JPH01196460A - Freezer - Google Patents

Freezer

Info

Publication number
JPH01196460A
JPH01196460A JP2123088A JP2123088A JPH01196460A JP H01196460 A JPH01196460 A JP H01196460A JP 2123088 A JP2123088 A JP 2123088A JP 2123088 A JP2123088 A JP 2123088A JP H01196460 A JPH01196460 A JP H01196460A
Authority
JP
Japan
Prior art keywords
temperature
evaporator
temperature sensor
refrigerant
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2123088A
Other languages
Japanese (ja)
Inventor
Yasuo Ikezaki
安雄 池崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2123088A priority Critical patent/JPH01196460A/en
Publication of JPH01196460A publication Critical patent/JPH01196460A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To improve the heat transfer efficiency of an evaporator by providing a single temperature sensor at the coolant outlet part of the evaporator and another temperature sensor at the coolant outlet part of the evaporator or a coolant flow path within the evaporator, and controlling the difference in the temperature between two temperature sensors by means of an electronic expansion valve. CONSTITUTION:Temperature sensors 20 and 22 are provided on the side of a coolant outlet part HO during the space heating of an air heat exchanger 16. A bypass flow path 42 is branched from a pipeline 40 for supplying a coolant to the air heat exchanger 16 (evaporator) during the space heating operation. The bypass flow path 42 ejected the moist liquid of the coolant to the temperature sensor 20. Thereby, the temperature sensor 20 can detect the saturation temperature corresponding to the pressure at the coolant outlet part HO. On the other hand, the temperature sensor 22 detects the temperature at the coolant outlet part HO. The difference in temperature detected by the temperature sensors 20 and 22 becomes equal to the degree of superheat of the coolant of the outlet part HO. This temperature difference DELTAC is input to an electronic expansion valve controller 38, and an operational signal obtained by comparison operation treating the difference DELTAC with a preset temperature difference is sent out through lines 46 and 48 to an electronic expansion valve 18, and thus a necessary control is carried out.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、所定の2箇所における温度差が一定になるよ
うに制御する電子膨脹弁を備えた冷凍装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a refrigeration system equipped with an electronic expansion valve that controls the temperature difference between two predetermined locations to be constant.

[従来の技術] このような電子膨脹弁を備えた従来の冷凍装置では、1
本の温度センサを蒸発器の冷媒入口部に設け、且つ他の
温度センサを蒸発器の冷媒出口部に設け、もって蒸発器
の冷媒入口部と冷媒出口部との温度差を一定にするよう
に冷媒流量等を制御していた。
[Prior Art] In a conventional refrigeration system equipped with such an electronic expansion valve, 1
One temperature sensor is installed at the refrigerant inlet of the evaporator, and another temperature sensor is installed at the refrigerant outlet of the evaporator, thereby making the temperature difference between the refrigerant inlet and the refrigerant outlet of the evaporator constant. It controlled the refrigerant flow rate, etc.

[発明が解決しようとする課題] しかしながら、第5図で示すモリエル線図を参照すると
明らかなように、従来の冷凍機においては、蒸発器冷媒
入口部の温度T1は蒸発器出口圧力相当飽和温度T2よ
りも蒸発器内の冷媒流路における圧力損失に相当する温
度(圧力損失相当温度)ΔLだけ高くなる。そのため、
蒸発器出口部(符号O)の冷媒過熱度ΔHは、電子膨脹
弁により制御される温度差ΔCよりも前記圧力損失相当
温度ΔLの分だけ大きくなってしまう、そして、これに
より、蒸発器の伝熱効率が低下することにより蒸発温度
が低下し、冷凍能力も低くなり、冷凍装置の成績係数C
OPが低下するという問題点があった。
[Problems to be Solved by the Invention] However, as is clear from the Mollier diagram shown in FIG. The temperature becomes higher than T2 by ΔL corresponding to the pressure loss in the refrigerant flow path in the evaporator (pressure loss equivalent temperature). Therefore,
The refrigerant superheat degree ΔH at the evaporator outlet (symbol O) is larger than the temperature difference ΔC controlled by the electronic expansion valve by the pressure loss equivalent temperature ΔL, and as a result, the evaporator transmission As the thermal efficiency decreases, the evaporation temperature decreases, the refrigeration capacity also decreases, and the coefficient of performance C of the refrigeration equipment decreases.
There was a problem that OP decreased.

本発明は上記した従来技術の欠点に鑑みて提案されたも
のであり、蒸発器内の冷媒流路にあける圧力損失の影響
を小さくし、あるいは排除することができ、蒸発器の伝
熱効率を向上できるような冷凍装置を提供することを目
的としている。
The present invention was proposed in view of the above-mentioned drawbacks of the prior art, and can reduce or eliminate the influence of pressure loss in the refrigerant flow path in the evaporator, thereby improving the heat transfer efficiency of the evaporator. The aim is to provide a refrigeration system that can

[課題を解決するための手段] 本発明の冷凍装置は、圧縮機と、蒸発器と、凝縮器と、
少なくとも2本の温度センサと、そのセンサによって検
出された温度の温度差が一定になるように制御する電子
膨脹弁とを含む冷凍装置において、1木の温度センサが
蒸発器の冷媒出口部に設けられ、冷媒ガス飽和温度測定
用の他の温度センサが蒸発器の冷媒出口部あるいは蒸発
器内の冷媒流路中に設けられており、そして前記冷媒ガ
ス飽和温度測定用の温度センサスはその近傍に冷媒の液
又は湿り液を噴射するためのバイパス流路が形成されて
いる。
[Means for Solving the Problems] The refrigeration system of the present invention includes a compressor, an evaporator, a condenser,
In a refrigeration system including at least two temperature sensors and an electronic expansion valve that controls the temperature difference between the temperatures detected by the sensors to be constant, one temperature sensor is provided at the refrigerant outlet of the evaporator. and another temperature sensor for measuring the refrigerant gas saturation temperature is provided at the refrigerant outlet of the evaporator or in the refrigerant flow path in the evaporator, and the temperature sensor for measuring the refrigerant gas saturation temperature is provided in the vicinity thereof. A bypass flow path is formed for injecting refrigerant liquid or dampening liquid.

ここで、前記バイパス流路は、冷媒の湿り液部に接続さ
れているのがより好ましい。
Here, it is more preferable that the bypass flow path is connected to a dampening liquid section of the refrigerant.

[作用] 上記のような構成を有する本発明によれば、冷媒ガス飽
和温度測定用の温度センサスはその近傍には冷媒の液又
は湿り液が噴射されるので、その温度センサを設けた箇
所における圧力相当飽和温度を測定することができる。
[Function] According to the present invention having the above configuration, since the refrigerant liquid or dampening liquid is injected near the temperature sensor for measuring the refrigerant gas saturation temperature, the temperature sensor at the location where the temperature sensor is installed is The pressure equivalent saturation temperature can be measured.

そしてこの冷媒ガス飽和温度測定用温度センサを蒸発器
の冷媒出口部に設置すれば、蒸発器出口部圧力相当飽和
温度(第4図符号TS2 )が検出される。この場合は
第4図のモリエル線図で示す状態となり、2つの温度セ
ンサにおける温度差すなわち電子膨脹弁により制御され
る温度差ΔCは蒸発器出口部の冷媒過熱度(ΔH)に等
しくなる。その結果、蒸発器の冷媒流路おける圧力損失
相当温度ΔLは電子膨脹弁による制御に何ら影響を与え
ず、蒸発器の伝熱効率が向上する。
If this temperature sensor for measuring the refrigerant gas saturation temperature is installed at the refrigerant outlet of the evaporator, the saturation temperature corresponding to the pressure at the outlet of the evaporator (represented by reference numeral TS2 in FIG. 4) is detected. In this case, the state is shown in the Mollier diagram of FIG. 4, and the temperature difference between the two temperature sensors, ie, the temperature difference ΔC controlled by the electronic expansion valve, is equal to the degree of superheating of the refrigerant (ΔH) at the outlet of the evaporator. As a result, the pressure loss equivalent temperature ΔL in the refrigerant flow path of the evaporator has no effect on control by the electronic expansion valve, and the heat transfer efficiency of the evaporator is improved.

また、この冷媒ガス飽和温度測定用温度センサを蒸発器
内の冷媒流路内に設ければ、蒸発器の冷媒入口部から該
温度センサを取付けな箇所に至るまでの冷媒流路におけ
る圧力損失による影響を排除することができ、蒸発器の
伝熱効率が向上する。
In addition, if this temperature sensor for measuring the refrigerant gas saturation temperature is installed in the refrigerant flow path in the evaporator, pressure loss in the refrigerant flow path from the refrigerant inlet of the evaporator to the point where the temperature sensor is installed can be avoided. The heat transfer efficiency of the evaporator is improved.

なお、冷媒の湿り液をバイパスすることによる損失は、
冷媒ガス飽和温度測定用温度センサに噴射される湿り液
が微量であることから殆ど無視することができる。
In addition, the loss due to bypassing the refrigerant dampening liquid is
Since the amount of dampening liquid injected to the temperature sensor for measuring refrigerant gas saturation temperature is very small, it can be almost ignored.

[実施例] 以下第1図ないし第3図を参照して本発明の一実施例に
ついて説明する。
[Embodiment] An embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

第1図は、冷暖房運転可能な冷凍装置10を示し、そし
て第1図および第2図の矢印は暖房運転モードにおける
冷媒の流れ方向を示している。
FIG. 1 shows a refrigeration system 10 capable of heating and cooling operation, and the arrows in FIGS. 1 and 2 indicate the flow direction of the refrigerant in the heating operation mode.

冷凍装置10は、圧縮機12、利用側熱交換器14、空
気熱交換器16、電子膨脹弁18、を含んでいる。ここ
で暖房運転モードの際には空気熱交換器16が蒸発器と
して作用し、一方、冷房運転モードの際には、利用側熱
交換器14が蒸発器として作用する。そして、空気熱交
換器16には温度センサ20.22が設けられており、
一方、利用側熱交換器14にも温度センサ24.26が
設けられている。この温度センサ20.22.24.2
6はそれぞれ検知した温度に対応した信号(抵抗)を発
生し、その信号はライン28.30.32.34および
電子膨脹弁冷暖房切換スイッチ36A、36Bを介して
、電子膨脂弁調節器38へ入力される。なお、第1図中
符号56は四方弁を示す。
The refrigeration system 10 includes a compressor 12, a user-side heat exchanger 14, an air heat exchanger 16, and an electronic expansion valve 18. Here, in the heating operation mode, the air heat exchanger 16 acts as an evaporator, while in the cooling operation mode, the user-side heat exchanger 14 acts as an evaporator. The air heat exchanger 16 is provided with a temperature sensor 20.22,
On the other hand, the user side heat exchanger 14 is also provided with temperature sensors 24 and 26. This temperature sensor 20.22.24.2
6 generates a signal (resistance) corresponding to the detected temperature, and the signal is sent to the electronic expansion valve regulator 38 via lines 28, 30, 32, 34 and electronic expansion valve air conditioning/heating changeover switches 36A and 36B. is input. Note that the reference numeral 56 in FIG. 1 indicates a four-way valve.

第1図の冷凍装置10を暖房運転モードにする場合−電
子膨脹弁冷暖房切換スイッチ36Aおよび36Bは図中
H側に切換わる。その結果、暖房運転モードの際には温
度センサ20および22からの信号だけが電子膨脂弁調
節器38に入力される。
When the refrigeration system 10 of FIG. 1 is placed in the heating operation mode, the electronic expansion valve air conditioning/heating selector switches 36A and 36B are switched to the H side in the figure. As a result, only signals from temperature sensors 20 and 22 are input to electronic fat expansion valve regulator 38 during the heating mode of operation.

温度センサ20.22は空気熱交換器16の暖房時にお
ける冷媒出口部HOの側に設けられている。そして暖房
時に空気熱交換器16すなわち蒸発器へ冷媒を供給する
配管40からはバイパス流lR142が分岐しており、
そして第2図で詳細に示すように、このバイパス流路4
2は冷媒の湿り液を温度センサ20に噴射して、冷媒出
口部HO側の冷媒配管44に合流する。ここで、温度セ
ンサ20は、冷媒の湿り液を噴射されることにより、冷
媒出口部HOの圧力相当飽和温度(第4図中TS2)を
検出することができ、冷媒ガス飽和温度測定用温度セン
サとして作用するのである。一方、温度センサ22は冷
媒出口部HOの温度(第4図中TS1 )を検出する。
The temperature sensors 20 and 22 are provided on the side of the refrigerant outlet HO of the air heat exchanger 16 during heating. A bypass flow 1R142 is branched from the pipe 40 that supplies refrigerant to the air heat exchanger 16, that is, the evaporator during heating.
As shown in detail in FIG. 2, this bypass flow path 4
2 injects a refrigerant dampening liquid to the temperature sensor 20 and joins the refrigerant pipe 44 on the refrigerant outlet HO side. Here, the temperature sensor 20 can detect the pressure-equivalent saturation temperature (TS2 in FIG. 4) of the refrigerant outlet portion HO by being injected with the refrigerant dampening liquid, and is a temperature sensor for measuring the refrigerant gas saturation temperature. It acts as. On the other hand, the temperature sensor 22 detects the temperature of the refrigerant outlet HO (TS1 in FIG. 4).

その結果、温度センサ20.22で検出された温度差(
第4図中ΔC)は出口部HOの冷媒過熱度に等しくなる
。この温度差ΔCは電子gi弁調節器38に入力され、
あらかじめ設定された温度差と比較演算処理された作動
信号がライン46.48を介して電子膨脹弁18へ送出
され、必要な制御が行われるのである。
As a result, the temperature difference (
ΔC) in FIG. 4 is equal to the degree of superheating of the refrigerant at the outlet HO. This temperature difference ΔC is input to the electronic gi valve controller 38,
An operating signal, which has been compared with a preset temperature difference, is sent via lines 46, 48 to the electronic expansion valve 18, and the necessary controls are carried out.

次に、冷凍装置10を冷凍運転モードにする場合につい
て説明する。この場合、電子膨脹弁冷暖房切換スイッチ
36A、36BはC側に切換わり、電子膨脂弁調節器3
8には温度センサ24および26の信号だけが入力され
る。一方の温度センサ26は、蒸発器として作動する利
用側熱交換器14の冷媒出口部COに配置されており、
他方の温度センサ24は、第1図および第3図で示すよ
うに利用側熱交換器14内の流路50より詳細には第3
段流路50cの末尾部に配置されている。利用側熱交換
器14内の仕切板52における温度センサ24に隣接し
た部分にはバイパス流路として作用するオリフィス54
が形成されており、このオリフィス54を介して第1段
流路50Aを流過してきた冷媒湿り液の1部が温度セン
サ24に噴射される。これにより、温度センサ24はそ
の設置位置における圧力相当飽和温度を検出する冷媒ガ
ス飽和温度測定用温度センサとして作動することができ
る。その結果、温度センサ24.26によって検出され
た温度差は冷媒出口部COにおける冷媒ガス過熱度に第
1段流路50Aにおける圧力損失相当温度を加えたもの
となり、流路5OA、50B、50Cにおけるる圧力損
失による影響が排除される。従って、利用側熱交換器1
4すなわち蒸発器内の冷媒流路における圧力損失の影響
が小さくなり、電子膨脹弁により利用側熱交換器14出
ロ冷媒ガス過熱度を小さく制御できる。
Next, a case will be described in which the refrigeration apparatus 10 is placed in the refrigeration operation mode. In this case, the electronic expansion valve air conditioning/heating changeover switches 36A and 36B are switched to the C side, and the electronic expansion valve controller 3
Only the signals from the temperature sensors 24 and 26 are input to the temperature sensor 8. One temperature sensor 26 is arranged at the refrigerant outlet CO of the user-side heat exchanger 14 that operates as an evaporator.
As shown in FIGS. 1 and 3, the other temperature sensor 24 is connected more specifically to the third flow path 50 in the user-side heat exchanger 14.
It is arranged at the tail end of the stage flow path 50c. An orifice 54 that acts as a bypass flow path is provided in a portion of the partition plate 52 in the user-side heat exchanger 14 adjacent to the temperature sensor 24.
is formed, and a part of the refrigerant dampening liquid that has flowed through the first stage flow path 50A is injected to the temperature sensor 24 through the orifice 54. Thereby, the temperature sensor 24 can operate as a temperature sensor for measuring refrigerant gas saturation temperature that detects the pressure-equivalent saturation temperature at the installation position. As a result, the temperature difference detected by the temperature sensors 24 and 26 is the sum of the degree of superheating of the refrigerant gas at the refrigerant outlet CO and the temperature equivalent to the pressure loss in the first stage flow path 50A, and the temperature difference in the flow paths 5OA, 50B, and 50C is The effect of pressure loss is eliminated. Therefore, the user heat exchanger 1
4. In other words, the influence of pressure loss in the refrigerant flow path in the evaporator is reduced, and the degree of superheating of the refrigerant gas exiting the user-side heat exchanger 14 can be controlled to be low by the electronic expansion valve.

なお、温度センサ26を冷媒出口部COに設けて、バイ
パス管により冷媒湿り液を噴射しても良い。その場合は
、温度センサ24.26によって検出された温度差は出
口部Coにおける冷媒ガス過熱度に等しくなる。
Note that the temperature sensor 26 may be provided at the refrigerant outlet CO, and the refrigerant dampening liquid may be injected through a bypass pipe. In that case, the temperature difference detected by the temperature sensor 24,26 will be equal to the degree of superheating of the refrigerant gas at the outlet Co.

[発明の効果] 本発明によれば、1つの温度センサスは近傍に冷媒液又
は湿り液を噴射して、その温度センサ設置箇所における
圧力相当飽和温度を検出することを可能にして、蒸発器
内の冷媒流路の圧力損失による影響を排除しあるいは小
さくすることができるので、蒸発器の伝熱性能を向上す
ることができる。その結果、蒸発温度を高く保って、冷
凍能力を大きくすることができると同時に、冷凍装置の
成績係数COPを向上することができる。また、バイパ
ス流路を湿り液部より取出し、少量の冷媒湿り液を冷媒
ガス飽和温度測定用の温度センサに噴射するように構成
すれば、冷媒湿り液をバイパスしたことによる損失を小
さくすることができる。
[Effects of the Invention] According to the present invention, one temperature sensor injects refrigerant liquid or dampening liquid nearby, makes it possible to detect the pressure-equivalent saturation temperature at the temperature sensor installation location, and detects the pressure inside the evaporator. Since the influence of pressure loss in the refrigerant flow path can be eliminated or reduced, the heat transfer performance of the evaporator can be improved. As a result, the evaporation temperature can be kept high and the refrigeration capacity can be increased, and at the same time, the coefficient of performance COP of the refrigeration system can be improved. In addition, if the bypass flow path is taken out from the dampening liquid section and a small amount of refrigerant dampening liquid is injected to the temperature sensor for measuring the refrigerant gas saturation temperature, the loss due to bypassing the refrigerant dampening liquid can be reduced. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
本発明で用いられる温度センサの詳細を示す図、第3図
は利用側熱交換器(冷房運転時における蒸発器)におい
て温度センサを取付ける態様を示す正面断面図、第4図
は第1図の冷凍装置で暖房運転をした場合のモリエル線
図を示し、第5図は従来の冷凍装置におけるモリエル線
図を示す。
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a diagram showing details of a temperature sensor used in the present invention, and Fig. 3 is a diagram showing details of a temperature sensor used in the present invention. FIG. 4 is a front sectional view showing a manner in which the temperature sensor is attached. FIG. 4 shows a Mollier diagram when the refrigeration system shown in FIG. 1 is in heating operation, and FIG. 5 shows a Mollier diagram for the conventional refrigeration system.

Claims (1)

【特許請求の範囲】[Claims]  圧縮機と、蒸発器と、凝縮器と、少なくとも2本の温
度センサと、そのセンサによつて検出された温度の温度
差が一定になるように制御する電子膨脹弁とを含む冷凍
装置において、1本の温度センサが蒸発器の冷媒出口部
に設けられ、冷媒ガス飽和温度測定用の他の温度センサ
が蒸発器の冷媒出口部あるいは蒸発器内の冷媒流路中に
設けられており、そして前記冷媒ガス飽和温度測定用の
温度センサ又はその近傍に冷媒の液又は湿り液を噴射す
るためのバイパス流路が形成されていることを特徴とす
る冷凍装置。
A refrigeration system including a compressor, an evaporator, a condenser, at least two temperature sensors, and an electronic expansion valve that controls the temperature difference between the temperatures detected by the sensors to be constant, one temperature sensor is provided at the refrigerant outlet of the evaporator, another temperature sensor for measuring the refrigerant gas saturation temperature is provided at the refrigerant outlet of the evaporator or in the refrigerant flow path within the evaporator; A refrigeration system characterized in that a bypass flow path for injecting a refrigerant liquid or dampening liquid is formed at or near the temperature sensor for measuring the refrigerant gas saturation temperature.
JP2123088A 1988-02-02 1988-02-02 Freezer Pending JPH01196460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2123088A JPH01196460A (en) 1988-02-02 1988-02-02 Freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2123088A JPH01196460A (en) 1988-02-02 1988-02-02 Freezer

Publications (1)

Publication Number Publication Date
JPH01196460A true JPH01196460A (en) 1989-08-08

Family

ID=12049226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2123088A Pending JPH01196460A (en) 1988-02-02 1988-02-02 Freezer

Country Status (1)

Country Link
JP (1) JPH01196460A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103673441A (en) * 2012-09-12 2014-03-26 三菱重工业株式会社 Control apparatus and method for parallel-type chiller

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151682A (en) * 1983-02-08 1984-08-30 Mitsubishi Electric Corp Electric reversible expansion valve

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151682A (en) * 1983-02-08 1984-08-30 Mitsubishi Electric Corp Electric reversible expansion valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103673441A (en) * 2012-09-12 2014-03-26 三菱重工业株式会社 Control apparatus and method for parallel-type chiller
JP2014055707A (en) * 2012-09-12 2014-03-27 Mitsubishi Heavy Ind Ltd Device, method, and program for controlling parallel refrigerator
US9453670B2 (en) 2012-09-12 2016-09-27 Mitsubishi Heavy Industries, Ltd. Control apparatus and method for parallel-type chiller, and computer-readable recording medium in which program for parallel-type chiller is stored

Similar Documents

Publication Publication Date Title
US5904049A (en) Refrigeration expansion control
CA2277730C (en) Hot gas defrost refrigeration system
US6658878B2 (en) Multi-compartment type refrigerator and method for controlling the same
US5076068A (en) Cooling device for a plurality of coolant circuits
KR100352103B1 (en) Refrigerant flow control according to evaporator dryness
EP2232230B1 (en) Refrigeration system comprising a test chamber with temperature and humidity control
GB2268256A (en) Air conditioning apparatus having a dehumidifying operation function
EP0453271A2 (en) Air conditioning apparatus
US5960642A (en) Refrigerating cycle system for a refrigerator
JPH0694953B2 (en) Closed refrigeration circuit
EP3469271A1 (en) Cooling system with adjustable internal heat exchanger
JPH01196460A (en) Freezer
JPH07151429A (en) Air conditioner
JPH10103834A (en) Refrigerator
JPH10311615A (en) Refrigerant switching type refrigerating machine and environment testing device employing the same
US6499307B1 (en) Refrigeration system incorporating simplified valve arrangement
KR100190128B1 (en) Driving control method of a refrigerator
JPH06317360A (en) Multi-chamber type air conditioner
US11686505B2 (en) Refrigerator
KR20020057158A (en) Heat exchanging cycle of car air conditioner
JPH09159292A (en) Controller for air conditioner
JP2703381B2 (en) Multi air conditioner
JPH06221690A (en) Freezer device
JPH0579894B2 (en)
JPH05769Y2 (en)