was about 10.21.

次いで、ダイヤイオンUBK−530(三菱化成工業株
式会社商品名)のNa型樹脂0.621を塔(直径11
インチ(呼び径)×高さ100(ha+)に充填した分
離塔を用いて、上記の濃縮液及び水を、0.496ノ/
hrの一定の通液速度で、次の四段階に分けてそれぞれ
通液した。
Next, a column (diameter 11
Using a separation column packed in inches (nominal diameter) x height 100 (ha+), the above concentrate and water were separated at 0.496 nm/h.
The liquid was passed through each of the following four stages at a constant liquid passing rate of hr.

第一段階: 前記の濃度45重量%の濃縮液70−を塔頂から供給し
、塔底から塔底流出液を70m流出させた。この塔底流
出液は、前回の第四段階に引続き塔内液を塔底方向に移
動させることによって樹脂から溶離した液であるので、
エリスリトールを主成分とする画分てあった。
First stage: The concentrated liquid 70- with a concentration of 45% by weight was supplied from the top of the column, and the bottom effluent was allowed to flow out 70 m from the bottom of the column. This tower bottom effluent is the liquid eluted from the resin by moving the tower internal liquid toward the tower bottom following the previous fourth stage.
There was a fraction whose main component was erythritol.

第二段階: 塔内の液を塔底からポンプで塔頂に15.7分間(13
0mA’分)循環させた。
Second stage: The liquid in the column is pumped from the bottom of the column to the top of the column for 15.7 minutes (13
0 mA'min).

第三段階: 塔頂から水143ゴを供給し、塔底からの流出液(14
3ml)を・ぐ−ジした。この場合の塔底からの流出液
は各種塩類、着色成分及び不明物■を含有する液である
ので上記のようにパージした。
Third stage: 143 g of water is supplied from the top of the column, and the effluent from the bottom of the column (14 g.
3 ml) was poured. In this case, the effluent from the bottom of the column contained various salts, coloring components, and unknown substance (1), and was therefore purged as described above.

第四段階: 塔頂から水180−を供給し、塔底から180m1の流
出液を取出した。この流出液はエリスリトールを主成分
として含有する画分であるので、第1段階での塔底流出
液と混合した。
Fourth stage: 180 mL of water was supplied from the top of the column, and 180 ml of effluent was taken from the bottom of the column. Since this effluent is a fraction containing erythritol as a main component, it was mixed with the bottom effluent from the first stage.

以上の四段階の処理を1サイクルとし、第四段階後には
再び第1段階に戻るサイクルを、前記の上澄液の濃縮液
(10,2Aりがなくなるまで繰返して、エリスリトー
ルを主成分とする画分36.31を得た。
The above four-stage treatment is one cycle, and after the fourth stage, the cycle of returning to the first stage is repeated until the supernatant concentrate (10,2A) is removed, and the main component is erythritol. Fraction 36.31 was obtained.

その画分の分析結果は、エリスリトールが116j;!
/l、グリセリンが9.6g/A!、不明物■が2.6
g/lであシ、その脱塩率が95チ、脱色率が87チ、
エリスリトール回収率が99.9%、不明物■のパージ
率が70チであった。また、その画分は着色度(A42
01 cmセル、以下、同様)が0.32、電気伝導度
が167μS/emであった。
The analysis results of that fraction showed that erythritol was 116j;!
/l, glycerin is 9.6g/A! , unknown item ■ is 2.6
g/l, its desalination rate is 95cm, its decolorization rate is 87cm,
The recovery rate of erythritol was 99.9%, and the purge rate of unknown substance (2) was 70%. In addition, the fraction has a coloring degree (A42
01 cm cell (hereinafter the same) was 0.32, and the electrical conductivity was 167 μS/em.

次いで、上記のようにして得られたエリスリトールを主
成分として含有する画分(36,31)に、粉末油戻を
0.1重量%加えて脱色処理をしたところ、着色度が0
,16にまで低下した。さらに、この脱色処理液を、常
法にしたがってH型の強酸性カチオン交換樹脂(三菱化
成工業株式会社商品名ダイヤイオン5KIB)を充填し
た塔、OH型の弱塩基性アニオン交換樹脂(三菱化成工
業株式会社商品名 ダイヤイオンWA30)を充填した
塔、及び前記のH型樹脂及びOR型強塩基性アニオン交
換樹脂(三菱化成工業株式会社商品名 ダイヤイオンP
A408)を充填した混床塔に順次に通して、さらに脱
塩・脱色したのち、減圧下、80℃で固形分が61重量
%になるまで濃縮した。
Next, when the fractions (36, 31) containing erythritol as a main component obtained as described above were decolorized by adding 0.1% by weight of powdered oil reconstituted powder, the degree of coloration was 0.
, it dropped to 16. Furthermore, this decolorizing solution was added to a column filled with an H-type strongly acidic cation exchange resin (trade name Diaion 5KIB, manufactured by Mitsubishi Chemical Industries, Ltd.) and an OH-type weakly basic anion exchange resin (Mitsubishi Chemical Industries, Ltd. Co., Ltd. (trade name: Diaion WA30), and the above-mentioned H-type resin and OR-type strongly basic anion exchange resin (Mitsubishi Chemical Industries, Ltd. (trade name: Diaion P)).
The mixture was sequentially passed through a mixed bed tower filled with A408) for further desalination and decolorization, and then concentrated under reduced pressure at 80°C until the solid content was 61% by weight.

次いで、この80℃の濃縮液を2時間かけて15℃まで
徐冷し、さらに15℃に2時間保持して結晶を成長させ
た。生成結晶を炉別し、得られた湿潤結晶をその0.6
倍量の15℃の水で洗浄し、乾燥させたところ、純度1
00チのエリスリトール結晶2.40kgが得られた。
Next, this 80°C concentrated solution was gradually cooled down to 15°C over 2 hours, and further maintained at 15°C for 2 hours to grow crystals. The produced crystals are separated by furnace, and the obtained wet crystals are 0.6
When washed with twice the amount of water at 15°C and dried, the purity was 1.
2.40 kg of erythritol crystals were obtained.

比較例1 実施例2で得られた培養液の上澄液(着色6.2、電気
伝導度7.0ms/cm)を脱色するために粉末油戻を
5重量%添加したが、着色度が0.35にまでしか低下
できなかった。さらに、その脱色後の上澄液を、常法に
したがって実施例2におけると同様のイオン交換樹脂に
よる脱塩処理をしたところ、イオン交換樹脂は、実施例
2の場合の20倍量を必要とした。
Comparative Example 1 In order to decolorize the supernatant liquid of the culture solution obtained in Example 2 (coloration 6.2, electrical conductivity 7.0ms/cm), 5% by weight of powdered oil reconstituted was added, but the degree of coloration was It could only be reduced to 0.35. Furthermore, when the supernatant liquid after decolorization was desalted using an ion exchange resin similar to that in Example 2 according to a conventional method, the amount of ion exchange resin required was 20 times that in Example 2. did.

さらに、その脱色・脱塩処理した上澄液を80℃の減圧
下で固形分濃度50重量%まで濃縮してから、実施例2
におけると同様の条件を用いて冷却・晶析させ、結晶分
離、水洗、乾燥をして純度100チの結晶i、5ok1
7を得だ。この場合の50重量%濃縮液中のエリスリト
ールに対する晶析収率は43.8%であった。
Furthermore, the decolorized and desalted supernatant liquid was concentrated under reduced pressure at 80°C to a solid content concentration of 50% by weight, and then
Cool and crystallize using the same conditions as in , crystal separation, water washing, and drying to obtain crystals with a purity of 100%, 5ok1.
I got a 7. In this case, the crystallization yield for erythritol in the 50% by weight concentrate was 43.8%.

また、製品エリスリトール結晶収率を高めるために、8
0℃の減圧下での濃縮時の固形分濃度を60重量%に高
めたところ、製品エリスリトール結晶の純度が99.8
%に低下した。また、濃縮液濃度50重量%及び60重
−i%のいずれの条件で得られた結晶も、10重量%の
水溶液にすると白濁が認められた。
In addition, in order to increase the yield of product erythritol crystals, 8
When the solid content concentration during concentration under reduced pressure at 0°C was increased to 60% by weight, the purity of the product erythritol crystals was 99.8.
%. In addition, when the crystals obtained under both the conditions of concentrated solution concentration of 50% by weight and 60% by weight were made into a 10% by weight aqueous solution, white turbidity was observed.

(c)発明の効果 本発明の分離・回収方法は、エリスリトール含有培養液
から高純度のエリスリトール結晶を高い晶析収率で容易
に分離・回収することができる。
(c) Effects of the Invention The separation/recovery method of the present invention allows highly pure erythritol crystals to be easily separated and recovered from an erythritol-containing culture solution at a high crystallization yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1における分離塔から溶離液の水に溶解
して流出する流出液物質と流出液量の関係を示したもの
であシ、Aは流出液量と液の着色度との関係を、Bは流
出液量と各物質の濃度との関係を図示したものである。 特許出願人 三菱化成工業株式会社 日研化学株式会社
Figure 1 shows the relationship between the amount of effluent and the amount of effluent that dissolves in the eluent water and flows out from the separation tower in Example 1, and A is the relationship between the amount of effluent and the degree of coloration of the liquid. B shows the relationship between the amount of effluent and the concentration of each substance. Patent applicant Mitsubishi Chemical Industries, Ltd. Nikken Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】 1)エリスリトール生産菌を水性培地中で好気的条件下
で培養して得られた培養液から菌体を除去した上澄液を
、アルカリ金属型若しくはアンモニウム型の強酸性カチ
オン交換樹脂を充填した分離塔に通し、次いで水で溶離
流出させ、その流出液からエリスリトールを主成分とし
て含有する画分を分取し、該画分よりエリスリトールを
回収することを特徴とするエリスリトール含有培養液か
らエリスリトールを分離・回収する方法。 2)流出液からエリスリトールとグリセリンとを主とし
て含有する画分を分取し、その画分から晶析によってエ
リスリトール結晶を回収する特許請求の範囲第1項記載
の方法。 3)上澄液を分離塔に通すに先立って、上澄液中の硬度
成分をアルカリ金属型カチオン交換樹脂を用いて除いて
おく特許請求の範囲第1項又は第2項記載の方法。 4)強酸性カチオン交換樹脂がNa型の樹脂である特許
請求の範囲第1項、第2項又は第3項記載の方法。
[Scope of Claims] 1) The supernatant liquid obtained by removing the bacterial cells from the culture solution obtained by culturing erythritol-producing bacteria in an aqueous medium under aerobic conditions is Erythritol is passed through a separation tower filled with a cation exchange resin, then eluted with water, a fraction containing erythritol as a main component is separated from the effluent, and erythritol is recovered from the fraction. A method for separating and recovering erythritol from a culture solution containing it. 2) The method according to claim 1, wherein a fraction mainly containing erythritol and glycerin is separated from the effluent, and erythritol crystals are recovered from the fraction by crystallization. 3) The method according to claim 1 or 2, wherein hard components in the supernatant are removed using an alkali metal cation exchange resin before the supernatant is passed through the separation column. 4) The method according to claim 1, 2 or 3, wherein the strongly acidic cation exchange resin is a Na type resin.
JP63021347A 1988-02-02 1988-02-02 Method for separating and recovering erythritol from culture medium containing erythritol Expired - Lifetime JPH0734748B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63021347A JPH0734748B2 (en) 1988-02-02 1988-02-02 Method for separating and recovering erythritol from culture medium containing erythritol
EP19890101623 EP0327016B1 (en) 1988-02-02 1989-01-31 Process for isolating and recovering erythritol from culture medium containing the same
DE1989611158 DE68911158T2 (en) 1988-02-02 1989-01-31 Process for the separation and extraction of erythritol from a culture medium containing it.
US07/304,794 US4906569A (en) 1988-02-02 1989-01-31 Process for isolating and recovering erthritol from culture medium containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63021347A JPH0734748B2 (en) 1988-02-02 1988-02-02 Method for separating and recovering erythritol from culture medium containing erythritol

Publications (2)

Publication Number Publication Date
JPH01199583A true JPH01199583A (en) 1989-08-10
JPH0734748B2 JPH0734748B2 (en) 1995-04-19

Family

ID=12052557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63021347A Expired - Lifetime JPH0734748B2 (en) 1988-02-02 1988-02-02 Method for separating and recovering erythritol from culture medium containing erythritol

Country Status (1)

Country Link
JP (1) JPH0734748B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057286A (en) * 2007-08-29 2009-03-19 Japan Organo Co Ltd Method for purifying alcohol containing cationic impurity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057286A (en) * 2007-08-29 2009-03-19 Japan Organo Co Ltd Method for purifying alcohol containing cationic impurity

Also Published As

Publication number Publication date
JPH0734748B2 (en) 1995-04-19

Similar Documents

Publication Publication Date Title
AU2018343981B2 (en) Process for the purification of a neutral human milk oligosaccharide (HMO) from microbial fermentation
USRE33047E (en) Process for producing a high-purity maltose
US4487198A (en) Process for producing a high-purity maltose
US5630923A (en) Separation system for preparing high α-glycosyl-L-ascorbic acid
US2375165A (en) Recovery of nitrogenous products from organic wastes
US4906569A (en) Process for isolating and recovering erthritol from culture medium containing the same
JP2007043940A (en) Method for collecting inositol
JPS62126193A (en) Production of l-rhamnose
KR20080007985A (en) A method for purifying 5&#39;-inosinic acid fermentation broth via crystallization process
JP5184768B2 (en) Method for recovering sugar solution with high trehalose content and method for producing crystalline trehalose
JPH01199583A (en) Separation and recovery of erythritol from erythritol-containing culture fluid
JPH0767398B2 (en) How to treat beet sugar solution
JPH01215293A (en) Separation and recovery of erythritol
JPH01320987A (en) Method for separating and recovering erythritol from erythritol-containing culture solution
WO2014158558A1 (en) L-glucose production from l-glucose/l-mannose mixtures using simulated moving bed separation
JP3081262B2 (en) Method for producing high-purity nystose
JP4103171B2 (en) Method for producing high purity erythritol crystals
JP2012007907A (en) Separation method of 1,5-d-anhydroglucitol
JPH06107611A (en) Production of betaine
JPH08506248A (en) Method for producing α, α-trehalase
JPH11290089A (en) Production of high-purity erythritol crystal
JP4200555B2 (en) Method for producing high purity erythritol crystals
JPH069455A (en) Production of erythritol crystal
JPH11221100A (en) Purification of beet sugar liquid
JPH0267256A (en) Isolation and purification of carnitine and carnitinenitrile

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term