JPH01197903A - High-dielectric constant film - Google Patents

High-dielectric constant film

Info

Publication number
JPH01197903A
JPH01197903A JP63022407A JP2240788A JPH01197903A JP H01197903 A JPH01197903 A JP H01197903A JP 63022407 A JP63022407 A JP 63022407A JP 2240788 A JP2240788 A JP 2240788A JP H01197903 A JPH01197903 A JP H01197903A
Authority
JP
Japan
Prior art keywords
film
dielectric constant
group
cyano
acid polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63022407A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kimura
康弘 木村
Masao Honma
本間 正男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP63022407A priority Critical patent/JPH01197903A/en
Publication of JPH01197903A publication Critical patent/JPH01197903A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)
  • Electroluminescent Light Sources (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To obtain a homogeneous polymer film with high specific dielectric constant by forming it with acidic amino acid polymer containing specific cyano group. CONSTITUTION:This film is formed with acidic amino acid polymer containing the cyano group expressed by the structural formula of Formula I. Glutamic acid polymer and aspartic acid polymer are used for the polymer principal chain of this compound, a substituent with strong electron absorptivity such as cyano ethyl group, cyano phenoxyethyl group, cyano biphenocyethyl group is used for the polar functional group of a side chain. This compound is dissolved at the concentration of 1-40% in a solvent with the specific dielectric constant of 1-50, it is deployed on a substrate and made into a film then dried to obtain a thin film. A film with a high specific dielectric constant can be formed.

Description

【発明の詳細な説明】 良n圀1 本発明は、分散型エレクトロルミネッセンス素子の輝度
の向上及び大容量かつ小型なコンデンサーの性能向上を
目的とした高誘電率高分子フィルムに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high dielectric constant polymer film aimed at improving the brightness of a distributed electroluminescent device and improving the performance of a large-capacity, small-sized capacitor.

従」JL■ 絶縁性の高い誘電体は、これまでに、コンデンサーとし
て用いられているが、その小型化にともない比誘電率の
大きいものか望まれている。また、最近では、分散型の
エレクトロルミネッセンス素子の輝度を向上させるため
のバイングーとしても使用される等、いろいろな用途に
応用され始めている。特に、エレクトロルミネッセンス
用のバ・rンダーにおいては、輝度がパイングーの比誘
電率に依存し、比誘電率の大きいほと輝度も大きくなる
事が知られている。  比誘電率を向上させるために、
従来より、種々の試みがなされているが、一般に誘電体
の比誘電率の大きさは、その分極の大きさにより決まる
と考えられている。
Dielectric materials with high insulating properties have been used as capacitors, but as they become smaller, a material with a high dielectric constant is desired. Recently, it has also begun to be applied to various uses, such as being used as a bangu to improve the brightness of dispersed electroluminescent devices. In particular, it is known that in an electroluminescent lamp, the brightness depends on the dielectric constant of the paint, and the higher the dielectric constant, the higher the brightness. In order to improve the dielectric constant,
Although various attempts have been made in the past, it is generally believed that the magnitude of the dielectric constant of a dielectric is determined by the magnitude of its polarization.

分極の様式は、大別して、1.電子分極、2.原子分極
、3.配向分極、4.界面分極、を考えることができる
。これまでの実用化研究は、おもに、配向分極を用いた
もの及び界面分極を用いたものであった。配向外(チを
用いたものに関しては、1グ(jえは、ポリフッ化ビニ
リデン、シアノエチルセルロース等が挙げられるが、大
きな比誘電率のものは得られていない。また、界面分極
を用いた例として、誘電性の大きい無機物微粒子、例え
ばアルミニウムをポリエチレン等の高分子マトリックス
中に分散させた複合誘電体がある。更に、界面分極を用
いた研究として、電荷移動錯体、例えば、TCNQとポ
リカチオンのCT錯体をポリスチレン又は、ポリスルホ
ン等の樹脂に混ぜることにより高誘電率の組成物を得ろ
試みも為されている。
The mode of polarization can be roughly divided into 1. electronic polarization, 2. Atomic polarization, 3. Orientation polarization, 4. Interfacial polarization can be considered. Practical research to date has mainly used orientational polarization and interfacial polarization. Examples of materials using non-oriented materials include polyvinylidene fluoride, cyanoethyl cellulose, etc., but those with a large dielectric constant have not been obtained.Also, examples using interfacial polarization As a method, there is a composite dielectric material in which fine inorganic particles with high dielectric properties, such as aluminum, are dispersed in a polymer matrix such as polyethylene.Furthermore, as a study using interfacial polarization, charge transfer complexes such as TCNQ and polycations have been investigated. Attempts have also been made to obtain compositions with high dielectric constants by mixing CT complexes with resins such as polystyrene or polysulfone.

(特開昭−51−501GG) 「・口・、゛とす7un占 先に示したように、配自分(所を用いたポリフッ化ヒニ
リデンは、比誘電率が10以下とそれほど大きな誘電率
を示さない。また、無機物微粒子を用いた複合誘電体に
ついては以下のような欠点を有する。1.無機物とポリ
マーとの密着性が悪く界面に空隙を生しる。2.薄膜形
成能に欠ける。
(Japanese Unexamined Patent Publication No. 51-501GG) Composite dielectric materials using inorganic fine particles have the following drawbacks: 1. Poor adhesion between the inorganic material and the polymer, creating voids at the interface. 2. Lacking the ability to form a thin film.

3、機械的強度が弱い、等の事が考えられている。3. It is thought that the mechanical strength is weak.

更に、界面分極を用いた電荷移動錯体な用いたものは、
周波数安定性が悪く、また着色も著しい。
Furthermore, the charge transfer complex using interfacial polarization is
Frequency stability is poor and coloration is significant.

又、先に示したようにシアノエチルセルロースは、エレ
クトロルミネッセンス用のバインダーとして実用に供さ
れているが、比較例に示すように、次のような欠点を有
している。1.折り曲げ性が悪く可どう性に欠ける。2
.伸度がなく柔軟性に欠ける。3.電極との密着性が悪
い。4.吸水性が大きく絶縁耐圧が低い。
Further, as shown above, cyanoethylcellulose is used practically as a binder for electroluminescence, but as shown in the comparative example, it has the following drawbacks. 1. Poor bendability and lack of flexibility. 2
.. It lacks elongation and flexibility. 3. Poor adhesion to the electrode. 4. High water absorption and low dielectric strength.

01′のの 本発明は、比誘電率が大きく、しかもシアノエチルセル
ロースの欠点である硝子基盤との接着性及び機械的強度
の改善を図るために、無機粉体を含まず、熱的に安定で
、柔軟性に富み、尚かつガラスとの接着性に優れたポリ
アミノ酸を用いて、極性基を高配向させる事により比誘
電率の高い均一な高分子フィルムを得ることを目的とす
る。
01' of the present invention has a high relative dielectric constant, and also does not contain inorganic powder and is thermally stable in order to improve the adhesion to the glass substrate and mechanical strength, which are the drawbacks of cyanoethyl cellulose. The purpose is to obtain a uniform polymer film with a high dielectric constant by highly oriented polar groups using polyamino acids that are highly flexible and have excellent adhesion to glass.

本発明者は、この様な目的を達成するために、高度の分
子配向が期待出来るポリアミノ酸の側鎖に結合モーメン
トの大きい官能基、例えば、シアノ基を有するアミノ酸
ポリマーを合成し、薄膜化する事をシ(みた。
In order to achieve such an objective, the present inventors synthesized an amino acid polymer having a functional group with a large bonding moment, such as a cyano group, in the side chain of a polyamino acid that can be expected to have a high degree of molecular orientation, and made it into a thin film. I saw things.

即ち、本発明は、シアノ基を含有する酸性アミノ酸ポリ
マーからなる高誘電率フィルムに間するものであり、下
記の構造式で表わされる。
That is, the present invention relates to a high dielectric constant film made of an acidic amino acid polymer containing a cyano group, and is represented by the following structural formula.

本発明の化合物の高分子主鎖はグルタミン酸ポリマー、
アスパラギン酸ポリマーが挙げられ、側鎖の極性官能基
は、シアノエチル基、シアノフェノキシエチル基、シア
ノビフェノキシエチル基等の電子吸引性の強い置換基が
挙げられ、高分子主鎖に対してエステル結合で連結して
いる事が好ましこの様な化合物を1〜50の比誘電率を
持つ溶媒、例えばジメチルスルフオキシド、アセトニ)
・リル、ジメチルフォルムアミド、N−メチルピロリド
ン、アセトン等に、1−40%の濃度で溶解し、基盤上
に展開し製膜した後、乾燥させ薄膜を得られる。
The polymeric main chain of the compound of the present invention is a glutamic acid polymer,
Examples include aspartic acid polymers, and the polar functional groups in the side chains include substituents with strong electron-withdrawing properties such as cyanoethyl group, cyanophenoxyethyl group, and cyanobiphenoxyethyl group, and ester bonds to the main chain of the polymer. It is preferable that such a compound be linked with a solvent having a dielectric constant of 1 to 50, such as dimethyl sulfoxide, acetonate, etc.
- A thin film can be obtained by dissolving it in lyl, dimethylformamide, N-methylpyrrolidone, acetone, etc. at a concentration of 1-40%, spreading it on a substrate to form a film, and then drying it.

展開に用いる基盤は、ガラス、金属、セラミックス、離
型紙及び上記溶剤に対する対溶剤性の良いプラスチック
フィルム等が挙げられる。
Examples of the substrate used for development include glass, metal, ceramics, release paper, and plastic films with good solvent resistance to the above-mentioned solvents.

また、本発明の化合物は、以下のようにして合成できる
Moreover, the compound of the present invention can be synthesized as follows.

ポリ−ω−メチル酸性アミノ酸の溶液に、P−!・ルエ
ンスルホン酸、シアノ基を含有するアルコールを過剰に
加え、60℃で10−20時間攪はんし、メタノールで
析出させることによって目的とする化合物を得る。ここ
で、シアノ基を含有するアルコールとしては、アルキル
鎖長が1−5のω−シアノアルカノール、またアルキル
鎖長が1−5のシアノフェノキシアルカノールおよびア
ルキル鎖長が1−5のシアノビフエノキシアルカノール
が挙げられる。ポリ−の一メチル酸性アミノ酸を溶かす
溶剤としては、ジクロロエタン クロロホルム、ジオキ
サン、等が用いられるが、好ましくはジクロロエタンが
用いられる。
In a solution of poly-ω-methyl acidic amino acid, P-! - Add luenesulfonic acid and an alcohol containing a cyano group in excess, stir at 60°C for 10-20 hours, and precipitate with methanol to obtain the desired compound. Here, the alcohol containing a cyano group includes ω-cyanoalkanol with an alkyl chain length of 1-5, cyanophenoxyalkanol with an alkyl chain length of 1-5, and cyanobiphenoxylene with an alkyl chain length of 1-5. Examples include alkanols. As a solvent for dissolving the poly-monomethyl acidic amino acid, dichloroethane, chloroform, dioxane, etc. are used, but dichloroethane is preferably used.

更に、フィルムの厚さについては、1μmから500μ
mの物が用いられるが、好ましくは5μmから1007
1mの物が用いられる。
Furthermore, the thickness of the film is from 1μm to 500μm.
m is used, preferably from 5 μm to 1007 μm.
A 1 m long one is used.

l肚立激皿 以上のようにして得た高分子薄膜は、 l)結合モーメントの大きいシアノ基をポリアミノ酸の
側鎖に有しており、側鎖が殆と極性のない場合、例えは
メチル基の場合に比べると、極性pあるシアノエチル基
の場合、比誘電率は、非常に大きな値を示した。
The polymer thin film obtained as described above has l) a cyano group with a large binding moment in the side chain of the polyamino acid, and when the side chain has almost no polarity, for example, methyl In the case of the polar cyanoethyl group, the dielectric constant showed a much larger value than in the case of the cyanoethyl group.

2)シアノエチルセルロースに比へフィルムの柔軟性に
優れている。なと、エレクトロルミネッセンス用の単一
高分子のバインダー、複合誘電体、圧電体用の素材とし
て有用である。
2) Excellent film flexibility compared to cyanoethyl cellulose. It is useful as a single polymer binder for electroluminescence, a material for composite dielectrics, and piezoelectrics.

実施例1 ジムロー1・及びかくはん羽根を付けた21の三ロフラ
スコに、ポリーγ−メチルグルタメートの10wt%1
.2−ジクロロエタン(以下EDCと略す)溶液326
g (0,226mo l)、p−トルエンスルホン酸
−水和物 107g(0,568mol)及びβ−シア
ノエタノール321g(4,52mo I )を室温で
加え、粘度を下げるためにEDCを更に200 m l
加えた。
Example 1 10 wt.
.. 2-dichloroethane (hereinafter abbreviated as EDC) solution 326
g (0,226 mol), 107 g (0,568 mol) of p-toluenesulfonic acid-hydrate and 321 g (4,52 mol) of β-cyanoethanol were added at room temperature, and an additional 200 m of EDC was added to reduce the viscosity. l
added.

60°Cに加熱し、その温度で約15時間かくはんした
後、溶媒約100 m lを減圧留去し、β−シアノエ
タノール170m1を加えた。5時間後、室温まで冷却
し、ビーカー中3.51のメタノールに反応液をゆっく
りと注いだ。析出した生成物を金網でろ別した後、30
0 m lのメタノールで5回洗浄した。洗浄後、真空
乾燥し、36gの生成物を得た。NMRよりシアノエチ
ル基の置換度は、86%であった 実施例2 11のナスフラスコに、メタノール500 m lを加
え、水酸化ナトリウム44g (119mm。
After heating to 60°C and stirring at that temperature for about 15 hours, about 100 ml of the solvent was distilled off under reduced pressure, and 170 ml of β-cyanoethanol was added. After 5 hours, the reaction solution was cooled to room temperature and slowly poured into 3.5 liters of methanol in a beaker. After filtering the precipitated product through a wire mesh,
Washed 5 times with 0 ml methanol. After washing, vacuum drying was performed to obtain 36 g of product. The degree of substitution of the cyanoethyl group was found to be 86% by NMR. 500 ml of methanol was added to the eggplant flask of Example 2 11, and 44 g of sodium hydroxide (119 mm) was added.

l)を溶解した後、p−シアノフェノール119g(1
mol)を5分間で加えた。溶液が均一になり、30分
間かくはんした後、β−ブロモエタノール150g (
1,2mo l)を滴下した。60°Cに加熱し、20
時間かくはんした後、メタノールを減圧留去した。残さ
に水500m1を加え、クロロホルム11て抽出した後
、約300 m lの水で3回洗浄し、クロロホルム層
を無水硫酸マグネシウムで乾燥し、減圧留去により12
6gの生成物を得た。
After dissolving 119 g of p-cyanophenol (1
mol) was added over 5 minutes. After the solution became homogeneous and stirred for 30 minutes, 150 g of β-bromoethanol (
1.2 mol) was added dropwise. Heat to 60°C, 20
After stirring for an hour, methanol was distilled off under reduced pressure. 500 ml of water was added to the residue, extracted with 11 portions of chloroform, washed three times with about 300 ml of water, the chloroform layer was dried over anhydrous magnesium sulfate, and 12
6 g of product was obtained.

ジムロート及びかくはん羽を付けた500m1の三ロフ
ラスコに、ポリーγ−メチルグルタメート の 10w
t  % EDCi容)夜4 0  g  (28m 
m  o  l  )にr+−)ルエンスルホン酸−水
和物 8g(42mm o l )及び前述のシアノフ
ェノキシエタノール45.6g (280mmo l)
を室温で加え、粘度を下げるためにEDCを更に100
 m l加えた。
10w of polygamma-methylglutamate in a 500ml three-loaf flask equipped with a Dimroth and stirring blade.
t % EDCi volume) Night 40 g (28 m
8 g (42 mmol) of luenesulfonic acid hydrate and 45.6 g (280 mmol) of the above-mentioned cyanophenoxyethanol.
was added at room temperature and an additional 100% EDC was added to reduce the viscosity.
Added ml.

60℃に加熱し約10時間かくはんした。溶;αは、最
初不均一であるが、加熱することにより均一になった。
The mixture was heated to 60°C and stirred for about 10 hours. The melt α was initially non-uniform, but became uniform by heating.

反応終了後、ビーカー中1.51のメタノールに反応液
をゆっくりと注いだ。析出した生成物をブフナーロート
でろ別した後、100m1のEDCに再溶解し、再び1
.51のメタノールに反応液をゆっくりと注いだ。析出
した生成物をブフナーロ−1・でろ別した後、100 
m l (IQメタノールで5回洗浄した。洗浄後、真
空乾燥し、3.8gの生成物を得た。
After the reaction was completed, the reaction solution was slowly poured into 1.51 methanol in a beaker. The precipitated product was filtered using a Buchner funnel, then redissolved in 100 ml of EDC, and then dissolved in 100 ml of EDC again.
.. The reaction solution was slowly poured into 51 methanol. After filtering the precipitated product through Buchner Lo-1,
ml (Washed 5 times with IQ methanol. After washing, vacuum drying was performed to obtain 3.8 g of product.

比較例1 シアノエチルセルロースを5%のアセトン溶液からキャ
ストして得たフィルム(膜厚約30μm)の伸度を測定
した。伸度は、殆どOてあった。
Comparative Example 1 The elongation of a film (thickness about 30 μm) obtained by casting cyanoethyl cellulose from a 5% acetone solution was measured. The elongation was almost O.

実施例3 PCNG5%のアセトニトリル溶液からキャストして得
たフィルム(膜厚約30μm)の伸度を測定した。伸度
は、約50%であリシアノ7エチルセルロースよりも優
れていた。
Example 3 The elongation of a film (thickness about 30 μm) obtained by casting from a 5% PCNG acetonitrile solution was measured. The elongation was about 50%, which was better than lycyano 7-ethylcellulose.

実施例4 実施例1により得られたPCNGo、5gをアセトニト
リル7mlに室温で一晩かけて溶解し7%の溶液とした
。この溶液をスペーサーを載せた離型紙上に適当m滴下
し、ガラス棒で展開した後、80°Cのオーブンで約1
0分乾燥し、離型紙から剥離しフィルムを得た。得られ
たフィルムを、約1cmX1cmの大きさに切り出した
後、厚さをマイクロメータにより測定した。膜厚は、5
点測定しその平均より求め70μmであった。得られた
フィルムを、デシケータ中、約3時間減圧乾燥後、金の
蒸着を行った。金の蒸着は、約1cmX1cmのフィル
ムを、6mmφに打抜いたアルミ盤で挟み、試料の両面
に0.lmmHgの減圧下、(3mAのTL流で5分間
ずつ、金の蒸着を行った。
Example 4 5 g of PCNGo obtained in Example 1 was dissolved in 7 ml of acetonitrile at room temperature overnight to obtain a 7% solution. A suitable number of drops of this solution was placed on a release paper with a spacer placed on it, spread with a glass rod, and then placed in an oven at 80°C for about 1 hour.
After drying for 0 minutes, the film was peeled off from the release paper to obtain a film. The obtained film was cut into a size of about 1 cm x 1 cm, and the thickness was measured using a micrometer. The film thickness is 5
Point measurements were taken and the average was determined to be 70 μm. The obtained film was dried under reduced pressure in a desiccator for about 3 hours, and then gold was vapor-deposited. For gold vapor deposition, a film of approximately 1 cm x 1 cm was sandwiched between aluminum plates punched to 6 mm in diameter, and 0.0 mm was applied to both sides of the sample. Gold deposition was carried out under reduced pressure of lmmHg (with a TL flow of 3 mA for 5 minutes each).

生成した金の薄膜の厚さは、250Aである。次に、金
蒸着サンプルの両面に、室温硬化性銀ペーストを用いて
銅のリード線を接続し、真空中でインピーダンスアナラ
イザーにより静電容量を求め、比誘電率を算出した。そ
の結果、I K Hzでの比誘電率は27てあった。
The thickness of the gold film produced is 250A. Next, copper lead wires were connected to both sides of the gold vapor-deposited sample using a room-temperature curable silver paste, and the capacitance was determined using an impedance analyzer in vacuum, and the dielectric constant was calculated. As a result, the dielectric constant at I KHz was 27.

実施例5 実施例2で得たPCNPhEGo、26gを−アセトン
3mlに室温で一晩かけて溶解し9%の溶液とした。こ
の溶液をスペーサーを載せた離型紙上に適当m滴下し、
ガラス棒て展開した後、80°Cのオーブンで約10分
乾燥し、雌型紙から剥離しフィルムを得た。得られたフ
ィルムを、約1cmX1cmの大きさに切り出した後、
厚さをマイクロメータにより測定した。膜厚は、5点測
定しその平均より求め136μmであった。得られたフ
ィルムを、デシケータ中、約3時間減圧乾燥後、金の蒸
着を行った。金の蒸着は、約1cmX1cmのフィルム
を、6mmφに打抜いたアルミ盤で挟み、試料の両面に
0.lmmHgの減圧下、6mAの電流で5分間ずつ、
金の蒸着を行った。生成した金の薄膜の厚さは、25O
Aであった。次に、金蒸着サンプルの両面に、室温硬化
性銀ペーストを用いて鋼のリード線を接続し、真空中で
インピーダンスアナライザーにより静電容量を求め、比
誘電率を算出した。その結果、IKHzでの比誘電率は
16であった。
Example 5 26 g of PCNPhEGo obtained in Example 2 was dissolved in 3 ml of -acetone at room temperature overnight to obtain a 9% solution. Drop an appropriate amount of this solution onto a release paper with a spacer placed on it,
After developing with a glass rod, it was dried in an oven at 80°C for about 10 minutes and peeled off from the female pattern to obtain a film. After cutting the obtained film into a size of approximately 1 cm x 1 cm,
The thickness was measured using a micrometer. The film thickness was measured at 5 points and determined from the average of the measurements, and was 136 μm. The obtained film was dried under reduced pressure in a desiccator for about 3 hours, and then gold was vapor-deposited. For gold vapor deposition, a film of approximately 1 cm x 1 cm was sandwiched between aluminum plates punched to 6 mm in diameter, and 0.0 mm was applied to both sides of the sample. Under reduced pressure of lmmHg, with a current of 6 mA for 5 minutes each,
Gold vapor deposition was performed. The thickness of the produced gold thin film is 25O
It was A. Next, steel lead wires were connected to both sides of the gold vapor-deposited sample using a room-temperature curable silver paste, and the capacitance was determined using an impedance analyzer in vacuum, and the dielectric constant was calculated. As a result, the dielectric constant at IKHz was 16.

比較例2 PMG (ポリメチルグルタメ−1・)の15%EDC
溶液をスペーサーを載せた離型紙上に適当量滴下し、ガ
ラス棒で展開した後、80℃のオーブンで約10分乾燥
し、離型紙から剥離しフィルムを得た。得られたフィル
ムを、約1 cmX 1 cmの大きさに切り出した後
、厚さをマイクロメータにより測定した。膜厚は、5点
測定しその平均より求め37μmであった。得られたフ
ィルムを、デシケータ中、約3時間減圧乾燥後、金の蒸
着を行った。金の蒸着は、約1cmX1cmのフィルム
を、6mmφに打抜いたアルミ盤で挾み、試料の両面に
0.lmmHgの減圧下、6 m Aの電流で5分間ず
つ、金の蒸着を行った。生成した金の薄膜の厚さは、2
50Aであった。次に、金蒸着サンプルの両面に、室温
硬化性銀ペーストを用いて銅のリード線を接続し、真空
中でインピーダンスアナライザーにより静電容量を求め
、比誘電率を算出した。その結果、I K Hzでの比
誘電率は6であった。
Comparative Example 2 15% EDC of PMG (polymethylglutame-1.)
An appropriate amount of the solution was dropped onto a release paper on which a spacer was placed, spread with a glass rod, dried in an oven at 80° C. for about 10 minutes, and peeled off from the release paper to obtain a film. The obtained film was cut into a size of about 1 cm x 1 cm, and the thickness was measured using a micrometer. The film thickness was measured at 5 points and determined from the average, and was 37 μm. The obtained film was dried under reduced pressure in a desiccator for about 3 hours, and then gold was vapor-deposited. For gold vapor deposition, a film of approximately 1 cm x 1 cm was sandwiched between aluminum discs punched to 6 mm diameter, and 0.05 mm was applied to both sides of the sample. Gold deposition was carried out at a current of 6 mA for 5 minutes at a reduced pressure of lmmHg. The thickness of the produced thin gold film is 2
It was 50A. Next, copper lead wires were connected to both sides of the gold vapor-deposited sample using a room-temperature curable silver paste, and the capacitance was determined using an impedance analyzer in vacuum, and the dielectric constant was calculated. As a result, the dielectric constant at I KHz was 6.

以上の実施例4.5及び比較例の結果を表1に示す。The results of the above Examples 4.5 and Comparative Examples are shown in Table 1.

表1 比誘電率    27    16 文−■3 °   P  M  G     i  j
iff  o   P  V  D  F比誘電率  
   68
Table 1 Relative permittivity 27 16 Sentence-■3 ° P M G i j
if o P V D F relative permittivity
68

Claims (1)

【特許請求の範囲】 下記の構造式で表わされるシアノ基を含有する酸性アミ
ノ酸ポリマーからなる高誘電率フィルム。 ▲数式、化学式、表等があります▼
[Scope of Claims] A high dielectric constant film made of an acidic amino acid polymer containing a cyano group represented by the following structural formula. ▲Contains mathematical formulas, chemical formulas, tables, etc.▼
JP63022407A 1988-02-02 1988-02-02 High-dielectric constant film Pending JPH01197903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63022407A JPH01197903A (en) 1988-02-02 1988-02-02 High-dielectric constant film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63022407A JPH01197903A (en) 1988-02-02 1988-02-02 High-dielectric constant film

Publications (1)

Publication Number Publication Date
JPH01197903A true JPH01197903A (en) 1989-08-09

Family

ID=12081812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63022407A Pending JPH01197903A (en) 1988-02-02 1988-02-02 High-dielectric constant film

Country Status (1)

Country Link
JP (1) JPH01197903A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994016455A1 (en) * 1993-01-11 1994-07-21 Maxwell Laboratories, Inc. Dielectric material containing dipolar molecules
US5704570A (en) * 1992-12-16 1998-01-06 Yamato Kogyo Co., Ltd. Welded nose rail used for crossing
JP2014014063A (en) * 2011-09-30 2014-01-23 Fujifilm Corp Electroacoustic conversion film, flexible display, vocal cord microphone, and musical instrument sensor
JP2014017799A (en) * 2011-09-30 2014-01-30 Fujifilm Corp Electroacoustic transducer and display device
WO2016208385A1 (en) * 2015-06-23 2016-12-29 富士フイルム株式会社 Electroacoustic conversion film and electroacoustic transducer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5704570A (en) * 1992-12-16 1998-01-06 Yamato Kogyo Co., Ltd. Welded nose rail used for crossing
WO1994016455A1 (en) * 1993-01-11 1994-07-21 Maxwell Laboratories, Inc. Dielectric material containing dipolar molecules
JP2014014063A (en) * 2011-09-30 2014-01-23 Fujifilm Corp Electroacoustic conversion film, flexible display, vocal cord microphone, and musical instrument sensor
JP2014017799A (en) * 2011-09-30 2014-01-30 Fujifilm Corp Electroacoustic transducer and display device
WO2016208385A1 (en) * 2015-06-23 2016-12-29 富士フイルム株式会社 Electroacoustic conversion film and electroacoustic transducer
JPWO2016208385A1 (en) * 2015-06-23 2018-05-24 富士フイルム株式会社 Electroacoustic transducer film and electroacoustic transducer
US10091586B2 (en) 2015-06-23 2018-10-02 FUJIFIRM Corporation Electroacoustic transduction film and electroacoustic transducer

Similar Documents

Publication Publication Date Title
JP2002521529A (en) Monomers and network polymers obtained from them
TW201041970A (en) Metal complex and composition containing same
JP2003514096A (en) Process for the preparation of substituted poly (arylene vinylenes) and its use in electroluminescent devices
JPH01204393A (en) Electroluminescence element
KR20010087162A (en) Polymer production
JP5674143B2 (en) Dielectric material
JP2003183389A (en) Use of sulfonic acid, phosphonic acid, and phosphoric acid as dopant for polyaniline and conductive polyaniline based composite material
JPH01197903A (en) High-dielectric constant film
JP2003509854A (en) Highly stable package substrate and bromindane derivative
TW201425504A (en) Adhesive, laminate and methods of producing same
Furutani et al. Photoadhesive of Acrylates Containing Cross-links of Dipyridyl Disulfide
JPS5979903A (en) Electrically insulating material
US20110292566A1 (en) Cyanoresin polymer for dielectric film, process of making and associated article
Lakshmi et al. Chimeric polymers formed from a monomer capable of free radical, oxidative and electrochemical polymerisation
JP2002226485A (en) 3,6-di(3',5'-bis(fluoroalkyl)phenyl)-pyromellitic dianhydride and method for producing the same
JPH01113379A (en) Novel epoxysulfonylazide
JP2611379B2 (en) Polyphenylene sulfide film
EP0419519A1 (en) Hexafluoroisopropylidene-containing polyimide oligomers and polymers.
JPH06145656A (en) Improved electroluminescence device
JPH11140168A (en) Poly(substituted biphenylenevinylene) and production thereof
TWI637906B (en) Method of forming a multilayer structure
EP1309576A1 (en) Di(het)arylaminothiazole derivatives and their use in organic light-emitting diodes (oled's) and organic photovoltaic components
JPS6323903A (en) Organic binder
KR20180100870A (en) Binder, separator and secondary battery comprising the same
JP3178030B2 (en) Diamine compound and aromatic polyamide