JPH0119699B2 - - Google Patents

Info

Publication number
JPH0119699B2
JPH0119699B2 JP20892083A JP20892083A JPH0119699B2 JP H0119699 B2 JPH0119699 B2 JP H0119699B2 JP 20892083 A JP20892083 A JP 20892083A JP 20892083 A JP20892083 A JP 20892083A JP H0119699 B2 JPH0119699 B2 JP H0119699B2
Authority
JP
Japan
Prior art keywords
paint
underwater
water
curing
paints
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20892083A
Other languages
Japanese (ja)
Other versions
JPS60101157A (en
Inventor
Takashi Takeda
Atsuhiko Murao
Yoshiaki Shimizu
Sakae Fujita
Akihiro Tamada
Akio Kida
Norio Shoji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP20892083A priority Critical patent/JPS60101157A/en
Publication of JPS60101157A publication Critical patent/JPS60101157A/en
Publication of JPH0119699B2 publication Critical patent/JPH0119699B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、海洋構造物等の現場防食のために使
用する水中塗装用塗料に関するもので、より詳し
くは海水中あるいはアルカリ汚染水中などの腐食
性の悪条件下において鋼材等の表面に強固な密着
性を有する塗膜を形成することの可能な水中塗装
用塗料に関するものである。 水中塗装を行うための塗料としては、従来より
多くの研究・開発がなされ実際に各種の製品が上
市されているが、その殆どがエポキシ樹脂系のも
のであつた。エポキシ樹脂系塗料は、その塗装操
作が自由にコントロールできる条件下(すなわち
例えば被塗装面の研摩、洗浄などの予備的操作が
完全であるか完全に近いとき)で実施されたとき
は、充分に本来の密着強度を発揮し強固な塗膜を
与えることができるが、例えば水中、特に種々の
塩類ないしその他汚染物質など夾雑物が存在する
海水中では被塗装物である鋼面への塗れ、なじみ
が悪く塗装施工時に鋼面に一様に塗膜を形成させ
ることが困難で施工能率が極めて悪いのみなら
ず、当然のことながら施工終了後の塗膜面への信
頼性は充分に高いものとはなり得ないものであつ
た。 このような実情から、実際に海中での塗装作業
を行うときには、被塗装物に例えばプラスチツク
製の網を巻きつけその上からパテ状のエポキシ樹
脂系塗料をこすりつけるなどの方法によつて塗布
していたが、依然として被塗装物に対する塗料の
密着性には凝問が残り、具体的に塗膜の浮きやは
がれを生じた例も数多く報告されている。 従来の水中塗装用塗料は、塗装対象物が湿潤し
ている程度の条件下では一応の結果を期待するこ
ともできるが、水中では前述のように極めて不充
分であり、また水中への塗料成分の溶出、分散を
抑制し水質の汚染を極力防止するために有機溶剤
を含まない塗料の使用が要請されている昨今、従
来の水中塗装用無溶剤エポキシ樹脂塗料ではその
粘度が著しく高く作業性が極めて悪いこと、ポツ
トライフ(硬化剤混合後の塗料可使時間)が非常
に短かいという欠点を有するものであつた。 このことから、一般的には特殊な塗料用混合ミ
キサーの使用が必要となつたり、その他施工現場
での多大な労力を要し能率も悪いものであつた。 本発明は、これら前述の不都合を解消した水中
硬化塗料について種々検討の結果、容易に塗装作
業を行うことができ、しかも塗装後の塗膜も充分
に信頼性のある水中硬化塗料に到達したのであ
る。 すなわち本発明は、塗料比重が1.5〜2.0であ
り、疎水性の炭素数8〜12のポリオキシアルキレ
ン基を有する炭素数8〜12のポリカルボン酸アミ
ン塩0.5〜5.0重量%を含有した無溶剤2液混合型
エポキシ・ポリアミン系塗料からなることを特徴
とする水中硬化塗料に関するものである。 本発明で使用するエポキシ樹脂は、最も一般的
には分子量範囲がおよそ350〜420である液状ビス
フエノールグリシジルエーテル型エポキシ樹脂を
使用するが、そのほか低粘度の変性ビスフエノー
ルA型エポキシ樹脂、ビスフエノールF型エポキ
シ樹脂、脂肪族エポキシ樹脂などのうちから選ば
れた1種または2種以上を混合して使用してもよ
い。 上述の如きエポキシ樹脂に対して、別に希釈剤
を用いる。ここで使用する希釈剤を具体的に示す
と反応性のものとしては、脂肪族グリシジルエー
テル、芳香族グリシジルエーテルが、また非反応
性希釈剤としては例えば石油系芳香族重合油のう
ちから選択され、これは必要に応じて1種又は2
種以上のものを組み合わせて使用することもでき
る。 上に説明したエポキシ樹脂および希釈剤が2液
硬化型塗料のベースとなるが、配合された塗料が
水中塗装などに水中硬化し得るか否かは、塗料ベ
ースそのものよりもむしろ硬化剤の種類によつて
大きく影響を受ける。 エポキシ樹脂塗料の硬化剤としては、通常活性
水素をもつポリアミンを使用するが、このポリア
ミンの多くは水溶性ないしは部分水溶性であつ
て、本発明が対象としている使用場面、すなわち
水中にあつては溶出拡散してしまい塗膜は硬化し
ないかあるいは硬化しても反応に寄与したアミン
が少ないため充分な強度は期待することができな
いという事態が起る。従つて当然のことながら水
に不溶性であるか少なくとも硬化反応を完了する
までの間溶出しないだけの難溶性を有しているこ
とが必要であり、そのような制限された範囲の中
から選択するが、さらに次の条件を満足させる要
素が必要である。 1 水中硬化塗料の比重が水や海水のそれよりも
大きく、具体的には1.5〜2.0にすること。 水中硬化塗料は、多くの場合流速の大きい水
道管内面の補修や波浪のある海水中に設けられ
ている海洋構造物などの補修に使用されるが、
塗料比重が水や海水に比較して同程度か若干大
きな程度では、たとえ水中塗装を行つても水流
により塗装面から塗膜がうき上り遂には剥離し
てしまうという現象が起る。 2 塗料の表面張力を低下させかつ酸性を与える
こと。 水中硬化塗料で最も重要なことは、塗装面に
対する塗料の「ぬれ性」であり、これは塗料の
表面張力で把握することができる。水中硬化塗
料を使用する環境は、水中ないし海水中であり
塗装を行う際に前処理を行うことは通常不可能
である。 そして塗装対象物(多くは鋼面であるが)の
表面は水酸化鉄が形成されておりアルカリ性を
示し現象的には「ヌルヌル」の状態であると同
時に、基本的には一般的に水中硬化塗料の表面
張力が大きいために対象鋼面に十分なじまない
のが普通である。 以上2つの条件のうち、水中硬化塗料の比重を
調節するには充填剤の使用量によつて行う。この
目的のために用いるものとしてはタルク、バライ
ト、炭酸カルシウム、ケイ酸カルシウム、滑石
粉、粘土、けい砂などがあり、必要に応じてこれ
らの中から任意に選択して使用する。 また塗料の表面張力を低下させかつ酸性を与え
るものとしては、 アルキル・アリル・ポリグリコール・エーテル 脂肪族アミン塩 R′R″RNX ここでR,R′,R″,R:アルキル基、 X:カルボン酸 の混合物からなる疎水性の炭素数8〜12のポリオ
キシアルキレン基を有する炭素数8〜12のポリカ
ルボン酸アミン塩を使用する。このものは0.5〜
5.0重量の範囲で使用することにより後述の実施
例によつて認められるように良好な塗装性、塗膜
の密着性を与える。なおこの場合も当然のことな
がら水に不溶ないしは難溶性の界面活性剤を使用
するが、これは硬化剤の場合と同じ理由に基づく
ものである。 以下実施例によつて本発明を更に具体的に説明
する。 実施例 1 ビスフエノールA型エポキシ樹脂(GY250、
チバガイギー製、商品名)、非反応性希釈剤
(SAS―296、日本石油化学製、商品名)、タル
ク、ベンガラ、バライト、炭素数8〜12のポリオ
キシアルキレン基を有する炭素数8〜12のポリカ
ルボン酸アミン(以下S.A.)を次表の表示量(重
量%)配合した主剤にフジキユア5050−6、同
5405(富士化成製、商品名)およびDSX−NS−
170(ヘンケル白水製、商品名)の硬化剤を組合せ
て塗料(20℃で400±200ポイズとなつた)を配合
し海水中に浸漬した鋼材(赤錆面をパワーブラシ
でST−3まで研摩した)に塗装しその塗面状態、
硬化後の塗膜の密着性を観察し次表に示す如き結
果を得た。
The present invention relates to an underwater paint used for on-site corrosion protection of marine structures, etc. More specifically, the present invention relates to an underwater paint that adheres firmly to the surface of steel materials under adverse corrosive conditions such as seawater or alkali-contaminated water. The present invention relates to an underwater paint that is capable of forming a coating film having properties. As for paints for underwater painting, a lot of research and development has been done and various products have actually been put on the market, but most of them are based on epoxy resins. Epoxy resin-based paints can be used satisfactorily if the coating operation is carried out under freely controllable conditions (i.e., when preliminary operations such as polishing and cleaning of the surface to be coated are complete or close to complete). Although it can demonstrate its original adhesion strength and provide a strong coating film, for example, in water, especially in seawater where there are contaminants such as various salts and other contaminants, the coating may not adhere to the steel surface to be coated. It is difficult to uniformly form a paint film on the steel surface during painting, which not only causes extremely low construction efficiency, but also requires that the reliability of the paint film after construction is sufficiently high. It was impossible. Due to these circumstances, when actually performing painting work under the sea, the coating is applied by a method such as wrapping a plastic net around the object to be painted and rubbing putty-like epoxy resin paint over it. However, there are still questions about the adhesion of the paint to the object to be painted, and there have been many reports of concrete cases where the paint film has lifted or peeled off. Conventional paints for underwater painting can be expected to give some results under conditions where the object to be painted is wet, but as mentioned above, they are extremely insufficient under water, and the paint components may not be absorbed into the water. Nowadays, there is a demand for the use of paints that do not contain organic solvents in order to suppress the elution and dispersion of water and to prevent water pollution as much as possible.However, conventional solvent-free epoxy resin paints for underwater painting have extremely high viscosity and are difficult to work with. The problem is that the pot life (the pot life of the paint after mixing the curing agent) is extremely short. For this reason, it is generally necessary to use a special mixing mixer for paints, and requires a great deal of labor at the construction site, resulting in poor efficiency. The present invention has been made as a result of various studies on underwater curing paints that eliminate the above-mentioned disadvantages, and has resulted in an underwater curing paint that can be easily applied and has a sufficiently reliable coating film after painting. be. That is, the present invention provides a solvent-free paint having a specific gravity of 1.5 to 2.0 and containing 0.5 to 5.0% by weight of a polycarboxylic acid amine salt having 8 to 12 carbon atoms and having a hydrophobic polyoxyalkylene group having 8 to 12 carbon atoms. The present invention relates to an underwater curing paint characterized by being composed of a two-component mixed epoxy/polyamine paint. The epoxy resin used in the present invention is most commonly a liquid bisphenol glycidyl ether type epoxy resin with a molecular weight range of approximately 350 to 420, but other types include low viscosity modified bisphenol A type epoxy resin, bisphenol One type or a mixture of two or more types selected from F-type epoxy resins, aliphatic epoxy resins, etc. may be used. A diluent is used separately for the epoxy resin as described above. Specifically, the diluents used here are reactive ones selected from aliphatic glycidyl ethers and aromatic glycidyl ethers, and non-reactive ones selected from petroleum-based aromatic polymerized oils. , this is 1 type or 2 types as necessary.
It is also possible to use a combination of more than one species. The epoxy resin and diluent described above form the base of a two-component curing paint, but whether or not the blended paint can be cured underwater for underwater painting depends on the type of curing agent rather than the paint base itself. Therefore, it is greatly affected. Polyamines with active hydrogen are usually used as curing agents for epoxy resin paints, but many of these polyamines are water-soluble or partially water-soluble and cannot be used in the situation targeted by the present invention, that is, in water. As a result of elution and diffusion, the coating film may not be cured, or even if it is cured, sufficient strength cannot be expected because there is little amine that contributed to the reaction. Therefore, as a matter of course, it is necessary to be insoluble in water, or at least have a low solubility that does not dissolve out until the curing reaction is completed, and the material must be selected from within such a limited range. However, an element that satisfies the following conditions is also required. 1. The specific gravity of the underwater curing paint is higher than that of water or seawater, specifically 1.5 to 2.0. Underwater curing paints are often used to repair the inner surfaces of water pipes with high flow speeds and marine structures installed in seawater with waves.
If the specific gravity of the paint is about the same or slightly higher than that of water or seawater, even if underwater painting is performed, a phenomenon occurs in which the paint film lifts up from the painted surface due to the water flow and eventually peels off. 2. To lower the surface tension of the paint and give it acidity. The most important thing about underwater curing paints is the "wettability" of the paint to the painted surface, which can be determined by the surface tension of the paint. The environment in which underwater curing paints are used is underwater or seawater, and it is usually impossible to perform pretreatment before painting. Iron hydroxide is formed on the surface of the object to be painted (mostly steel surfaces), and it is alkaline and has a "slimy" state. Because the surface tension of paint is high, it usually does not blend well with the target steel surface. Among the above two conditions, the specific gravity of the underwater curing paint can be adjusted by changing the amount of filler used. Materials used for this purpose include talc, barite, calcium carbonate, calcium silicate, talcum powder, clay, and silica sand, and any one of these may be selected and used as required. Also, substances that lower the surface tension of paint and give it acidity include alkyl, allyl, polyglycol, and ether. Aliphatic amine salt R′R″RNX where R, R′, R″, R: alkyl group, ~12 polycarboxylic acid amine salts are used. This one is 0.5 ~
When used in a weight range of 5.0%, good paintability and adhesion of the coating film can be obtained as shown in the examples below. In this case as well, a surfactant that is insoluble or sparingly soluble in water is used, as a matter of course, for the same reason as in the case of the curing agent. The present invention will be explained in more detail below using Examples. Example 1 Bisphenol A type epoxy resin (GY250,
(manufactured by Ciba Geigy, trade name), non-reactive diluent (SAS-296, manufactured by Nippon Petrochemicals, trade name), talc, red iron, barite, polyoxyalkylene group having 8 to 12 carbon atoms. Fujikyu 5050-6, the same as the main ingredient containing polycarboxylic acid amine (hereinafter referred to as SA) in the indicated amount (wt%) in the table below.
5405 (manufactured by Fuji Kasei, product name) and DSX-NS-
170 (manufactured by Henkel Hakusui, trade name) and a paint (400±200 poise at 20℃) was mixed with the steel material immersed in seawater (the red rusted surface was polished to ST-3 with a power brush). ) and its painted surface condition,
The adhesion of the coating film after curing was observed and the results shown in the following table were obtained.

【表】 刷毛塗りでは、鋼面に付着している水を塗料と
置換させる力が弱く、いずれの塗料にも若干はじ
き等がみられたが、界面活性剤の添加効果は顕著
であり塗装性、塗料密着性共大幅に向上すること
が認められた。 実施例 2 すでに設置されている鋼管杭による護岸杭の海
中浸漬部、スプラツシユゾーンの補修を行うため
実施例1で試作した水中硬化塗料A〜Dを鋼管杭
に塗布した。なお塗布操作に先立つてパワーツー
ルにより除錆処理を施し、塗布は軍手装着の上で
手で塗りつけた。 海水は、投入土砂ないし汚染のためかPH9前後
であつた。塗布試験の結果、Aは全く杭に付着し
なかつたが、C,Dは塗装性も良好で波浪による
塗料の流出も認められず硬化後の塗膜付着性、強
度とも良好なものであつた。
[Table] With brush painting, the ability to replace the water adhering to the steel surface with paint is weak, and some repellency was observed in all paints, but the effect of adding a surfactant is significant and the paintability is improved. It was observed that paint adhesion was significantly improved. Example 2 In order to repair the underwater immersion part and splash zone of the seawall pile made of steel pipe piles that had already been installed, the underwater curing paints A to D prepared in Example 1 were applied to the steel pipe piles. Prior to the coating operation, rust removal treatment was performed using a power tool, and the coating was applied by hand while wearing work gloves. The pH of the seawater was around 9, probably due to the input of sediment or pollution. As a result of the coating test, A did not adhere to the pile at all, while C and D had good paintability, no paint was observed to flow out due to waves, and both coating adhesion and strength after curing were good. .

Claims (1)

【特許請求の範囲】[Claims] 1 塗料比重が1.5〜2.0であり、疎水性の炭素数
8〜12のポリオキシアルキレン基を有する炭素数
8〜12のポリカルボン酸アミン塩0.5〜5.0重量%
を含有した無溶剤2液混合型エポキシ・ポリアミ
ン系塗料からなることを特徴とする水中硬化塗
料。
1. C8-12 polycarboxylic acid amine salt having a paint specific gravity of 1.5-2.0 and having a hydrophobic C8-12 polyoxyalkylene group 0.5-5.0% by weight
An underwater curing paint characterized by comprising a solvent-free two-component mixed epoxy/polyamine paint containing.
JP20892083A 1983-11-09 1983-11-09 Under water curing paint Granted JPS60101157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20892083A JPS60101157A (en) 1983-11-09 1983-11-09 Under water curing paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20892083A JPS60101157A (en) 1983-11-09 1983-11-09 Under water curing paint

Publications (2)

Publication Number Publication Date
JPS60101157A JPS60101157A (en) 1985-06-05
JPH0119699B2 true JPH0119699B2 (en) 1989-04-12

Family

ID=16564309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20892083A Granted JPS60101157A (en) 1983-11-09 1983-11-09 Under water curing paint

Country Status (1)

Country Link
JP (1) JPS60101157A (en)

Also Published As

Publication number Publication date
JPS60101157A (en) 1985-06-05

Similar Documents

Publication Publication Date Title
JP5005675B2 (en) High solid type anticorrosion paint composition
EP1069167B1 (en) Coating composition
JP6153132B2 (en) Epoxy resin composition
JP2005015572A (en) Epoxy resin composition, anticorrosive coating film formed therefrom, substrate covered with the anticorrosive coating film and corrosion protection method of the substrate
CN101643615B (en) Polyaniline modified glass flake heavy-duty anti-corrosive coating and preparation method thereof
WO2005023941A1 (en) Curable alkanolamine-containing epoxy powder coating composition
CN104177987A (en) Cathodic disbanding resistant anti-corrosion epoxy coating and making method thereof
JP2001279167A (en) Corrosion resistant coating composition, film formed therewith, substrate coated thereby, and method for corrosion resistance
WO2005123271A2 (en) Method of producing an epoxy composition
US3159499A (en) Treating water-wetted surfaces with corrosion-resistant coating material
JPH0566404B2 (en)
JPH0119699B2 (en)
KR100545384B1 (en) Ceramic coating anticorrosive agent for underwater use and a anticorrosion method used by the agent
CN101643322B (en) Vinyl ester heavy-duty anticorrosive coating with polyaniline-modified glass flakes, and preparation method thereof
US3976613A (en) Composition and process for treating and repairing metallic and non-metallic surfaces
JPH0832850B2 (en) Anticorrosion construction method for underwater steel structure
KR100630439B1 (en) Two component epoxy coating composition for water-curing and method for preparing same
JP5461034B2 (en) Anti-corrosion epoxy resin coating and method for preventing deterioration of water use structure using the coating
JP2824969B2 (en) Underwater coating type paint composition and method for underwater coating of this paint composition
Sun et al. The Research Status of Surface Tolerant Anticorrosion Coatings in China
JPH07113080B2 (en) Epoxy resin composition for wet surface construction
JPH02108533A (en) Corrosionproof processing method
JPH0790204B2 (en) Anticorrosion method for steel structures
JPS6333479A (en) Coating material composition for underwater coating
JPH021774A (en) Antifouling coating composition to be applied to wet surface