JP2703381B2 - Multi air conditioner - Google Patents

Multi air conditioner

Info

Publication number
JP2703381B2
JP2703381B2 JP2005300A JP530090A JP2703381B2 JP 2703381 B2 JP2703381 B2 JP 2703381B2 JP 2005300 A JP2005300 A JP 2005300A JP 530090 A JP530090 A JP 530090A JP 2703381 B2 JP2703381 B2 JP 2703381B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
indoor heat
air conditioner
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005300A
Other languages
Japanese (ja)
Other versions
JPH03211369A (en
Inventor
節郎 浅井
浩清 寺田
隆雄 千秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005300A priority Critical patent/JP2703381B2/en
Publication of JPH03211369A publication Critical patent/JPH03211369A/en
Application granted granted Critical
Publication of JP2703381B2 publication Critical patent/JP2703381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、多室用空気調和機即ちマルチ空気調和機に
関するものである。
Description: TECHNICAL FIELD The present invention relates to a multi-room air conditioner, that is, a multi-air conditioner.

[従来の技術] マルチ空気調和機は、1台の圧縮機と1台の室外側熱
交換器と2台以上の室内側熱交換器とからなり、これら
の室内側熱交換器が圧縮機及び室外側熱交換器に対して
並列的に冷媒回路により連結されている。並列回路のそ
れぞれに流れる冷媒量の制御方法は、例えば特開昭58-2
00432号公報に開示されている様に、暖房運転時には各
室内側熱交換器の出口温度センサの検知温度が等しくな
るように、即ち凝縮器のサブクール(過冷却度)が等し
くなるように液側並列分岐管路中の制御弁の開度を制御
し、一方、冷房運転時には室内側熱交換器のガス側並列
分岐管路温度センサの検知温度で上記制御弁の開度を調
節し、これによって適性な冷媒量が流れるようになって
いる。
[Related Art] A multi-type air conditioner includes one compressor, one outdoor heat exchanger, and two or more indoor heat exchangers. The refrigerant circuit is connected in parallel to the outdoor heat exchanger in parallel. A method of controlling the amount of refrigerant flowing through each of the parallel circuits is described in, for example,
[0043] As disclosed in Japanese Patent Publication No. 00432, during the heating operation, the liquid side is set so that the detection temperatures of the outlet temperature sensors of the indoor heat exchangers are equal, that is, the subcool (supercooling degree) of the condenser is equal. The opening degree of the control valve in the parallel branch pipe is controlled.On the other hand, during the cooling operation, the opening degree of the control valve is adjusted by the detection temperature of the gas side parallel branch pipe temperature sensor of the indoor heat exchanger, whereby An appropriate amount of refrigerant flows.

[発明が解決しようとする課題] 上記のように、暖房運転時に各室内側熱交換器の出口
温度が等しくなるように、即ち各凝縮器の過冷却度が等
しくなるように液側制御弁の開度を制御する方法による
と、冷媒封入量が十分あるときは過冷却度をとることが
でき、冷媒の各室内側熱交換器への分配も適切に行われ
る。しかし冷媒封入量が不足すると、過冷却度がとれな
くなり、各室内側熱交換器への冷媒の分配が悪いにも拘
らずその出口温度が等しくなって飽和温度になってしま
うという欠点がある。
[Problems to be Solved by the Invention] As described above, during the heating operation, the liquid side control valve is controlled so that the outlet temperatures of the indoor heat exchangers are equal, that is, the supercooling degrees of the condensers are equal. According to the method of controlling the degree of opening, when the amount of charged refrigerant is sufficient, the degree of supercooling can be obtained, and the refrigerant is appropriately distributed to each indoor heat exchanger. However, if the amount of the charged refrigerant is insufficient, the degree of supercooling cannot be obtained, and there is a disadvantage that the outlet temperature is equalized to the saturation temperature despite the poor distribution of the refrigerant to each indoor heat exchanger.

一般に微量の冷媒の洩れは避けられず、長年月の間に
は冷媒封入量は不足気味となり、また据え付け工事の時
の施工ミスなどにより始めから既に冷媒封入量が不足し
ていることもある。この様な場合には前記従来のマルチ
空気調和機の制御方法では、上述のように、冷媒の最適
な分配は不可能になる。
In general, leakage of a small amount of refrigerant is unavoidable, and the amount of charged refrigerant is likely to be insufficient for many months, and the amount of charged refrigerant may be insufficient from the beginning due to construction mistakes during installation work. In such a case, the above-described conventional method for controlling a multi-air conditioner makes it impossible to optimally distribute the refrigerant as described above.

従って、本発明は、冷媒の封入量が多少減っても、又
各室内側熱交換器に能力差があっても、夫々の能力に見
合った冷媒の分配が可能なマルチ空気調和機を提供する
ことを目的としている。
Therefore, the present invention provides a multi-type air conditioner capable of distributing a refrigerant in accordance with the capacity of each indoor heat exchanger even if the amount of the charged refrigerant is slightly reduced or the indoor heat exchanger has a difference in capacity. It is intended to be.

[課題を解決するための手段] 本発明は、上記目的を達成するために、特許請求の範
囲の各請求項に記載のマルチ空気調和機を提供するもの
である。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a multi-type air conditioner described in each claim of the claims.

[作用] 本発明は、暖房運動時には圧縮器から吐出された過熱
ガス冷媒は並列流路に分流し、室内側熱交換器で凝縮
し、再び合流して室外側熱交換器に到り、圧縮機へと還
流する。このとき冷媒流量検知手段により検知される流
量の比が所定の比になるように膨張弁が制御されるの
で、冷媒の分配は理想的な状態に保たれる。従って本発
明によると、暖房運転時、過熱冷媒ガス部で冷媒流量が
検知され膨張弁が制御されるという一種のフィードバッ
ク制御が得られ、冷媒封入量の過不足に影響されないマ
ルチ空調機が得られる。この制御はディジタルコントロ
ーラ方式でなし得る。
[Operation] According to the present invention, the superheated gas refrigerant discharged from the compressor at the time of the heating exercise is diverted to the parallel flow path, condensed in the indoor heat exchanger, merges again, reaches the outdoor heat exchanger, and is compressed. Reflux to the machine. At this time, the expansion valve is controlled so that the ratio of the flow rates detected by the refrigerant flow rate detecting means becomes a predetermined ratio, so that the distribution of the refrigerant is kept in an ideal state. Therefore, according to the present invention, during heating operation, a kind of feedback control that the refrigerant flow rate is detected in the superheated refrigerant gas portion and the expansion valve is controlled is obtained, and a multi-air conditioner that is not affected by excess or deficiency of the refrigerant charging amount is obtained. . This control can be performed by a digital controller method.

暖房運動は上記の通りであるが、冷房運転時には、第
1冷媒温度検知手段(これは前記冷媒流量検知手段と兼
用してもよい)により検知される温度と、前記第2の冷
媒温度検知手段により検知される温度との差が正の所定
値になるように制御され、即ち、各室内側熱交換器から
出た冷媒は過熱ガスとなり、冷房時にも冷媒封入量の過
不足に関係なく、各室内側熱交換器へ理想的な冷媒の分
配が出来る。
The heating motion is as described above, but during the cooling operation, the temperature detected by the first refrigerant temperature detecting means (which may also be used as the refrigerant flow rate detecting means) and the second refrigerant temperature detecting means Is controlled so that the difference from the detected temperature becomes a positive predetermined value, that is, the refrigerant that has flowed out of each indoor heat exchanger becomes a superheated gas, regardless of whether the refrigerant charging amount is excessive or insufficient even during cooling, Ideal refrigerant can be distributed to each indoor heat exchanger.

[実施例] 以下、本発明の1実施例を添付図面によって説明す
る。この例では室内ユニットは3台であるとする。
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings. In this example, it is assumed that there are three indoor units.

第1図に示すように、冷凍サイクル自体は従来のもの
と同様に構成されており、圧縮機1、室外側熱交換器
と、複数の室内ユニットの熱交換器(室内側熱交換器)
4a,4b,4cが図示の如く配管で接続され、冷媒回路を構成
している。暖房運転時には、切換弁2は図示の位置をと
り、圧縮機1から吐出した過熱ガス冷媒は切換弁2を通
って並列管路に分流し、電磁開閉弁10a,10b,10cを通っ
て室内側熱交換器4a,4b,4cで凝縮して液化し、電子膨張
弁5a,5b,5cで減圧され、再び合流し、レシーバ9を通
り、室外側熱交換器3でガス化し、アキュムレータ8を
経て圧縮機1に戻る。余剰冷媒はレシーバ9内に溜めら
れる。切換弁2を切換えて、冷媒の流れ方向に逆にし、
冷房運転することができる。
As shown in FIG. 1, the refrigeration cycle itself is configured similarly to the conventional one, and includes a compressor 1, an outdoor heat exchanger, and a plurality of indoor unit heat exchangers (indoor heat exchangers).
4a, 4b, and 4c are connected by piping as shown in the figure to form a refrigerant circuit. During the heating operation, the switching valve 2 assumes the illustrated position, the superheated gas refrigerant discharged from the compressor 1 is diverted to the parallel pipe through the switching valve 2, and passes through the electromagnetic switching valves 10a, 10b, 10c to the indoor side. Condensed and liquefied in the heat exchangers 4a, 4b, 4c, decompressed by the electronic expansion valves 5a, 5b, 5c, merged again, passed through the receiver 9, gasified in the outdoor heat exchanger 3, and passed through the accumulator 8. Return to the compressor 1. Excess refrigerant is stored in the receiver 9. Switching the switching valve 2 to reverse the flow direction of the refrigerant,
Cooling operation can be performed.

さて、本発明の実施例によれば、並列管路の各々に
は、図示の位置、すなわち暖房運動時の各室内側熱交換
器4a,4b,4cの上流側位置に傍熱形のサーミスタ6a,6b,6c
が設けられている。その詳細が第2図に示されている。
すなわち、並列管路の管壁を貫通して座金60が溶接など
で取付けられ、この座金にパッキン62を介して締具61に
よって傍熱形サーミスタ6が管内の冷媒に浸漬されるよ
うな形で、管内へ突出するように取付けられている。
Now, according to the embodiment of the present invention, each of the parallel pipelines has an indirectly heated thermistor 6a at the position shown in the drawing, that is, at the position upstream of each indoor heat exchanger 4a, 4b, 4c during the heating operation. , 6b, 6c
Is provided. The details are shown in FIG.
That is, a washer 60 is attached by welding or the like through the pipe wall of the parallel conduit, and the indirectly heated thermistor 6 is immersed in the refrigerant in the pipe by the fastener 61 via the packing 62 to the washer. , So as to protrude into the pipe.

サーミスタ6a,6b,6cは第4図に示すように夫々定電流
源63a,63b,63cに接続され、その電圧降下分の信号A−
A′,B−B′,C−C′が夫々検出信号として処理装置7
に入力されるようになっている。
Thermistors 6a, 6b and 6c are connected to constant current sources 63a, 63b and 63c, respectively, as shown in FIG.
A ', BB', and CC 'are used as detection signals in the processing device 7 respectively.
To be entered.

更に、並列管路において、室内側熱交換器4a,4b,4cの
暖房運動時の下流側(冷房運転時の上流側)には、サー
ミスタ11a,11b,11cが第2図と同様の構造で取付られ、
これらのサーミスタ11a,11b,11cは第5図に示すように
夫々ブリッヂ回路の一辺に挿入され、各ブリッヂ回路は
定電圧源12に接続されている。夫々のブリッヂの対角電
圧D−D′,E−E′,F−F′が検出信号として処理装置
7に入力される。
Further, in the parallel pipeline, thermistors 11a, 11b, 11c have the same structure as that of FIG. 2 on the downstream side of the indoor heat exchangers 4a, 4b, 4c during the heating operation (upstream during the cooling operation). Mounted,
These thermistors 11a, 11b and 11c are respectively inserted into one side of the bridge circuit as shown in FIG. 5, and each bridge circuit is connected to the constant voltage source 12. The diagonal voltages DD ', EE', and FF 'of each bridge are input to the processing device 7 as detection signals.

第5図は電子膨張弁5a,5b,5cの構造を示し、夫々、処
理装置7からの信号により動作するステップモータ71a,
71b,71cによりその弁開度が調節されるようになってい
る。
FIG. 5 shows the structure of the electronic expansion valves 5a, 5b, 5c, which are operated by signals from the processing device 7 respectively.
The valve opening is adjusted by 71b and 71c.

第6図は処理装置7の構成を示す図であり、前記各サ
ーミスタからの検出信号を入力される増巾器72、マルチ
プレクサ73、A/Dコンバータ74、マイクロコンピュータ7
5、そして、各電子膨張弁5a,5b,5cを操作するためのド
ライバ回路76から成る。
FIG. 6 is a diagram showing a configuration of the processing device 7, in which an amplifier 72, a multiplexer 73, an A / D converter 74, a microcomputer 7 to which detection signals from the thermistors are input.
5, and a driver circuit 76 for operating each of the electronic expansion valves 5a, 5b, 5c.

次に本実施例の動作を説明する。暖房運転時には、第
1図に示されている位置に切換弁2を切換えて運転す
る。そうすると、圧縮機から吐出された過熱ガス冷媒は
並列管路を通り、室内側熱交換器4a,4b,4cに流れ、そし
て室外側熱交換器3を経て圧縮機1へ還流し、周知のよ
うに室内を暖房する。
Next, the operation of this embodiment will be described. During the heating operation, the operation is performed by switching the switching valve 2 to the position shown in FIG. Then, the superheated gas refrigerant discharged from the compressor passes through the parallel pipes, flows into the indoor heat exchangers 4a, 4b, and 4c, and returns to the compressor 1 through the outdoor heat exchanger 3, and as is well known. To heat the room.

暖房運転中はサーミスタ6a,6b,6cは定電流源63a,63b,
63cから比較的大きい定電流を給電され発熱している。
各サーミスタの放熱量はそれに接触する各並列管路中の
過熱ガス冷媒の流速に依存し、該冷媒の温度は分岐直後
なので相等しいので、各サーミスタの温度の比は各並列
管路の冷媒流速の比になり、しかも、並列管路の冷媒圧
力および管路の太さも相等しいので、結局、各サーミス
タ6a,6b,6cの温度、ひいては、その検出信号すなわちそ
の両端間電圧A−A′,B−B′,C−C′の比は夫々の並
列管路の冷媒流量(質量流量)の比を表わす。これらサ
ーミスタ6a,6b,6cの検出信号を適宜増巾72し、マルチプ
レクサ73により順次取入れ、ADコンバータ74でディジタ
ル信号に変換し、マイコン75に入力する。これら入力を
用いてマイコン75は電子膨張弁5a,5b,5cの開度修正量を
演算し、夫々のドライバ回路76を介して電子膨張弁5a,5
b,5cの開度を調節し、これによって、各並列管路、従っ
て、各室内熱交換器を流れる冷媒流量を制御する。
During the heating operation, the thermistors 6a, 6b, 6c are constant current sources 63a, 63b,
A relatively large constant current is supplied from 63c to generate heat.
The amount of heat released by each thermistor depends on the flow rate of the superheated gas refrigerant in each parallel line that comes into contact with it, and since the temperatures of the refrigerants are equal immediately after branching, the temperature ratio of each thermistor is equal to the refrigerant flow rate of each parallel line. In addition, since the refrigerant pressure of the parallel pipes and the thickness of the pipes are also equal, the temperature of each thermistor 6a, 6b, 6c, and eventually the detection signal, that is, the voltage A-A ', The ratio of B-B 'and C-C' indicates the ratio of the refrigerant flow rate (mass flow rate) of each parallel pipe. The detection signals of these thermistors 6a, 6b, 6c are amplified 72 as appropriate, sequentially received by a multiplexer 73, converted into digital signals by an AD converter 74, and input to a microcomputer 75. Using these inputs, the microcomputer 75 calculates the opening correction amounts of the electronic expansion valves 5a, 5b, 5c, and via the respective driver circuits 76, the electronic expansion valves 5a, 5c.
The degree of opening of b, 5c is adjusted, thereby controlling the flow rate of the refrigerant flowing through each parallel pipe, and thus through each indoor heat exchanger.

上述した電子膨張弁5a,5b,5cの開度修正量の温度は下
記の様になされる。各並列管路、従って、各室内熱交換
器4a,4b,4cを流れる冷媒流量を夫々F1,F2,F3と表わせ
ば、流量比 F1:F2:F3=N1:N2:N3 になる様にすることが目標である。但し、N1,N2,N3
夫々各室内ユニットの容量である。これに対し、今、上
記冷媒流量F1,F2,F3を各サーミスタ6a,6b,6cにより測
定して得られた実際の冷媒流量比が F1′:F2′:F3′=n1:n2:n3 であったとすると、上記目標を達成するための各電子膨
張弁5a,5b,5cの開度修正量Pa,Pb,Pcは Pa=k1(N1-n1) Pb=k2(N2-n2) Pc=k3(N3-n3) として算出される。ここに、kiはi番目(i=1,2,3)
の室内ユニットへの配管長、サイクルの高圧・低圧圧力
の差、その時のi番目の電子膨張弁の絶対開度の関数で
ある。
The temperature of the opening correction amount of the electronic expansion valves 5a, 5b, 5c is as follows. Each parallel line, therefore, each of the indoor heat exchangers 4a, 4b, Expressed refrigerant flow rate through the 4c and each F 1, F 2, F 3 , the flow rate ratio of F 1: F 2: F 3 = N 1: N 2: it is the target to such become N 3. Here, N 1 , N 2 , and N 3 are the capacities of the respective indoor units. On the other hand, the actual refrigerant flow ratio obtained by measuring the above-mentioned refrigerant flow rates F 1 , F 2 , F 3 by the thermistors 6a, 6b, 6c is F 1 ′: F 2 ′: F 3 ′ = n 1: n 2: When was n 3, the electronic expansion valve 5a in order to achieve the above objectives, 5b, the opening correction amount of 5c P a, P b, P c is P a = k 1 (n 1− n 1 ) P b = k 2 (N 2 −n 2 ) P c = k 3 (N 3 −n 3 ) Here, k i is the i-th (i = 1, 2, 3)
Of the i-th electronic expansion valve at that time.

次に冷房運転の場合の制御について述べる。第1図に
示す切換弁2を切換え、冷媒を逆方向に循環させて周知
のように冷房運転できる。この場合の電子膨張弁5a,5b,
5cの開度は下記のように制御される。すなわち、冷房運
転中はサーミスタ6a,6b,6cへは定電流源63,63…から比
較的小さい電流を給電する。従って、これらのサーミス
タの発熱は無視でき、冷媒の温度によりその抵抗値が定
まり、サーミスタ6a,6b,6cは各並列管路中の冷媒の温度
を検知することになる。一方、冷房運転時には室内側熱
交換器4a,4b,4cの上流側となる並列管路中のサーミスタ
11a,11b,11cにより当該並列管路中を流れる冷媒の温度
が検知される。これらのサーミスタ6a,6b,6cで検知され
た冷媒温度を夫々[T]6a,[T]6b,[T]6cとし、
サーミスタ11a,11b,11cで検知された冷媒温度を夫々
[T]11a,[T]11b,[T]11cとすれば、 [T]6a−[T]11a=δa [T]6b−[T]11b=δb [T]6c−[T]11c=δc で計算されるδa,δb,δc…が夫々正の一定値に等し
くなるように(したがって、各並列流路の室内側熱交換
器4a,4b,4cの出口下流端部[サーミスタ6a,6b,6cの在る
所]では冷媒は必ず過熱ガスとなる)、電子膨張弁5a,5
b,5cの開度を調節する。これにより、冷房運転時にも冷
媒封入量の過不足に無関係に、各室内側交換器へ理想的
な冷媒の分配が行われる。
Next, the control in the cooling operation will be described. By switching the switching valve 2 shown in FIG. 1 to circulate the refrigerant in the reverse direction, the cooling operation can be performed as is well known. In this case, the electronic expansion valves 5a, 5b,
The opening of 5c is controlled as follows. That is, during the cooling operation, a relatively small current is supplied from the constant current sources 63, 63 to the thermistors 6a, 6b, 6c. Therefore, the heat generated by these thermistors can be ignored, the resistance value is determined by the temperature of the refrigerant, and the thermistors 6a, 6b, 6c detect the temperature of the refrigerant in each parallel pipe. On the other hand, during the cooling operation, the thermistor in the parallel pipe upstream of the indoor heat exchangers 4a, 4b, 4c
The temperatures of the refrigerant flowing through the parallel pipes are detected by 11a, 11b, and 11c. The refrigerant temperatures detected by these thermistors 6a, 6b, 6c are respectively [T] 6a , [T] 6b , [T] 6c ,
If the refrigerant temperatures detected by the thermistors 11a, 11b, 11c are [T] 11a , [T] 11b , [T] 11c , respectively , then [T] 6a- [T] 11a = δ a [T] 6b- [ T] 11b = δ b [T] 6c − [T] 11c = δ c so that δ a , δ b , δ c, ... Are each equal to a positive constant value (thus, each parallel flow path The refrigerant always becomes a superheated gas at the outlet downstream end of the indoor heat exchangers 4a, 4b, 4c (where the thermistors 6a, 6b, 6c are located), and the electronic expansion valves 5a, 5
Adjust the opening of b and 5c. Thus, ideal cooling medium distribution to each indoor-side exchanger is performed regardless of whether the amount of charged refrigerant is excessive or insufficient during the cooling operation.

[発明の効果] 以上、詳述したように、本発明によると暖房運転時に
は夫々の室内ユニットへの並列管路に流れる圧縮機から
の過熱ガス冷媒の流量比が所要の比に等しくなるように
電子膨張弁の開度が制御されるので、冷媒の封入量の過
不足に影響されることなく、冷媒の分配が理想的に行わ
れる。また冷房運転時にも室内側熱交換器の出口におけ
る冷媒が所定の過熱ガスとなるように、電子膨張弁の開
度が制御されるので、冷媒封入量の過不足に影響されず
に理想的な冷媒分配ができる。したがって、本発明によ
ると、冷媒が長年月の間に洩れによって減少しても或は
据付工事ミスなどによって冷媒封入量が少なくても、良
好な冷媒分配のできるマルチ空調機が得られる。
[Effects of the Invention] As described above, according to the present invention, during the heating operation, the flow ratio of the superheated gas refrigerant from the compressor flowing through the parallel pipes to the respective indoor units is made equal to the required ratio. Since the opening degree of the electronic expansion valve is controlled, the distribution of the refrigerant is ideally performed without being affected by the excess or deficiency of the charged amount of the refrigerant. Also, during the cooling operation, the opening of the electronic expansion valve is controlled so that the refrigerant at the outlet of the indoor heat exchanger becomes a predetermined superheated gas. Refrigerant distribution is possible. Therefore, according to the present invention, it is possible to obtain a multi air conditioner capable of good refrigerant distribution even if the amount of refrigerant is reduced due to leakage during many months or the amount of refrigerant charged is small due to an installation work mistake or the like.

【図面の簡単な説明】[Brief description of the drawings]

図面は、本発明の1実施例を示し、第1図は冷凍サイク
ル全体を示す冷媒回路図、第2図はサーミスタの取付け
構造の例示図、第3図は冷媒流量および冷媒温度検知用
のサーミスタ電気回路の例示図、第4図は冷媒温度検知
用サーミスタ電気回路の例示図、第5図は電子膨張弁の
構成例示図、第6図は処理装置7の構成例示図である。 1……圧縮機、2……冷暖房切換弁 3……室外側熱交換器 4a,4b,4c……室内側熱交換器 5a,5b,5c……電子膨張弁 6a,6b,6c……サーミスタ 7……処理装置 11a,11b,11c……サーミスタ
1 shows an embodiment of the present invention, FIG. 1 is a refrigerant circuit diagram showing an entire refrigeration cycle, FIG. 2 is an illustration of a mounting structure of a thermistor, and FIG. 3 is a thermistor for detecting a refrigerant flow rate and a refrigerant temperature. FIG. 4 is an exemplary view of an electric circuit of a thermistor for detecting a refrigerant temperature, FIG. 5 is an exemplary view of a configuration of an electronic expansion valve, and FIG. 6 is an exemplary view of a configuration of a processing device 7. 1 ... Compressor, 2 ... Cooling / heating switching valve 3 ... Outdoor heat exchanger 4a, 4b, 4c ... Indoor heat exchanger 5a, 5b, 5c ... Electronic expansion valve 6a, 6b, 6c ... Thermistor 7 Processing unit 11a, 11b, 11c Thermistor

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】1台の圧縮機と1台の室外側熱交換器と複
数台の室内側熱交換器とを備え、これらの複数台の室内
側熱交換器が圧縮機及び室外側熱交換器に対して並列流
路により結合され、前記並列流路の夫々には室外側熱交
換器と各室内側熱交換器との間に電子膨張弁が介装され
ているマルチ空気調和機に於て、 前記並列流路の夫々には、暖房運転時に圧縮機よりも下
流側で室内側熱交換器よりも上流側となる位置に、冷媒
流量検知手段が設けられ、暖房運転時には、前記夫々の
電子膨張弁の開度を前記冷媒流量検知手段により検知さ
れる流量の比が所定の比になるように制御する制御手段
が備えられたことを特徴とするマルチ空気調和機。
1. An air conditioner comprising one compressor, one outdoor heat exchanger, and a plurality of indoor heat exchangers, wherein the plurality of indoor heat exchangers are a compressor and an outdoor heat exchanger. A multi-air conditioner is connected to the heat exchanger by parallel flow passages, and each of the parallel flow passages has an electronic expansion valve interposed between an outdoor heat exchanger and each indoor heat exchanger. In each of the parallel flow paths, a refrigerant flow rate detection unit is provided at a position downstream of the compressor and upstream of the indoor heat exchanger during the heating operation, and at the time of the heating operation, A multi-air conditioner comprising control means for controlling an opening degree of an electronic expansion valve so that a ratio of a flow rate detected by the refrigerant flow rate detection means becomes a predetermined ratio.
JP2005300A 1990-01-12 1990-01-12 Multi air conditioner Expired - Fee Related JP2703381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005300A JP2703381B2 (en) 1990-01-12 1990-01-12 Multi air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005300A JP2703381B2 (en) 1990-01-12 1990-01-12 Multi air conditioner

Publications (2)

Publication Number Publication Date
JPH03211369A JPH03211369A (en) 1991-09-17
JP2703381B2 true JP2703381B2 (en) 1998-01-26

Family

ID=11607402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005300A Expired - Fee Related JP2703381B2 (en) 1990-01-12 1990-01-12 Multi air conditioner

Country Status (1)

Country Link
JP (1) JP2703381B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4920624B2 (en) * 2008-04-03 2012-04-18 シャープ株式会社 Air conditioner

Also Published As

Publication number Publication date
JPH03211369A (en) 1991-09-17

Similar Documents

Publication Publication Date Title
EP0676595B1 (en) Air conditioning apparatus
EP0509619B1 (en) Air conditioning system
JPS6334459A (en) Air conditioner
EP3483524A1 (en) Control device of multiple-type air conditioning device, multiple-type air conditioning device, method of controlling multiple-type air conditioning device, and computer program of controlling multiple-type air conditioning device
US4926653A (en) Multi-room type air-conditioning equipment
JPH03260562A (en) Cooling-heating combination type multiple refrigeration cycle
JP2703381B2 (en) Multi air conditioner
JP3334184B2 (en) Multi-room air conditioner
JP2893844B2 (en) Air conditioner
JPH04214153A (en) Refrigerating cycle device
JP2800362B2 (en) Multi-room air conditioner
JPH0670515B2 (en) Multi-room air conditioner
JP3444360B2 (en) Constant temperature and constant room equipment
JPH08159589A (en) Multi-room type air conditioner and operating method therefor
JP2508306B2 (en) Operation control device for air conditioner
JP3138491B2 (en) Air conditioner
JP3336896B2 (en) Air conditioner
JPH0480569A (en) Air-conditioning machine
JPH0694960B2 (en) Multi-room air conditioner
JP3179180B2 (en) Air conditioner
JPH0327252Y2 (en)
JP2692895B2 (en) Air conditioner
JPH0579894B2 (en)
JPH086980B2 (en) Air conditioner
JPH0814442B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees