JPH01195045A - Biaxially oriented polyester film - Google Patents

Biaxially oriented polyester film

Info

Publication number
JPH01195045A
JPH01195045A JP2017788A JP2017788A JPH01195045A JP H01195045 A JPH01195045 A JP H01195045A JP 2017788 A JP2017788 A JP 2017788A JP 2017788 A JP2017788 A JP 2017788A JP H01195045 A JPH01195045 A JP H01195045A
Authority
JP
Japan
Prior art keywords
polyester
layer
composition
film
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017788A
Other languages
Japanese (ja)
Other versions
JP2569686B2 (en
Inventor
Koichi Abe
晃一 阿部
Satoshi Nishino
聡 西野
Hidehito Minamizawa
南沢 秀仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP63020177A priority Critical patent/JP2569686B2/en
Publication of JPH01195045A publication Critical patent/JPH01195045A/en
Application granted granted Critical
Publication of JP2569686B2 publication Critical patent/JP2569686B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To enhance scratch resistance and end surface strength, by a method wherein a polyester composition containing colloidal silica and polyester not containing inorg. particles are respectively set to crystallizing characteristics to be laminated in a specific thickness ratio and the height and interval of the projections on the surface of the polyester composition containing colloidal silica are set to specific ranges. CONSTITUTION:A biaxially oriented polyester film is formed by laminating a composition layer (B-layer) wherein spherical silica caused by colloidal silica is contained in polyester to a polyester layer (A-layer) substantially containing no inorg particles. In this film, the thickness ratio of the A-layer and the B-layer is 0.04-1.4, the difference of a crystallizing parameter DELTATcg between polyester and the composition is 1-45 deg.C, the average projection height on the surface of the composition layer (B-layer) is 20-150nm and the average projection interval on the surface of said layer is 20mum or less. The polyester in both of the polyester layer and the composition contains a principal constitutional component composed of a structural unit selected from an ethylene terephthalate unit, an ethylene alpha, beta-bis (2-chlorophenoxy) ethane-4, 4'-dicarboxylate unit and an ethylene 2, 6-naphthalate unit.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は二軸配向ポリニスデルフィルムに関するもので
おる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to biaxially oriented polynisder films.

[従来の技術] 二軸配向ポリエステルフィルムとしては、ポリエステル
にコロイド状シリカに起因する実質的に球形のシリカ粒
子を含有せしめたフィルムが知られている(たとえば待
聞昭59−171623号公報)。
[Prior Art] As a biaxially oriented polyester film, a film in which substantially spherical silica particles derived from colloidal silica are contained in polyester is known (for example, Japanese Patent No. 171623/1983).

[発明が解決しようとする課題] しかし、上記従来の二軸配向ポリエステルフィルムは、
フィルムの加工工程、たとえば包装用途におりる印刷工
程、磁気媒体用途にあける磁性層塗部・カレンダー工程
などの工程速度の増大にともない、フィルム位置規制カ
イトピンとフィルム端面(側面)も高速で接触すること
になり、カイトでフィルムの端面が削られることにより
発生した粉が加工工程上、製品性能上のトラブルとなる
という欠点が、最近、問題となってきている。また、フ
ィルム加工工程の工程速度の増大に伴って、工程通過時
に、フィルムに傷がつくという欠点か問題となってきて
いる。
[Problem to be solved by the invention] However, the above conventional biaxially oriented polyester film has the following problems:
As the processing speed of film increases, such as the printing process for packaging applications, the magnetic layer coating/calendering process for magnetic media applications, etc., the film position regulating kite pin and the film end face (side surface) also come into contact at high speed. This has recently become a problem, as powder generated by scraping the edge of the film with a kite can cause problems in the processing process and product performance. Additionally, as the process speed of film processing increases, the problem of scratches on the film during passing through the process has become a problem.

本発明はかかる問題点を改善し、端面からの粉−2= 落ちの起こりにくさ(以下、端面強度という)とフィル
ムの傷つきにくさ(以下耐スクラッチ性という)に優れ
たフィルムを提供することを目的とする。
The present invention improves these problems and provides a film that has excellent resistance to powder falling from the edge (hereinafter referred to as edge strength) and resistance to scratching of the film (hereinafter referred to as scratch resistance). With the goal.

1課題を解決するための手段1 本発明は、実質的に無機粒子を含有しないポリエステル
(A)からなる層(A層)の少なくとも片面に、ポリエ
ステルにコロイダルシリカに起因する球形シリカを含有
せしめた組成物(B)からなる@ (B層>を積層して
なるフィルムで必って、該A層とB層との厚さ比率(B
/A>が0.04〜1.4、ポリエステル(A>と組成
物(B)の結晶化パラメータ△TCQの差(A−8>が
1〜45℃、組成物(B)の表面の平均突起高さが20
〜150nm、かつ、該表面の平均突起間隔が20μm
以下であることを特徴とする二軸配向ポリエステルフィ
ルムに関するものである。
1 Means for Solving the Problem 1 The present invention includes a layer (A layer) made of polyester (A) that does not substantially contain inorganic particles, and on at least one side thereof, spherical silica derived from colloidal silica is contained in the polyester. In a film formed by laminating @ (B layer) consisting of composition (B), the thickness ratio of the A layer and B layer (B
/A> is 0.04 to 1.4, the difference in crystallization parameter ΔTCQ between polyester (A> and composition (B)) (A-8> is 1 to 45°C, average of the surface of composition (B) Protrusion height is 20
~150 nm, and the average protrusion spacing on the surface is 20 μm
This invention relates to a biaxially oriented polyester film characterized by the following.

本発明を構成するポリエステル(A>および組成物(B
)におけるポリエステルは、エチレンテレフタレーi〜
、エチレンα、β−ビス(2−クロルフェノキシ)エタ
ン−4,4“−シカルボキシレ〜ト、エチレン2,6−
ナツタレート単位から選ばれた少なくとも一種の構造単
位を主要構成成分とする。ただし、本発明を阻害しない
範囲内、好ましくは15モル%以内であれば他成分が共
重合されていてもよい。また、エチレンテレフタレート
を主要構成成分とするポリエステルの場合に端面強度と
耐スクラッチ性がより一層良好となるので特に望ましい
Polyester (A> and composition (B) constituting the present invention
), the polyester is ethylene terephthalate i~
, ethylene α,β-bis(2-chlorophenoxy)ethane-4,4″-cycarboxylate, ethylene 2,6-
The main constituent is at least one type of structural unit selected from natsutalate units. However, other components may be copolymerized within a range that does not impede the present invention, preferably within 15 mol%. In addition, polyester containing ethylene terephthalate as a main component is particularly desirable because the end face strength and scratch resistance are even better.

本発明を構成するポリエステル(A>は、実質的に無機
粒子を含有していないことか必要である。
It is necessary that the polyester (A>) constituting the present invention does not substantially contain inorganic particles.

ここでいう実質的とは、0.05重量%以下のことであ
り、これより多くの無機粒子が含有されていると端面強
さか不良となるので好ましくない。
Here, "substantially" means 0.05% by weight or less, and if more inorganic particles are contained than this, the end face strength will be poor, which is not preferable.

本発明の組成物(B)におけるコロイダルシリカに起因
する球形シリカは、特に限定されないが、通常イオン交
換法あるいはアルコキシド法で製造されたものであり、
特にアルコキシド法で製造された実質的に球形のシリカ
の場合に耐スクラッチ性かより一層良好となるので特に
望ましい。
The spherical silica derived from the colloidal silica in the composition (B) of the present invention is not particularly limited, but is usually produced by an ion exchange method or an alkoxide method,
In particular, substantially spherical silica produced by the alkoxide method is particularly desirable since it provides even better scratch resistance.

本発明のポリエステル(A)、組成物(B)は上記組成
物を主要成分とするが、本発明の目的を阻害しない範囲
内で、他種ポリマをブレンドしてもよいし、また酸化防
止剤、熱安定剤、滑剤、紫外線吸収剤などの有機添加剤
が通常添加される程度添加されていてもよい。
The polyester (A) and composition (B) of the present invention contain the above-mentioned composition as a main component, but other types of polymers may be blended within a range that does not impede the purpose of the present invention, and antioxidants may be added. , heat stabilizers, lubricants, ultraviolet absorbers, and other organic additives may be added to the extent that they are normally added.

本発明フィルムは上記ポリエステル(A)層の少なくと
も片面に、上記組成物(B)層を積層したフィルムであ
り、ポリエステル(A>層は二軸配向、組成物(B)@
は二軸、おるいは、−軸配向であることが必要である。
The film of the present invention is a film in which the composition (B) layer is laminated on at least one side of the polyester (A) layer, and the polyester (A>layer is biaxially oriented, and the composition (B)@
needs to be biaxially or -axially oriented.

この配向の程度は特に限定されないが、高分子の分子配
向の程度の目安であるヤング率が、積層フィルムとして
、長手゛ 方向が350〜1300kg/mm2 、幅
方向が400〜1500kQ/mm2の範囲である場合
に端面強度、耐スクラッチ性が より一層良好となるの
で特に望ましい。
The degree of this orientation is not particularly limited, but as a laminated film, the Young's modulus, which is a measure of the degree of molecular orientation of the polymer, is in the range of 350 to 1300 kg/mm2 in the longitudinal direction and 400 to 1500 kQ/mm2 in the width direction. In some cases, it is particularly desirable because the end face strength and scratch resistance become even better.

本発明フィルムは上記ポリエステル(A>層と組成物(
B)層の厚さ比率(B/A>が0.04〜1.4、好ま
しくは0.06〜0.6、さらに= 5− 好ましくは0.1〜0.5の範囲であることが必要であ
る。厚さ比率か上記の範囲より小さいと耐スクラッチ性
が不良となり、逆に大きいと端面強度が不良となるので
好ましくない。なお、組成物(B)層が2層以上の場合
はその総厚さが上記範囲内であることが必要てめる。
The film of the present invention consists of the above-mentioned polyester (A>layer and composition (
B) The layer thickness ratio (B/A> is in the range of 0.04 to 1.4, preferably 0.06 to 0.6, more preferably = 5 - preferably 0.1 to 0.5) If the thickness ratio is smaller than the above range, the scratch resistance will be poor, and if it is too large, the end face strength will be poor, so it is not preferable. It is necessary that the total thickness is within the above range.

本発明フィルムは上記ポリエステル(A>層と組成物(
B)層の結晶化パラメータ△TCqの差(A−B)が1
〜45℃、好ましくは2〜40’C。
The film of the present invention consists of the above-mentioned polyester (A>layer and composition (
B) The difference (A-B) in the crystallization parameter ΔTCq of the layers is 1
~45°C, preferably 2-40'C.

さらに好ましくは2〜30’Cの範囲であることが必要
である。結晶化パラメータ△丁CΩの差が上記の範囲よ
り小さいと端面強度が不良となるので好ましくない。ま
た、結晶化パラメータΔTCgが上記の範囲より大きい
と耐スクラッチ性が不良となるので好ましくない。
More preferably, it needs to be in the range of 2 to 30'C. If the difference in the crystallization parameters ΔCΩ is smaller than the above range, the end face strength will be poor, which is not preferable. Moreover, if the crystallization parameter ΔTCg is larger than the above range, the scratch resistance becomes poor, which is not preferable.

本発明フィルムは、組成物(B)の表面の平均突起高さ
が20〜150nm、好ましくは30〜130nm、さ
らに好ましくは3’5〜120nmの範囲であることが
必要である。組成物(B>の表面の平均突起高さが上記
の範囲より小さくても、R− 逆に大きくても耐スクラッチ性が不良となるので好まし
くない。
In the film of the present invention, it is necessary that the average protrusion height on the surface of the composition (B) is in the range of 20 to 150 nm, preferably 30 to 130 nm, and more preferably 3'5 to 120 nm. Even if the average height of the protrusions on the surface of the composition (B) is smaller than the above-mentioned range, it is not preferable that the average height of the protrusions on the surface of the composition (B) is smaller than the above range, or on the other hand, if it is larger than the above range, the scratch resistance becomes poor.

本発明フィルムは、組成物(B)の表面の平均突起間隔
が20μm以下、好ましくは18μm以下でおることか
必要で必る。平均突起間隔が上記の範囲より大きいと耐
スクラッチ性が不良となるので好ましくない。平均突起
間隔の下限は特に限定されないが、通常5μm程度が製
造上の限界である。
The film of the present invention requires that the average distance between protrusions on the surface of the composition (B) be 20 μm or less, preferably 18 μm or less. If the average distance between protrusions is larger than the above range, the scratch resistance will be poor, which is not preferable. Although the lower limit of the average protrusion interval is not particularly limited, the manufacturing limit is usually about 5 μm.

本発明フィルムの組成物(B)に含有するコロイダルシ
リカに起因する球形シリカの平均粒径をOとした時、組
成物(B)層の厚さを2c〜20C1特に、4C〜10
cの範囲である場合に耐スクラッチ性、端面強度がより
一層良好となるので特に望ましい。
When the average particle size of the spherical silica resulting from the colloidal silica contained in the composition (B) of the film of the present invention is O, the thickness of the composition (B) layer is 2C to 20C1, especially 4C to 10C.
A range of c is particularly desirable because scratch resistance and end face strength are even better.

本発明フィルムの組成物(B)層の厚さ(総厚さ)は特
に限定されないか、1〜5μm、特に1゜5〜4μmの
範囲である場合に耐スクラッチ性、端面強度がより一層
良好となるので特に望ましい。
The thickness (total thickness) of the composition (B) layer of the film of the present invention is not particularly limited or is in the range of 1 to 5 μm, particularly 1°5 to 4 μm, for better scratch resistance and edge strength. This is particularly desirable.

本発明フィルムは、上記組成物(B)層の表面突起によ
って作られる有効空間体積か、1×103〜5×105
、特に、5X103〜3X105の範囲である場合に耐
スクラッチ性、端面強度がより一層良好となるので特に
望ましい。
The film of the present invention has an effective space volume of 1 x 103 to 5 x 105 created by the surface protrusions of the composition (B) layer.
In particular, a range of 5X103 to 3X105 is particularly desirable because scratch resistance and end face strength are even better.

本発明フィルムは、上記組成物(B)層の表面突起の尖
頭度(突起高さ/突起直径の比)が0゜05〜0.12
の範囲である場合に耐スクラッチ性、端面強度がより一
層良好となるので特に望ましい。
In the film of the present invention, the acuity (ratio of protrusion height/protrusion diameter) of the surface protrusions of the composition (B) layer is 0°05 to 0.12.
It is particularly desirable that the scratch resistance and end surface strength are within this range.

本発明フィルムは、組成物(B)のポリエステルの融点
がポリエステル(A>の融点に比べて3〜10’C低い
場合に耐スクラッチ性、端面強度がより一層良好となる
ので特に望ましい。
The film of the present invention is particularly desirable when the melting point of the polyester of the composition (B) is 3 to 10'C lower than the melting point of the polyester (A>), since the scratch resistance and edge strength will be even better.

本発明フィルムは、組成物(B)層の表面の幅方向の表
面平均粗さRa (nm)と組成物(B)層の厚さd 
(μm>の比、Ra/d、が1〜20の範囲である場合
に耐スクラッチ性、端面強度がより一層良好となるので
特に望ましい。
The film of the present invention has an average surface roughness Ra (nm) in the width direction of the surface of the composition (B) layer and a thickness d of the composition (B) layer.
(μm> ratio, Ra/d, in the range of 1 to 20 is particularly desirable because scratch resistance and end face strength become even better.

本発明フィルムは、組成物(B)層の表面の幅方向の表
面平均粗さRaが、8〜1μmmの範囲の場合に耐スク
ラッチ性、端面強度がより一層良好となるので特に望ま
しい。
In the film of the present invention, it is particularly desirable that the average surface roughness Ra in the width direction of the surface of the composition (B) layer is in the range of 8 to 1 μmm, since the scratch resistance and end face strength will be even better.

本発明フィルムは、少なくとも片面の幅方向屈折率が1
.675〜1.700の範囲である場合に、耐スクラッ
チ性、端面強度がより一層良好となるので特に望ましい
The film of the present invention has a refractive index in the width direction of at least one side of 1.
.. A range of 675 to 1.700 is particularly desirable because scratch resistance and end face strength are even better.

次に本発明フィルムの製造方法について説明する。Next, a method for producing the film of the present invention will be explained.

まず、組成物(B)のポリエステルに」ロイダルシリカ
に起因するシリカ粒子を含有せしめる方法としては、ポ
リエステルのジオール成分であるエチレングリロールの
ゾルの形で分散せしめ、このエチレングリコールを所定
のジカルボン酸成分と重合せしめるのが本発明の突起高
さ、間隔を得るのに好適である。この時、ゾル中のナト
リウム含有量を粒子に対して0.5重量%以下、好まし
くは0.2重量%以下とし、かつ、該ゾルのpHを7〜
10の範囲にしておくことが、本発明範囲の結晶化パラ
メータを得るのに有効である。また、粒子の含有量を調
節する方法としては、高濃度のマスターペレットを実質
的に粒子を含有しないポリエステルで製膜時に稀釈する
方法が本発明の突起高さ、突起間隔を得るのに有効であ
る。また、]ロイダルシリカに起因する球形シリカの平
均粒径を0.25〜0.45μm、含有量(組成物(B
)に対する)を0.4〜1.5重量%とすることが本発
明範囲の結晶化パラメータ△TCqの差、平均突起高さ
、平均突起間隔を得るのに有効である。また、エチレン
グリコールのスラリーを140〜200’C1特に18
0〜200′Cの温度で30分〜5時間、特に1〜3時
間熱処理する方法、あるいは、粒子量に対し0.5〜2
0重量%のリン酸アンモニウム塩を添加する方法は、本
発明のポリエステル(A>と組成物(B)の結晶化パラ
メータ△TCQの差、突起高さ、突起間隔、突起尖頭度
を得るのに有効である。また、組成物(B)とポリエス
テル(A>の融点に差をつける方法としては組成物(B
)を共重合ポリエステルとするのが有効でおり、この場
合の共重合成分としてはイソフタル酸成分、1,4シク
ロへキシーンジメタノール成分、共重合量としては、1
〜8モル%が好適で必る。
First, as a method for incorporating silica particles originating from rhoidal silica into the polyester of composition (B), ethylene glycol, which is a diol component of the polyester, is dispersed in the form of a sol, and this ethylene glycol is mixed into a predetermined dicarboxylic acid component. It is preferable to overlap the protrusions with the protrusion height and spacing of the present invention. At this time, the sodium content in the sol is set to 0.5% by weight or less, preferably 0.2% by weight or less based on the particles, and the pH of the sol is set to 7 to 7% by weight.
It is effective to keep the crystallization parameter within the range of 10 in order to obtain the crystallization parameter within the range of the present invention. In addition, as a method for adjusting the particle content, diluting a highly concentrated master pellet with polyester that does not substantially contain particles during film formation is effective for obtaining the protrusion height and protrusion spacing of the present invention. be. In addition, the average particle diameter of spherical silica caused by rhoidal silica is 0.25 to 0.45 μm, and the content (composition (B
) to 0.4 to 1.5% by weight is effective in obtaining the difference in crystallization parameter ΔTCq, average protrusion height, and average protrusion spacing within the range of the present invention. In addition, a slurry of ethylene glycol of 140 to 200'C1, especially 18
A method of heat treatment at a temperature of 0 to 200'C for 30 minutes to 5 hours, especially 1 to 3 hours, or a method of heat treatment at a temperature of 0.5 to 2
The method of adding 0% by weight of ammonium phosphate salt can be used to obtain the difference in crystallization parameter ΔTCQ, protrusion height, protrusion spacing, and protrusion kurtosis between the polyester (A> of the present invention) and the composition (B). Also, as a method of creating a difference in the melting points of composition (B) and polyester (A>), composition (B)
) is effective as a copolymerized polyester; in this case, the copolymerization components are an isophthalic acid component, a 1,4 cyclohexene dimethanol component, and the amount of copolymerization is 1.
~8 mol% is preferable and necessary.

また、ポリエステル(A>の固有粘度を0.60〜0,
75、組成物(B)のポリエステルの固有粘度を0.5
5〜0.65とし、かつ、固有粘度をポリエステル(A
)〉組成物(B)のポリエステルとしておくことが、ポ
リエステル(△)と組成物(B)の結晶化パラメータΔ
TCC+を本発明範囲とするのに有効である。また、組
成物(B)を共重合ポリエステルとすることも、本発明
範囲の結晶化パラメータ△丁CΩの差を得るのに有効で
ある。この場合の共重合成分としてはイソフタル酸成分
、1,4シクロヘキシレンジメタツ一ル成分、共重合量
としては、1〜8モル%が好適である。
In addition, the intrinsic viscosity of polyester (A> is 0.60 to 0,
75, the intrinsic viscosity of the polyester of composition (B) is 0.5
5 to 0.65, and the intrinsic viscosity is polyester (A
)> The polyester of the composition (B) is the crystallization parameter Δ of the polyester (Δ) and the composition (B).
This is effective in bringing TCC+ into the scope of the present invention. Further, it is also effective to use a copolymerized polyester as the composition (B) in order to obtain a difference in the crystallization parameter ΔCΩ within the range of the present invention. In this case, the copolymerization components are an isophthalic acid component and a 1,4 cyclohexylene dimetasil component, and the amount of copolymerization is preferably 1 to 8 mol%.

次に、ポリエステル(A>の少なくとも片面に組成物(
B)を積層する方法としては、次の方法か有効で必る。
Next, a composition (
As a method for laminating B), the following method is effective.

く積層方法1〉 ポリエステル(A)と組成物(B)を公知の溶重積層用
押出機に供給し、スリッ]〜状のダイからシート状に押
出し、キャスティングロール上で冷却固化せしめて未延
伸フィルムを作る。すなわち、2または3台の押出し機
、2または3層のマニホールド、口金を用いて、ポリエ
ステル(A)と組成物(B)を積層する。この場合、口
金スリッlへ間隙/未延伸フィルム厚さの比を5〜30
、好ましくは8〜20の範囲にすることが、本発明範囲
の平均突起高さを得るのに有効である。また、組成物(
B)側の押し出し機の溶融温度を、ポリエステル(A)
側より、20〜40’C高くすることが、本発明範囲の
結晶化パラメータ△丁CΩの井、平均突起高さを得るの
に有効でおる。
Lamination method 1> Polyester (A) and composition (B) are fed to a known extruder for lamination, extruded from a slit-shaped die into a sheet, cooled and solidified on a casting roll, and unstretched. make a film. That is, the polyester (A) and the composition (B) are laminated using two or three extruders, two or three-layer manifolds, and ferrules. In this case, the ratio of the gap to the unstretched film thickness to the cap slit is 5 to 30.
, preferably in the range of 8 to 20, is effective in obtaining the average protrusion height within the range of the present invention. In addition, the composition (
The melting temperature of the extruder on the B) side is
It is effective to increase the average protrusion height by 20 to 40'C higher than the crystallization parameter ΔCΩ within the range of the present invention.

次にこの未延伸フィルムを二軸延伸し、二軸配向せしめ
る。延伸方法としては、逐次二軸延伸法または同時二軸
延伸法を用いることができる。ただし、最初に長手方向
、次に幅方向の延伸を行なう逐次二軸延伸法を用い、長
手方向の延伸を、(ポリマのカラス転移点−”lO’C
)〜(ポリマのガラス転移点+10’C)の狭い範囲で
、かつ、1−12 = OOO〜10000%/分という比較的小さな延伸速度
で行なう方法は本発明範囲の平均突起高さ、間隔、結晶
化パラメータ△T(、Qの差を得るのに有効でおる。幅
方向の延伸温度、速度は、80〜160’C11000
〜20000%/分の範囲が好適でおる。延伸倍率は長
手、幅方向ともに3〜5倍が好適で必る。また、長手方
向の延伸を3段階、好ましくは4段階以上の段数に分り
で行なう方法は本発明範囲の平均突起高さ、間隔、結晶
化パラメータへ丁CΩの差を得るのに極めて有効である
。次にこの延伸フィルムを熱処理する。この場合の熱処
理条件としては、定長下で150〜220’C1好まし
くは170〜200’Cの範囲で0゜5〜60秒間が好
適である。
Next, this unstretched film is biaxially stretched and biaxially oriented. As the stretching method, a sequential biaxial stretching method or a simultaneous biaxial stretching method can be used. However, by using a sequential biaxial stretching method in which stretching is first carried out in the longitudinal direction and then in the width direction, the stretching in the longitudinal direction is
) to (glass transition point of the polymer + 10'C) and at a relatively low stretching speed of 1-12 = OOO to 10,000%/min. It is effective to obtain a difference in crystallization parameters ΔT(,Q).The stretching temperature and speed in the width direction are 80 to 160'C11000
A range of 20,000%/min is suitable. The stretching ratio is preferably 3 to 5 times in both the longitudinal and width directions. Furthermore, a method in which stretching in the longitudinal direction is carried out in three stages, preferably four or more stages, is extremely effective in obtaining the difference in average protrusion height, spacing, and crystallization parameters within the scope of the present invention. . Next, this stretched film is heat treated. In this case, the heat treatment conditions are preferably 150 to 220'C, preferably 170 to 200'C, and 0° for 5 to 60 seconds under constant length.

〈積層方法2〉 上記積層方法1における押出し時の積層を行なう代わり
に、ポリエステル(A)の未延伸フィルムを長手方向に
延伸した後、幅方向の延伸前に、その片面に、組成物(
B)を積層してから幅方向に延伸することによって積層
する。本発明フィルムを得るための条件は積層方法1と
同じである。
<Lamination method 2> Instead of performing the lamination during extrusion in the above lamination method 1, after stretching the unstretched film of polyester (A) in the longitudinal direction and before stretching in the width direction, a composition (
B) is laminated and then stretched in the width direction. The conditions for obtaining the film of the present invention are the same as in Lamination Method 1.

[作用] 本発明はコロイダルシリカを含有するポリエステル組成
物と実質的に無機粒子を含有しないポリエステルを特定
範囲の厚さ比率、結晶化特性にして積層し、かつ、コロ
イダルシリカを含有するポリエステル組成物の表面の突
起の高さと間隔を特定範囲としたので、表面に存在する
突起の衝撃吸収能力と端面の粘弾性的特性が向上した結
果、本発明の効果が得られたものと推定される。
[Function] The present invention is a polyester composition containing colloidal silica, in which a polyester composition containing colloidal silica and a polyester containing substantially no inorganic particles are laminated with a thickness ratio and crystallization properties within a specific range. Since the height and spacing of the protrusions on the surface were set within a specific range, it is presumed that the effects of the present invention were obtained as a result of improving the impact absorption ability of the protrusions existing on the surface and the viscoelastic properties of the end face.

[物性の測定方法ならびに効果の評価方法]本発明の特
性値の測定方法並びに効果の評価方法は次の通りである
[Method of Measuring Physical Properties and Evaluating Effects] The methods of measuring the characteristic values and evaluating the effects of the present invention are as follows.

(1〉粒子の平均粒径 フィルムからポリエステルをプラズマ灰化処理法あるい
はO−クロルフェノール溶解法などで除去し、これをエ
タノールに分散させ、延伸沈降法(堀楊製作所、CAP
A500使用)で測定した体積平均径である。
(1> Average particle size of particles Polyester is removed from the film by plasma ashing treatment method or O-chlorophenol dissolution method, etc., and this is dispersed in ethanol, followed by stretching sedimentation method (Horiyo Seisakusho, CAP
This is the volume average diameter measured using A500.

(2〉粒子の含有量 ポリエステル100gにO−クロルフェノール1゜0リ
ツトルを加え120′Cで3時間加熱した後、日立工機
竹朱製超遠心機55P−72を用い、30゜o o o
 rpmで40分間遠心分離を行ない、得られた粒子を
100’Cで真空乾燥する。微粒子を走査型差動熱量計
にて測定した時、ポリマに相当する溶解ピークが認めら
れる場合には微粒子に0−クロルフェノールを加え、加
熱冷却後再び遠心分離操作を行なう。溶解ピークが認め
られなくなった時、微粒子を析出粒子とする。通常遠心
分離操作は2回で足りる。かくして分離された粒子の全
体重量に対する比率(重量%)をもって粒子含有量とす
る。
(2> Particle content: Add 1.0 liter of O-chlorophenol to 100 g of polyester, heat at 120'C for 3 hours, and then centrifuge at 30°C using a Hitachi Koki Chikushu ultracentrifuge 55P-72.
Centrifuge for 40 minutes at rpm and vacuum dry the resulting particles at 100'C. When the fine particles are measured using a scanning differential calorimeter, if a dissolution peak corresponding to the polymer is observed, 0-chlorophenol is added to the fine particles, and after heating and cooling, the centrifugation operation is performed again. When the dissolution peak is no longer observed, the fine particles are considered to be precipitated particles. Normally, two centrifugation operations are sufficient. The ratio (wt%) of the thus separated particles to the total weight is defined as the particle content.

(3)結晶化パラメータ△−「cq ペパーンエルマー社製のDSC(示差走査熱量計)■型
を用いて測定した。DSCの測定条件は次の通りである
。すなわち、試料10mgをDSC装置にセットし、3
00’Cの温度で5分間溶融した後、液体窒素中に急冷
する。この急冷試料を10 ’C/分で昇温し、ガラス
転移点TQを検知する。
(3) Crystallization parameter △-'cq Measured using DSC (differential scanning calorimeter) model ■ manufactured by Peppern Elmer. The measurement conditions of DSC are as follows. That is, 10 mg of the sample was placed in the Set, 3
After melting at a temperature of 00'C for 5 minutes, it is quenched into liquid nitrogen. This rapidly cooled sample is heated at a rate of 10'C/min, and the glass transition point TQ is detected.

ざらに昇温を続け、カラス状態からの結晶化発熱ピーク
温度をもって冷結晶化温度Tccとした。
The temperature was continued to rise gradually, and the exothermic peak temperature of crystallization from the glass state was defined as the cold crystallization temperature Tcc.

ここでTCCと丁qの差(丁CC−丁q)を結晶化パラ
メータ△TCCIと定義する。
Here, the difference between TCC and Ding q (Ding CC - Ding q) is defined as the crystallization parameter ΔTCCI.

(4)突起の有効空間体積の 小板研究所高精度薄膜段差測定機ET−10を用い、触
針先端半径0.5μm、カットオフ0゜08mm、測定
長1.Qmm、縦倍率20万倍、横倍率2000倍で、
フィルムの表面粗さ曲線を測定する。この粗さ曲線の平
均線(中心線)の上側で平行に0.005μmごとにピ
ークカウントレベルを設け、平均線を曲線が交叉する2
点間において、上記のピークカウントレベルを1回以上
交叉する点が存在するとぎ、これを1ピークとし、この
ピーク数を測定長さ間において求める。各ピークカウン
トレベルについて、このピーク数を求め平均線からn番
目のピークカウントレベルについて求めたピーク数をP
C(n>と定義する。測定長さ間でピーク数が始めてゼ
ロになるピークカランミルレベルが平均線からm番目と
したとき、有効空間体積Φは、 Φ=Σ[n3(PC(n)=PC(n+1)) ]n=
1 で表わされ、場所を変えて50回測定した平均値を用い
る。
(4) Measurement of the effective space volume of the protrusion using the Koita Research Institute's high-precision thin film step measurement device ET-10, with a stylus tip radius of 0.5 μm, a cutoff of 0°08 mm, and a measurement length of 1. Qmm, vertical magnification 200,000 times, horizontal magnification 2000 times,
Measure the surface roughness curve of the film. A peak count level is set every 0.005 μm in parallel above the average line (center line) of this roughness curve, and the curve crosses the average line at 2
If there is a point that crosses the above peak count level one or more times between points, this is defined as one peak, and the number of peaks is determined over the measurement length. For each peak count level, calculate the number of peaks and calculate the number of peaks for the nth peak count level from the average line.
Defined as C(n>. When the peak Calanmil level at which the number of peaks becomes zero for the first time during the measurement length is mth from the average line, the effective space volume Φ is: Φ=Σ[n3(PC(n) =PC(n+1)) ]n=
1, and the average value of 50 measurements at different locations is used.

(5)屈折率 ナトリウムD線(589nm>を光源として、アラへ屈
折率計を用いて測定した。マウント液にはヨウ化メチレ
ンを用い、25℃、65%RHにて測定した。
(5) Refractive index Measured using a refractometer using sodium D line (589 nm> as a light source. Methylene iodide was used as the mounting solution, and the measurement was performed at 25° C. and 65% RH.

(6)厚さ比率 フィルムの断面を透過型電子顕微鏡で観察し、コロイダ
ルシリカに起因する球形粒子を含有する層(組成物B)
と実質的に無機粒子を含有しない層(ポリエステルA)
の厚さを測定しそれらの値から厚さ比率を計算した。
(6) Thickness ratio The cross section of the film was observed with a transmission electron microscope, and the layer containing spherical particles caused by colloidal silica (composition B)
and a layer containing substantially no inorganic particles (polyester A)
The thickness was measured and the thickness ratio was calculated from those values.

(7)表面突起の平均高さ、突起尖頭度2検出器方式の
走査型電子顕微鏡[ESM−3200、エリオニクス(
株)製]と断面測定装置[PMS−1、■リオニクス(
株)製]においてフィルム表面の平坦面の高さをOとし
て走査した時の突起の高さ測定値を256階調のグレー
値として画像処理装置[IBAS2000.カールツア
イス(株)製]に送り、このグレー値を元に■BAS2
000上にフィルム表面突起画像を再構築する。次に、
この表面突起画像で10階調以上のものを2値化して得
られた個々の突起の面積から円相光径を求めこれをその
突起の平均径とする。
(7) Average height of surface protrusions, protrusion cuspsiness Two-detector scanning electron microscope [ESM-3200, Elionix (
Co., Ltd.] and a cross-sectional measuring device [PMS-1, ■Rionics (
Co., Ltd.], the height of the protrusion was scanned with the height of the flat surface of the film set as O, and the measured value of the height of the protrusion was set as a gray value of 256 gradations using an image processing device [IBAS2000. manufactured by Carl Zeiss Co., Ltd., and based on this gray value ■BAS2
Reconstruct the film surface protrusion image on 000. next,
The circular diameter is determined from the area of each protrusion obtained by binarizing the surface protrusion image with 10 or more gradations, and this is taken as the average diameter of the protrusion.

また、この2値化された個々の突起部分の中で最も高い
値をその突起の高さとし、これを個々の突起について求
める。この測定を場所をかえて500回繰返し、測定さ
れた全ての突起についての平均値を平均突起径および高
さとして用い、この平均突起高さ/突起径の比を突起尖
頭度とした。また1階調の高さは、任意設定値Hを25
6で割った値であり、任意設定値Hは、通常測定するフ
ィルム表面のRa(単位二μm)に30を乗じた値を用
いる。また走査型電子顕微鏡の倍率は、2000〜80
00倍の間の値を選択し、フィルム表面のRaに応じて
変更する。
Furthermore, the highest value among the binarized individual protrusion portions is determined as the height of the protrusion, and this value is determined for each protrusion. This measurement was repeated 500 times at different locations, and the average values of all the measured protrusions were used as the average protrusion diameter and height, and the ratio of this average protrusion height/protrusion diameter was defined as the protrusion acuity. Also, for the height of one gradation, set the arbitrary setting value H to 25
The arbitrary setting value H is the value obtained by multiplying the normally measured Ra (unit: 2 μm) of the film surface by 30. In addition, the magnification of a scanning electron microscope is 2000 to 80
Select a value between 00 times and change it depending on the Ra of the film surface.

(8)中心線平均表面粗さRa、平均突起間隔S小板研
究所製の高精度薄膜段差測定器ET−10を用いて測定
した。条件は下記のとありであり、20回の測定の平均
値をもって値とした。
(8) Centerline average surface roughness Ra, average protrusion spacing S Measured using a high-precision thin film step measuring instrument ET-10 manufactured by Koita Research Institute. The conditions were as follows, and the average value of 20 measurements was taken as the value.

・触針先端半径:0.5μm ・触針荷重  : 5mC] ・測定長   :1mm ・カットオフ1直:0.08mm なお、Ra、突起の平均間隔3mの定式は、たとえば、
奈良治部著1表面粗さの測定・評価法」(総合技術セン
ター、1983)に示されているものである。
・Stylus tip radius: 0.5μm ・Stylus load: 5mC] ・Measurement length: 1mm ・Cutoff 1 straight: 0.08mm The formula for Ra and average spacing of protrusions of 3m is, for example,
This method is described in "Method for Measuring and Evaluating Surface Roughness 1" by J. Nara (Sogo Technological Center, 1983).

(9)ヤング率 J l5−Z−1702に規定された方法にしたがって
、インストロンタイプの引っ張り試験機を用いて、25
℃、65%RHにて測定した。
(9) Young's modulus 25
Measured at 65% RH.

(10〉固有粘度[η] (単位はdl/g>    
′オルソクロルフェノール中、25°Cで測定した溶液
粘度から下記式から計算される値を用いる。
(10> Intrinsic viscosity [η] (unit: dl/g>
'Use the value calculated from the following formula from the solution viscosity measured at 25°C in orthochlorophenol.

すなわち、 η3./C=[η]十K[η]2・に こで η8.−(溶液粘度/溶媒粘度〉−1、Cは溶媒
100m lあたりの溶解ポリマ重量(C1/100m
 l 、通常1.2>、Kはハギンス定数(0,343
とする〉。また、溶液粘度、溶媒粘度はオストワルド粘
度計を用いて測定した。
That is, η3. /C=[η]10K[η]2・Nikode η8. -(Solution viscosity/solvent viscosity>-1, C is the weight of dissolved polymer per 100ml of solvent (C1/100m
l, usually 1.2>, K is Huggins constant (0,343
>. In addition, solution viscosity and solvent viscosity were measured using an Ostwald viscometer.

〈11〉耐スクラッチ性 フィルムを幅1/2インチのテープ状にスリットしたも
のをテープ走行性試験機(横浜システム研究断裂、TB
丁300型)を使用して繰返し走行させる(走行速度3
.30m/秒、走行回数100パス)。
<11> Scratch-resistant film was slit into a 1/2 inch wide tape using a tape runnability tester (Yokohama System Research Fracture, TB
300 model) and run it repeatedly (running speed 3).
.. 30m/sec, 100 passes).

この時、フィルムに入った傷を顕微鏡で観察し、はとん
ど傷がない場合は耐スクラッチ性良好、傷が、テープ幅
あたり3本以上入った場合耐スクラッチ性不良と判定し
た。
At this time, the scratches in the film were observed under a microscope, and if there were almost no scratches, the scratch resistance was determined to be good, and if there were three or more scratches per tape width, the scratch resistance was determined to be poor.

(12)端面強度 フィルムを幅1/2インチのテープ状にスリットしたも
のをフィルムの端面が位置規制ガイドの「つば(鍔〉」
に当たるようにセットし、走行速度1000m/分て延
べ長さ500000m走行させた後、「つば(鍔)」で
発生付着した粉の量を調べ、次のランク分けを行なった
。すなわち、ランクC:白粉かほとんど発生しない ランクB:わずかに白粉が発生するが、加工工程上、製
品性能上のi〜ラブルには至 らない ランクC:白粉の発生が多く、加工工程上、製品性能上
のトラブルとなり使用不可 [実施例] 本発明を実施例に基づいて説明する。
(12) Edge-strength film is slit into a 1/2-inch wide tape shape, and the edge of the film serves as a position regulating guide.
After running for a total length of 500,000 m at a running speed of 1,000 m/min, the amount of powder generated and attached at the "tsuba" was examined and ranked as follows. In other words, Rank C: White powder or almost no white powder is generated.Rank B: A small amount of white powder is generated, but it does not lead to problems in the processing process or product performance.Rank C: White powder is generated a lot, and the product Unusable due to performance trouble [Example] The present invention will be explained based on an example.

実施例1 平均粒径0.3μmのコロイダルシリカを含有するエチ
レングリコールゾル(スラリー)を調整し、ナトリウム
含有量を粒子に対し0.1重量%とじた。このエチレン
グリコールスラリーを190′Cて1.5時間熱処理し
た後、テレフタル酸ジメチルとエステル交換反応後、重
縮合し、コロイダルシリカに起因するシリカ粒子を1重
量%含有するポリエチレンテレフタレートの粒子マスタ
ーペレットを作った。この時、重縮合時間を調節し固有
粘度を0.62とした。また、常法によって、固有粘度
0.62の実質的に無機粒子を含有しないPE下を製造
し、上記の]ロイダルシリカに起因するシリカ粒子を1
重量%含有するポリエチレンテレフタレートの粒子マス
ターペレットと混合しシリカ粒子の含有量が0.5重量
%となるようにした(組成物B)。次に常法によって、
固有粘度0.70の実質的に無機粒子を含有しないPE
下を製造しく組成物へ)、これらの組成物へおよびBの
ペレット(第1表)をそれぞれ180’Cで3時間減圧
乾燥(3Torr) L/た。組成物Aを押出機1に供
給し、さらに、組成物Bを押出機2に供給し、300 
’Cで溶融しマニホールド内で合流積層し、静電印加キ
ャスト法を用いて表面温度30°Cのキャスティング・
ドラムに巻きつけて冷却固化し、2層構造の未延伸フィ
ルムを作った。この時、押出機1の溶融温度を280’
C1押出機2の溶融温度を310’Cとし、口金スリッ
ト間隙/未延伸フィルム厚さの比を10として未延伸フ
ィルムを作った。また、それぞれの押出機の吐出量を調
節し組成物AとBの積層厚さを調節した。この未延伸フ
ィルムを温度80’Cにて長手方向に4゜5倍延伸した
。この延伸は2組ずつのロールの周速差で、4段階で行
なった。この−軸延伸フィルムをステンタを用いて延伸
速度2000%/分で100’Cで幅方向に4.0倍延
伸し、定長下で、190’Cにて5秒間熱処理し、厚さ
15μmの二軸配向積層フィルムを得た。これらのフィ
ルムの本発明のパラメータは第2′表に示したとおり本
発明範囲内でおり、耐スクラッチ性、端面強度は第2表
に示したとおり、良好であった。
Example 1 An ethylene glycol sol (slurry) containing colloidal silica with an average particle size of 0.3 μm was prepared, and the sodium content was adjusted to 0.1% by weight based on the particles. This ethylene glycol slurry was heat treated at 190'C for 1.5 hours, then transesterified with dimethyl terephthalate and polycondensed to form particle master pellets of polyethylene terephthalate containing 1% by weight of silica particles originating from colloidal silica. Had made. At this time, the polycondensation time was adjusted so that the intrinsic viscosity was 0.62. In addition, a PE substrate having an intrinsic viscosity of 0.62 and containing substantially no inorganic particles was produced by a conventional method, and silica particles originating from the above-mentioned rhoidal silica were added to
The composition was mixed with particle master pellets of polyethylene terephthalate containing 0.5% by weight of silica particles (composition B). Next, by the usual method,
PE substantially free of inorganic particles with an intrinsic viscosity of 0.70
The pellets of these compositions and B (Table 1) were each dried under reduced pressure (3 Torr) at 180'C for 3 hours. Composition A was supplied to extruder 1, composition B was further supplied to extruder 2, and 300
'C melted and laminated in a manifold, then casted at a surface temperature of 30°C using the electrostatic casting method.
It was wound around a drum and cooled and solidified to produce an unstretched film with a two-layer structure. At this time, the melting temperature of extruder 1 was set to 280'
An unstretched film was prepared by setting the melting temperature of C1 extruder 2 to 310'C and the ratio of die slit gap/unstretched film thickness to 10. Further, the stacking thickness of compositions A and B was adjusted by adjusting the discharge amount of each extruder. This unstretched film was stretched 4.degree. 5 times in the longitudinal direction at a temperature of 80'C. This stretching was carried out in four stages with a difference in peripheral speed between two sets of rolls. This -axially stretched film was stretched 4.0 times in the width direction at 100'C at a stretching rate of 2000%/min using a stenter, and then heat-treated at 190'C for 5 seconds under constant length to form a film with a thickness of 15 μm. A biaxially oriented laminated film was obtained. The parameters of the present invention of these films were within the range of the present invention as shown in Table 2', and the scratch resistance and edge strength were good as shown in Table 2.

実施例2〜5、比較例1〜8 平均粒径の異なる]ロイダルシリカを含有するエチレン
グリコールゾル(スラリー)を調整し、ナトリウム含有
量を粒子に対し0.02〜1.5重量%とした。このエ
チレングリコールスラリーを種々の条件で熱処理した後
、テレフタル酸シスチルとエステル交換反応後、重縮合
し、コロイダルシリカに起因するシリカ粒子を1重量%
含有するポリエチレンテレフタレートの粒子マスターペ
レットを作った。この時、重縮合時間を調節し固有粘度
を0.4〜0.9の範囲で変更した。また、常法によっ
て、固有粘度が上記と同じ実質的に無機粒子を含有しな
いPETを製造し、上記のコロイダルシリカに起因する
シリカ粒子を1重量%含有するポリエチレンテレフタレ
ートの粒子マスターペレットと混合しシリカ粒子の含有
量が異なる組成物を作った(組成物B)。次に常法によ
って、固有粘度0.50〜0.85の平均粒径の異なる
シリカ粒子を0.00”I〜0.5重量%含有するPE
T、および実質的に無機粒子を含有しないPE下を製造
しく組成物A)、これらの組成物AおよびBのペレット
(第1表)をそれぞれ180’Cで3時間減圧乾燥(3
Torr) シた。組成物Aを押出機1に供給し、さら
に、組成物Bを押出機2に供給し、300’Cで溶融し
マニホールド内で合流積層し、静電印加キャスト法を用
いて表面温度3O′Cのキャスティング・ドラムに巻き
つけて冷却固化し、3層構造の未延伸フィルムを作った
。この時、押出機1の溶融温度を270〜320℃、押
出機2の溶融温度を280〜310’Cの範囲で変更し
、また、口金スリット間隙/未延伸フィルム厚さの比も
種々変更して未延伸フィルムを作った。また、それぞれ
の押出機の吐出量を調節し、組成物AとBの厚さ比率の
異なるものを作った。
Examples 2 to 5, Comparative Examples 1 to 8 Ethylene glycol sol (slurry) containing roidal silica with different average particle diameters was prepared, and the sodium content was adjusted to 0.02 to 1.5% by weight based on the particles. This ethylene glycol slurry is heat-treated under various conditions, then transesterified with cystyl terephthalate, and then polycondensed to reduce the silica particles originating from colloidal silica to 1% by weight.
Particle master pellets containing polyethylene terephthalate were made. At this time, the polycondensation time was adjusted to change the intrinsic viscosity within the range of 0.4 to 0.9. In addition, PET having the same intrinsic viscosity as above and substantially free of inorganic particles is produced by a conventional method, and mixed with a particle master pellet of polyethylene terephthalate containing 1% by weight of silica particles derived from the above-mentioned colloidal silica. Compositions with different particle contents were made (composition B). Next, by a conventional method, PE containing 0.00"I to 0.5% by weight of silica particles having an intrinsic viscosity of 0.50 to 0.85 and different average particle diameters was prepared.
To prepare PE substrates containing T and substantially free of inorganic particles, the pellets of these compositions A and B (Table 1) were each dried under vacuum at 180'C for 3 hours (3
Torr) Shita. Composition A is supplied to extruder 1, and composition B is further supplied to extruder 2, melted at 300'C, merged and laminated in a manifold, and heated to a surface temperature of 30'C using electrostatic casting method. The film was wound around a casting drum and cooled and solidified to produce an unstretched film with a three-layer structure. At this time, the melting temperature of extruder 1 was changed in the range of 270 to 320°C, and the melting temperature of extruder 2 was changed in the range of 280 to 310'C, and the ratio of die slit gap/unstretched film thickness was also varied. An unstretched film was prepared. In addition, the discharge rate of each extruder was adjusted to produce compositions A and B with different thickness ratios.

この未延伸フィルムを温度80’Cにて長手方向に4.
5倍延伸した。この延伸は2組ずつのロールの周速差で
、延伸段数を1〜4段階で変更して行なった。この−軸
延伸フィルムをステンタを用いて延伸速度2000%/
分で100’Cで幅方向に4.0倍延伸し、定長下で、
190’Cにて5秒間熱処理し、厚さ15μmの二軸配
向積層フィルムを得た。これらのフィルムの本発明のパ
ラメータおよび耐スクラッチ性、端面強度は第2表に示
したとおりでおり、本発明のパラメータが本発明範囲内
である場合は耐スクラッチ性、端面強度ともに良好であ
るか、パラメータが本発明範囲外でめる場合には耐スク
ラッチ性と端面強度がともに良好であるフィルムは得ら
れないことがわかる。
This unstretched film was stretched 4 times in the longitudinal direction at a temperature of 80'C.
It was stretched 5 times. This stretching was carried out by changing the number of stretching stages from 1 to 4 by changing the peripheral speed of each two sets of rolls. This -axially stretched film was stretched at a stretching speed of 200%/
Stretched 4.0 times in the width direction at 100'C for 1 minute, under constant length,
Heat treatment was performed at 190'C for 5 seconds to obtain a biaxially oriented laminated film with a thickness of 15 μm. The parameters of the present invention, scratch resistance, and edge strength of these films are as shown in Table 2, and if the parameters of the present invention are within the range of the present invention, both the scratch resistance and edge strength are good. It can be seen that when the parameters are outside the range of the present invention, a film having good scratch resistance and edge strength cannot be obtained.

[発明の効果] 本発明はコロイダルシリカを含有するポリエステル組成
物と実質的に無機粒子を含有しないポリエステルを特定
範囲の厚さ比率、結晶化特性にして積層し、かつ、コロ
イダルシリカを含有するポリエステル組成物の表面の突
起の高さと間隔を特定範囲としたので、耐スクラッチ性
と端面強度がともに良好であるフィルムか得られたもの
であり、各用途でのフィルム加工速度の増大に対応でき
るものである。本発明フィルムの用途は特に限定されな
いが、加工工程でのフィルム表面の傷や端面からの粉が
加工工程上、製品性能上特に問題となる磁気記録媒体用
ベースフィルムとして特に有用である。また、本発明フ
ィルムのうち2層@造のものは組成物Bの面が走行面(
磁気記録媒体用では磁性層を塗布しない面、その仙の用
途では印刷やラミネートなどの塗布などの処理がほどこ
されない面)として用いることが必要である。
[Effects of the Invention] The present invention provides a polyester composition containing colloidal silica and a polyester composition containing colloidal silica, which is laminated with a polyester composition containing substantially no inorganic particles in a specific range of thickness ratio and crystallization property. Since the height and spacing of the protrusions on the surface of the composition were set within a specific range, a film with good scratch resistance and edge strength was obtained, which could accommodate increased film processing speeds for various applications. It is. Although the use of the film of the present invention is not particularly limited, it is particularly useful as a base film for magnetic recording media, where scratches on the surface of the film and powder from the edges during processing are particularly problematic in terms of processing and product performance. In addition, among the films of the present invention, in the two-layered film, the surface of composition B is the running surface (
For magnetic recording media, it is necessary to use it as a surface that is not coated with a magnetic layer, and for other applications, it is necessary to use it as a surface that is not subjected to any processing such as printing or laminating.

特許出願人 東 し 株 式 会 社 −29=Patent applicant Higashi Shikikai Co., Ltd. −29=

Claims (1)

【特許請求の範囲】[Claims] 実質的に無機粒子を含有しないポリエステル(A)から
なる層(A層)の少なくとも片面に、ポリエステルにコ
ロイダルシリカに起因する球形シリカを含有せしめた組
成物(B)からなる層(B層)を積層してなるフィルム
であって、該A層とB層との厚さ比率(B/A)が0.
04〜1.4、ポリエステル(A)と組成物(B)の結
晶化パラメータΔTcgの差(A−B)が1〜45℃、
組成物(B)の表面の平均突起高さが20〜150nm
、かつ、該表面の平均突起間隔が20μm以下であるこ
とを特徴とする二軸配向ポリエステルフィルム。
A layer (B layer) made of a composition (B) in which polyester contains spherical silica derived from colloidal silica on at least one side of a layer (A layer) made of polyester (A) that does not substantially contain inorganic particles. It is a laminated film, and the thickness ratio (B/A) of the A layer and B layer is 0.
04-1.4, the difference (A-B) in crystallization parameter ΔTcg between polyester (A) and composition (B) is 1-45°C,
The average protrusion height on the surface of composition (B) is 20 to 150 nm
A biaxially oriented polyester film characterized in that the average protrusion spacing on the surface is 20 μm or less.
JP63020177A 1988-01-29 1988-01-29 Biaxially oriented polyester film Expired - Lifetime JP2569686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63020177A JP2569686B2 (en) 1988-01-29 1988-01-29 Biaxially oriented polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63020177A JP2569686B2 (en) 1988-01-29 1988-01-29 Biaxially oriented polyester film

Publications (2)

Publication Number Publication Date
JPH01195045A true JPH01195045A (en) 1989-08-04
JP2569686B2 JP2569686B2 (en) 1997-01-08

Family

ID=12019896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63020177A Expired - Lifetime JP2569686B2 (en) 1988-01-29 1988-01-29 Biaxially oriented polyester film

Country Status (1)

Country Link
JP (1) JP2569686B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03187741A (en) * 1989-12-18 1991-08-15 Toray Ind Inc Biaxially oriented thermoplastic resin film
JPH03192131A (en) * 1989-12-21 1991-08-22 Toray Ind Inc Biaxially oriented thermoplastic resin film
JPH03208642A (en) * 1990-01-11 1991-09-11 Toray Ind Inc Biaxially oriented thermoplastic resin film
WO1999017931A1 (en) * 1997-10-03 1999-04-15 Toray Industries, Inc. Biaxially oriented polyester film
KR100259444B1 (en) * 1998-02-26 2000-06-15 장용균 Two-axially oriented polyester film and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171623A (en) * 1983-03-18 1984-09-28 Teijin Ltd Biaxially stretched polyester film
JPS62290535A (en) * 1986-06-11 1987-12-17 東レ株式会社 Polyester film for magnetic record medium and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171623A (en) * 1983-03-18 1984-09-28 Teijin Ltd Biaxially stretched polyester film
JPS62290535A (en) * 1986-06-11 1987-12-17 東レ株式会社 Polyester film for magnetic record medium and manufacture thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03187741A (en) * 1989-12-18 1991-08-15 Toray Ind Inc Biaxially oriented thermoplastic resin film
JPH03192131A (en) * 1989-12-21 1991-08-22 Toray Ind Inc Biaxially oriented thermoplastic resin film
JPH03208642A (en) * 1990-01-11 1991-09-11 Toray Ind Inc Biaxially oriented thermoplastic resin film
WO1999017931A1 (en) * 1997-10-03 1999-04-15 Toray Industries, Inc. Biaxially oriented polyester film
US6331344B1 (en) 1997-10-03 2001-12-18 Toray Industries, Inc. Biaxially oriented polyester film
KR100259444B1 (en) * 1998-02-26 2000-06-15 장용균 Two-axially oriented polyester film and manufacturing method thereof

Also Published As

Publication number Publication date
JP2569686B2 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
JPH0780282B2 (en) Biaxially oriented thermoplastic resin film
JPS60171626A (en) Video tape
KR100462641B1 (en) Biaxially oriented film
JPH01195045A (en) Biaxially oriented polyester film
JPH09141797A (en) Biaxially oriented laminated polyester film
JP2530680B2 (en) Biaxially oriented polyester film
JPH0796264B2 (en) Thermoplastic film roll
JP2525461B2 (en) Biaxially oriented polyester film
JP3763158B2 (en) Biaxially oriented polyester film
JP3134416B2 (en) Polyester film
JP2555717B2 (en) Biaxially oriented polyester film and method for producing the same
JPH08337664A (en) Polyester film and its production
JP2555700B2 (en) Biaxially oriented polyester film
JP2527246B2 (en) Biaxially oriented thermoplastic resin film
JP2892273B2 (en) Biaxially oriented thermoplastic resin film
JP2525446B2 (en) Polyester film for magnetic recording media
JP2804434B2 (en) Biaxially oriented thermoplastic resin film
JPH01230641A (en) Biaxially oriented polyester film
JPH04259535A (en) Polyester film roll
JP2650441B2 (en) Biaxially oriented laminated film
JPH06322152A (en) Polyester film
JPH0626856B2 (en) Biaxially oriented polyester film
JPH02129232A (en) Biaxially oriented polyester film
JPH0912745A (en) Biaxially oriented thermoplastic resin film
JPH06320615A (en) Polyester film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12