JPH01194352A - Photo detector and integrated receiver - Google Patents

Photo detector and integrated receiver

Info

Publication number
JPH01194352A
JPH01194352A JP63018391A JP1839188A JPH01194352A JP H01194352 A JPH01194352 A JP H01194352A JP 63018391 A JP63018391 A JP 63018391A JP 1839188 A JP1839188 A JP 1839188A JP H01194352 A JPH01194352 A JP H01194352A
Authority
JP
Japan
Prior art keywords
layer
light
graded
layers
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63018391A
Other languages
Japanese (ja)
Inventor
Osamu Wada
修 和田
Toshio Fujii
藤井 俊男
Masanori Ito
正規 伊藤
Hiroyuki Nobuhara
裕之 延原
Masao Makiuchi
正男 牧内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63018391A priority Critical patent/JPH01194352A/en
Publication of JPH01194352A publication Critical patent/JPH01194352A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To gain a photoelectric conversion signal which has only a small dark current against a longer wave band incident light, by forming on a substrate a combination of a photo detector and a transistor each of which has grated layers on both sides of an optical absorption layer. CONSTITUTION:On a semi-insulating compound semiconductor 25, grated layers 26 and 28 are formed on both sides of an InGaAs optical absorption layer 27 and an AlInAs layer 29 is formed on the grated layer 28 on which light is projected, to make a photo detector. By forming the grated layers, a discontinuity of the interface potential between layers 27 and 29 is practically neglected since the potential varies gradually from the layer 27 to the layer 27 by the existence of the layer 28. Furthermore, a phenomenon that a two-dimentional carrier is formed on the interface between the layer 27 and the substrate 25 by the layers 26 and 28 is practically avoided. Nextly, a transistor in the same configuration with this photo detector is combined with the photo detector to make an integrated receiver. By this method, it is possible to minimize a difference in surface level between the photo detector and the transistor.

Description

【発明の詳細な説明】 〔概要〕 長波長帯の光を受光して光電変換する受光素子及びその
受光素子と増幅素子とが同一基板に形成された集積化受
信器に関し、 長波長帯の入射光に対してよりW電流の少ない充電変換
信号を得ることを目的とし、 受光素子は半絶縁性化合物半導体基板の上方に形成され
たI nGaASによる光吸収層と、1nGaAsと格
子整合のある材質により、該光吸収層の両側に夫々成長
された第1及び第2のグレーデッド層と、該光吸収層に
対して光入射側に位置する該第2のグレーデッド層上に
形成されたAe l nAsI!Ifと、該A[I n
As1i!上に形成された電極とより構成し、集積化受
信器は半絶縁性化合物半導体基板上に形成されており、
第1のグレーデッド層と同一組成の第3のグレーデッド
層と、該第3のグレーデッド層上に形成されたI nG
aAs1iWと、該InGaAs1上に形成されたAl
1InAs層と、該AlnAs1l上に形成された電極
とよりなるトランジスタが、該半絶縁性化合物半導体基
板上に前記受光素子と共に、かつ、互いに分離して形成
するよう構成する。
[Detailed Description of the Invention] [Summary] Regarding an integrated receiver in which a light-receiving element that receives light in a long wavelength band and photoelectrically converts it, and the light-receiving element and an amplification element are formed on the same substrate, The aim is to obtain a charge conversion signal with a lower W current for light, and the light receiving element is made of a light absorption layer made of InGaAS formed above a semi-insulating compound semiconductor substrate and a material that has lattice matching with InGaAs. , first and second graded layers grown on both sides of the light absorption layer, and Ael formed on the second graded layer located on the light incident side with respect to the light absorption layer. nAsI! If and the A[I n
As1i! the integrated receiver is formed on a semi-insulating compound semiconductor substrate;
a third graded layer having the same composition as the first graded layer; and an InG layer formed on the third graded layer.
aAs1iW and Al formed on the InGaAs1
A transistor including an 1InAs layer and an electrode formed on the AlnAs 1l is formed on the semi-insulating compound semiconductor substrate together with the light receiving element and separated from each other.

〔産業上の利用分野〕[Industrial application field]

本発明は受光素子及び集積化受信器に係り、特に長波長
帯の光を受光して光電変換する受光素子及びその受光素
子と増幅素子とが同一基板に形成された集積化受信器に
関する。
The present invention relates to a light-receiving element and an integrated receiver, and more particularly to a light-receiving element that receives light in a long wavelength band and converts it into electricity, and an integrated receiver in which the light-receiving element and an amplification element are formed on the same substrate.

〔従来の技術〕[Conventional technology]

受光素子として従来より第7図に示す如き断面構造のp
inフォトダイオード(PD)が知られている。このも
のは、電極1上にn+層2,1層3゜P” ff14及
び電極5が順次に形成された構造であり、ili!3が
光吸収層を構成している。
Conventionally, as a light receiving element, a p
In photodiodes (PD) are known. This has a structure in which an n+ layer 2, a single layer 3.degree.

P+層4に入射された光はiW3により吸収され、ここ
でキャリア(正孔と電子)を発生し、電極1.5間に光
電流を流す。従って、1層3のルさd+が小なる程キャ
リア走行時間が短くなるので、高速動作が可能となる。
The light incident on the P+ layer 4 is absorbed by the iW3, where carriers (holes and electrons) are generated, and a photocurrent flows between the electrodes 1.5. Therefore, the carrier traveling time becomes shorter as the radius d+ of one layer 3 becomes smaller, and high-speed operation becomes possible.

ところが、1ff13による光の吸収は厚さdlが大な
る程よく、効率の点からみるとdlは大なる程よい。従
って、ilE!3の厚さd、は効率と速度の兼ね合いか
ら成る値に制限され、しかも、CR積による速度劣化を
防ぐためにはP” 124の径を小さくしなければなら
ず、その製迄が困難であることもあり、^連化は困難で
あった。
However, the absorption of light by 1ff13 is better as the thickness dl becomes larger, and from the viewpoint of efficiency, the larger dl is, the better. Therefore, ilE! The thickness d of 3 is limited to a value that balances efficiency and speed, and furthermore, in order to prevent speed deterioration due to CR product, the diameter of P" 124 must be made small, which is difficult to manufacture. For this reason, it was difficult to establish a federation.

そこで、従来より高速動作可能な受光素子として、第8
図に示す如き構造のMSM (metal sem−i
COnduCtOr metal)フォトダイオード(
PD)が知られている。このものは、半絶縁性と化ガリ
ウム(S、I−GaAs)基板6上に光吸収層としてノ
ンドーブヒ化ガリウム(i−GaAs)17を形成し、
更にその上にアルミニウム(Anによる電極8及び9を
形成した構造である。
Therefore, as a light-receiving element that can operate at higher speed than the conventional one,
MSM (metal sem-i) with the structure shown in the figure
CONduCtOr metal) Photodiode (
PD) is known. In this case, non-doped gallium arsenide (i-GaAs) 17 is formed as a light absorption layer on a semi-insulating gallium oxide (S, I-GaAs) substrate 6,
Further, electrodes 8 and 9 made of aluminum (An) are formed thereon.

このMSMフォトダイオードは、入射光により発生され
るキャリアはr −caAs層7の電極8と9との間で
走行するので、信号伝送速度は1−GaASI7の厚さ
dlに依存せず、電極8及び9の間隔に依存する。この
ため、厚さdlを厚くすることができる。
In this MSM photodiode, carriers generated by incident light travel between the electrodes 8 and 9 of the r-caAs layer 7, so the signal transmission speed does not depend on the thickness dl of the 1-GaASI 7, and 9 intervals. Therefore, the thickness dl can be increased.

また、MSMフォトダイオードはブレーナ型のため、電
極8.9の面積やpn接合の面積を小さくできるので、
受光面も広くできると共に容量も小さくできる。以上の
ことから、MSMフォトダイオードは萌記pinフォト
ダイオードに比し、はるかに高速で動作することができ
る。
In addition, since the MSM photodiode is a Brainer type, the area of the electrode 8.9 and the area of the pn junction can be reduced.
The light-receiving surface can be made wider and the capacity can be made smaller. From the above, the MSM photodiode can operate much faster than the Moeki pin photodiode.

しかし、このMSMフォトダイオードは、0.8μ鋤程
度の短波長帯の光に対しては有効であるが、光ファイバ
の減衰が最も少ないといわれる1、6μ−程度までの長
波長帯の光を受光することはできなかった。
However, although this MSM photodiode is effective for light in a short wavelength band of about 0.8μ, it is effective against light in a long wavelength band of about 1.6μ, which is said to have the least attenuation in optical fibers. It was not possible to receive light.

そこで、本出願人は先に特願昭62−243620号に
て第9図に示す如き構造の長波長用受光素子を提案した
。すなわら、半絶縁性1nP(5,1,−InP)W板
11上に1−in    GaO,470,53 ASM112,1−1nvGa+ −vAslfM13
(ただし、0≦Y≦0.47 )及びi −GaAsF
r414を順次積層し、更に1−GaAs層14上にア
ルミニウム(A4 )電極15及び16を形成した受光
素子で、光吸収層にInGaAsを使用することで長波
長帯の光を光電変換する構成としたものである。
Therefore, the present applicant previously proposed a long wavelength light receiving element having a structure as shown in FIG. 9 in Japanese Patent Application No. 62-243620. That is, 1-in GaO, 470,53 ASM112, 1-1nvGa+ -vAslfM13 is placed on the semi-insulating 1nP (5,1,-InP) W plate 11.
(However, 0≦Y≦0.47) and i-GaAsF
This is a light receiving element in which R414 is sequentially laminated and aluminum (A4) electrodes 15 and 16 are formed on the 1-GaAs layer 14, and by using InGaAs for the light absorption layer, it has a configuration that photoelectrically converts light in a long wavelength band. This is what I did.

この本出願人の受光素子によれば、そのエネルギーバン
ド図は第10図に示す如くになり、ノンドープのGaA
s層14によりショットキー障壁の高さφBとしてI 
nGaAsのそれの約0.2evに比しかなり人なる0
、8eVを得ることができるので、暗電流が小さくでき
るという特長がある。
According to this photodetector of the present applicant, its energy band diagram is as shown in FIG.
As the height φB of the Schottky barrier due to the s layer 14, I
0, which is considerably smaller than that of nGaAs, which is approximately 0.2ev.
, 8eV can be obtained, which has the advantage of reducing dark current.

また、本出願人は先に特願昭62−243619号にて
例えば第11図に示す如き構造の長波長用集積化受信器
を提案した。同図中、第9図と同一構成部分には同一符
号を付し、その説明を省略する。
Furthermore, the present applicant previously proposed in Japanese Patent Application No. 62-243619 an integrated receiver for long wavelengths having a structure as shown in FIG. 11, for example. In the figure, the same components as those in FIG. 9 are denoted by the same reference numerals, and the explanation thereof will be omitted.

第11図に示す集積化受信器は、第9図に示した構造の
MSM−PDI 7と同一の3.1−1nP基板11上
方の1−GaASlii14上に、更にn−GaAS層
18層形8し、その上に電極19゜20及び21を形成
することにより、電界効果トランジスタ(FET)22
を構成したものである。
The integrated receiver shown in FIG. 11 is constructed on a 1-GaASlii 14 above a 3.1-1 nP substrate 11, which is the same as the MSM-PDI 7 having the structure shown in FIG. By forming electrodes 19, 20 and 21 thereon, a field effect transistor (FET) 22 is formed.
It is composed of

このFET22はMSM−PDl7により長波長光を光
電変換して得られた電気信号を増幅して出力するための
ものである。
This FET 22 is for amplifying and outputting an electrical signal obtained by photoelectrically converting long wavelength light by the MSM-PDl7.

この集積化受信器によれば、FET22の大部分の層構
造がMSM−PDl7のぞれと同じなので、製造が容易
であり、またFET22にGaAsを用いているので高
速である等の特長がある。
According to this integrated receiver, most of the layer structure of the FET 22 is the same as each of MSM-PDl7, so it is easy to manufacture, and since GaAs is used for the FET 22, it is fast. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるに、上記の第9図、第11図に夫々示した本出願
人の提案になる受光素子及び集積化受信器によれば、光
吸収層として用いられているInGaAs層12.13
上にr−GaAsm14を設けているが、両者は格子不
整合であるため、MSM−PDl 7における@電流の
低減効果が不十分であるという問題点があった。また、
上記の本出願人の提案では、i −GaAs層14の代
りにi −AJ!x Ga+ −x As層を設けたも
のも開示しているが、これも同様にInGaAs層と格
子不整合の関係にあった。
However, according to the light receiving element and integrated receiver proposed by the present applicant shown in FIGS. 9 and 11, respectively, the InGaAs layers 12 and 13 used as the light absorption layer
Although r-GaAsm 14 is provided on top, there is a problem that the current reduction effect in MSM-PDl 7 is insufficient because the two are lattice mismatched. Also,
In the above proposal of the present applicant, the i-AJ! A device in which an x Ga+ −x As layer is provided is also disclosed, but this also has a lattice mismatch relationship with the InGaAs layer.

本発明は上記の点に鑑みてなされたもので、長波長帯の
入射光に対してより暗電流の少ない光電変換信号を得る
ことができる受光素子及び集積化受信器を提供すること
を目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a light receiving element and an integrated receiver that can obtain a photoelectric conversion signal with less dark current for incident light in a long wavelength band. do.

(問題点を解決するための手段) 第1A図は本発明になる受光素子の原理構造図を示す。(Means for solving problems) FIG. 1A shows a principle structural diagram of a light receiving element according to the present invention.

同図中、25は半絶縁性化合物半導体基板、26は第1
のグレーデッド層、27は光吸収層、28は第2のグレ
ーデッド層、29はAl1nAs層、30は電極である
In the figure, 25 is a semi-insulating compound semiconductor substrate, 26 is a first
27 is a light absorption layer, 28 is a second graded layer, 29 is an Al1nAs layer, and 30 is an electrode.

光吸収層27はInGaAsよりなり、その両側に第1
のグレーデッド層26と第2のグレーデッド層28とが
形成されている。電極30はAI!、InAs1m29
上に形成されている。
The light absorption layer 27 is made of InGaAs and has first layers on both sides thereof.
A graded layer 26 and a second graded layer 28 are formed. Electrode 30 is AI! , InAs1m29
formed on top.

また、第1B図は本発明になる集積化量4n器の原理構
造図を示す。同図中、第1A図と同一構成部分には同一
符号を付し、その説明を省略する。
Further, FIG. 1B shows a principle structural diagram of a 4n device with an integrated amount according to the present invention. In the figure, the same components as in FIG. 1A are denoted by the same reference numerals, and the explanation thereof will be omitted.

第1B図において、31は第3のグレーデッド層、32
はInGaAs層、33はA[I nAs層、3C35
及び36は夫々電極であり、これらはトランジスタを構
成し、前記受光素子と同一の半絶縁性化合物半導体基板
25上に、受光素子と分離して形成されている。
In FIG. 1B, 31 is the third graded layer, 32
is an InGaAs layer, 33 is an A[InAs layer, 3C35
and 36 are electrodes, which constitute a transistor and are formed separately from the light receiving element on the same semi-insulating compound semiconductor substrate 25 as the light receiving element.

なお、少なくとも第2のグレーデッド層28はAlGa
 I nAs中のAtの組成の割合が光吸収層27方向
に近付くにつれて漸次小となり、かつ、Gaの組成の割
合が漸次大となるようにされた、多段階の組成変化構造
である。
Note that at least the second graded layer 28 is made of AlGa
This is a multi-step composition change structure in which the composition ratio of At in InAs gradually decreases as it approaches the direction of the light absorption layer 27, and the composition ratio of Ga gradually increases.

(作用) 受光素子の光吸収層27は長波長帯材料であるるI n
GaAsが用いられる。しかし、この1nGaAsはシ
ョットキー障壁の高さφBが約0.2evと低く暗電流
が問題となるので、ショットキー障壁の高さφBを高く
し、かつ、I nGaAsと格子整合性を確保するため
にφBが約0.6e V〜0.8ev程度のAt1 n
Asによる層を光吸収層(InGaAs)27上に形成
する。
(Function) The light absorption layer 27 of the light receiving element is made of a long wavelength band material.
GaAs is used. However, this 1nGaAs has a low Schottky barrier height φB of about 0.2ev, which poses a problem of dark current, so in order to increase the Schottky barrier height φB and ensure lattice matching with InGaAs, At1 n with φB of about 0.6e V to 0.8ev
A layer of As is formed on the light absorption layer (InGaAs) 27.

ただし、InGaAs光吸収層上に直接AflInAs
層を設けた場合は、第12図のエネルギーバンド図に示
すように、2つの層の電子親和りの差から伝導帯の底の
ポテンシャルECと価電子帯の頂上のポテンシャルEv
に夫々ポテンシャルの不連続へEC,へEVが夫々生ず
るので、■フォトキャリア(光励起キャリア)のパイル
・アップ効果のため、速度劣化を生じ、かつ、■2次元
キャリアがAl1InAs層と1nGaAs光吸収層と
の界面で生じる。
However, AflInAs is directly applied to the InGaAs light absorption layer.
When layers are provided, the potential EC at the bottom of the conduction band and the potential Ev at the top of the valence band are determined from the difference in electron affinity between the two layers, as shown in the energy band diagram in Figure 12.
Since EC and EV occur due to potential discontinuity, respectively, ■ speed deterioration occurs due to the pile-up effect of photocarriers (photo-excited carriers), and ■ two-dimensional carriers are transferred to the Al1InAs layer and the 1nGaAs light absorption layer. occurs at the interface with

すなわち、第12図に示すように、フォトキャリアは小
エネルギーのものがΔEC,ΔEVにより走行が遮ぎら
れるので、速度劣化を生じ、また界面にキャリアの一部
が蓄憤される。
That is, as shown in FIG. 12, photocarriers with low energy are blocked from traveling by ΔEC and ΔEV, resulting in speed deterioration and a portion of the carriers being accumulated at the interface.

上記の■の現象は受光素子では入射光が無くてもキャリ
アの走行をもたらし、暗電流の増加という問題を生じさ
せてしまう。
The phenomenon (2) above causes carriers to travel even in the absence of incident light in the light-receiving element, resulting in the problem of increased dark current.

そこで、本発明になる受光素子は前記本出願人の問題点
を解決すると共に、上記■及び■の問題も除去するため
に、光吸収1!27の両側に光吸収1127と格子整合
のある材質で第1及び第2のグレーデッド!26及び2
8を設けたものである。
Therefore, in order to solve the problem of the present applicant and also eliminate the above-mentioned problems 1 and 2, the light-receiving element of the present invention is made of a material that has lattice matching with the light absorption 1127 on both sides of the light absorption 1!27. 1st and 2nd graded! 26 and 2
8.

第2のグレーデッド層28によりEC,EVが光吸収層
27よりAl11 nAsg!29にかけて漸次変化す
るので、光吸収層27とA乏1nAs層29との界面の
八EC,ΔEVは実効的に無視される。また、第1及び
第2のグレーデッド層26及び28により、2次元キャ
リアが光吸収層26の基板25側との界面に形成される
現象を実質上無くすことができる。
The second graded layer 28 allows EC and EV to be changed from the light absorption layer 27 to Al11 nAsg! 29, the 8EC and ΔEV at the interface between the light absorption layer 27 and the A-poor 1nAs layer 29 are effectively ignored. Moreover, the first and second graded layers 26 and 28 can substantially eliminate the phenomenon in which two-dimensional carriers are formed at the interface between the light absorption layer 26 and the substrate 25 side.

また、本発明の集積化受信器は本発明になる受光素子と
同様の構造のトランジスタを、受光素子と組み合わせて
集積化したものであり、受光素子とトランジスタとの秦
子表面間の段差は極めて小にできる。
In addition, the integrated receiver of the present invention is an integrated device in which a transistor having the same structure as the light-receiving element of the present invention is combined with the light-receiving element, and the level difference between the front surfaces of the light-receiving element and the transistor is extremely small. Can be made small.

(実施例) 第2図は本発明になる受光素子の一実施例の構造断面図
を示す。同図中、40は半絶縁細化合物半導体基板25
の一例としてのS、l−1nP基板、41はAl1nA
SI!、42は八eGa [nASの組成変化によるグ
レーデッド層、43は光吸収層27に相当するInGa
AsWJ、44は第2のグレーデッド層28に相当する
グレーデッド層で、グレーデッド1i42と同一構造と
されている。更に、45はAl1InA5l!629に
相当するAl1nAsli、46及び47は夫々電極で
ある。
(Embodiment) FIG. 2 shows a structural sectional view of an embodiment of the light receiving element according to the present invention. In the figure, 40 is a semi-insulating thin compound semiconductor substrate 25.
S as an example, l-1nP substrate, 41 is Al1nA
SI! , 42 is a graded layer due to a composition change of 8eGa [nAS, and 43 is an InGa layer corresponding to the light absorption layer 27.
AsWJ, 44 is a graded layer corresponding to the second graded layer 28, and has the same structure as graded 1i42. Furthermore, 45 is Al1InA5l! Al1nAsli corresponding to 629, 46 and 47 are electrodes, respectively.

Al1I nAs層41とグレーデッド層42により前
記第1のグレーデッド1!26が構成されている。
The Al1I nAs layer 41 and the graded layer 42 constitute the first graded 1!26.

S、l−1nPI板40上に分子線エピタキシャル成長
(M 3 E : a+olecular beaai
 Hitaxialgrowth)法により、バッファ
の役目のAlnAS層41を約411μmの護りに成長
させた侵、その上にAlGa I nAsの組成比が深
さ方向に漸次異なる第1のグレーデッド層42を例えば
2000人の厚さに形成する。なお、At I nAS
層41の代りに、InPliWを用いてもよい。
Molecular beam epitaxial growth (M 3 E: a+olecular beam epitaxial growth
An AlnAS layer 41 serving as a buffer is grown to a thickness of about 411 μm using a layer growth method (hitaxial growth), and a first graded layer 42 with a composition ratio of AlGaInAs that gradually changes in the depth direction is grown on it by, for example, 2000 people. Form to a thickness of . In addition, At I nAS
InPliW may be used instead of layer 41.

次にグレーデッド層42上にInGaAsJi?i43
を形成する。このl nGaAs層43の膜厚は効率を
上げるため、例えば1.5μ量と厚くする(吸収係数は
約lX10’1:II−’)。
Next, InGaAsJ? on the graded layer 42? i43
form. The thickness of this lnGaAs layer 43 is set to be as thick as, for example, 1.5μ in order to increase efficiency (absorption coefficient is about lX10'1:II-').

次に、MBE法によりグレーデッドFW42と同一構造
のグレーデッドff44を2000人の膜厚で成長させ
た後、Ae I nAsFgf45を700人のgl厚
で形成する。以上の各層41〜45はすべてアンドープ
等によって低キャリアla度(〜10 I5am−3以
下)とされている。
Next, a graded FF 44 having the same structure as the graded FW 42 is grown to a thickness of 2000 nm using the MBE method, and then Ae I nAsFgf 45 is formed to a GL thickness of 700 nm. All of the above layers 41 to 45 are made to have a low carrier la degree (~10 I5am-3 or less) by undoping or the like.

最後にAl電極46及び47を夫々At1nAs層45
上に3000人の厚さで蒸着する。このAl電極46及
び47は第3図の平面図に示す如く、櫛歯状の電極部を
有し、かつ、それらが互い違いになるように配置されて
いる。第3図に示す電極部の良さLは一例として100
μm、電極の幅之と電極間隔Sは夫々2μ■である。光
遮蔽を防ぐためには乏を小(例えば0,5μm)、Sを
大(例えば2μs)とすればよい。なお、第3図中、■
−■線に沿う断面図が第2図である。
Finally, the Al electrodes 46 and 47 are connected to the At1nAs layer 45, respectively.
Deposit 3,000 layers on top. As shown in the plan view of FIG. 3, the Al electrodes 46 and 47 have comb-shaped electrode portions, and are arranged so as to alternate. The quality L of the electrode part shown in Fig. 3 is 100 as an example.
The electrode width and electrode spacing S are each 2 μm. In order to prevent light shielding, the shortness may be set small (for example, 0.5 μm) and S may be set large (for example, 2 μs). In addition, in Figure 3, ■
FIG. 2 is a sectional view taken along line -■.

次に本発明実施例の要部をなすグレーデッド層42及び
44について更に耳組に説明する。グレーデッドX14
4は第2図及び第4図(B)に示す如<AelnAsl
i45とl nGa八Sへ;!N3との間に形成されて
いるが、エネルギーギャップEQ (=Ec−Ev)は
第4図(ARM示す如くA[I nAs145で大きく
、l nGaAsff43で小となっている。
Next, the graded layers 42 and 44, which form the main part of the embodiment of the present invention, will be further explained. Graded X14
4 is <AelnAsl> as shown in FIG. 2 and FIG. 4(B).
i45 and lnGa8S;! However, as shown in FIG. 4 (ARM), the energy gap EQ (=Ec-Ev) is large in A[InAs145 and small in InGaAsff43.

そこで、グレーデッド層44はl nGaAsと格子整
合性のあるAeGa I nASを用い、かつ、その中
のAeの組成比がAe I nAsFti45からI 
nGaAsm43方向へ進むにつれて小となり、かつ、
Gaの組成比が順次大となるように段階的に変化せしめ
られ、エネルギーギャップEgを第4図(A)に示す如
く段階的に変化させる。この段階の数は、各段階におけ
るΔEC(>△EV)が0.1eV以下となるようにす
るため、7段階以上とされている。なお、グレーデッド
層42゜44は実際には夫々A4 I nAs/Ga 
I nAs超格子層である。
Therefore, the graded layer 44 is made of AeGa I nAS which has lattice matching with I nGaAs, and the composition ratio of Ae therein is changed from Ae I nAsFti45 to I nAsFti45.
It becomes smaller as it advances toward the nGaAsm43 direction, and
The composition ratio of Ga is changed stepwise so that it becomes larger, and the energy gap Eg is changed stepwise as shown in FIG. 4(A). The number of stages is set to 7 or more so that ΔEC (>ΔEV) at each stage is 0.1 eV or less. Note that the graded layers 42 and 44 are actually A4 InAs/Ga
This is an InAs superlattice layer.

上記のAl1Ga I nAS中のA4及びGaの組成
の割合を変化させるには、MBE装置のAe。
In order to change the composition ratio of A4 and Ga in the above-mentioned Al1GaI nAS, Ae of the MBE apparatus.

Ga、In、Asが別々に入っている各るつぼの前面に
配置された機械的シャッタの開閉の割合を夫々適宜可変
することなどにより可能である。
This can be achieved by appropriately varying the opening/closing ratio of mechanical shutters placed in front of each crucible containing Ga, In, and As separately.

上記のグレーデッドFJ44により、本実施例の要部の
エネルギーバンド図は第5図に示す如くになる。第5図
かられかるように、グレーデッド層44におけるエネル
ギーギャップEaはAl2InAs層45からInGa
As層43に至るにつれて漸次小となり、実質的にΔE
V、八ECへ無視できるようになる。
By using the graded FJ44 described above, the energy band diagram of the main part of this embodiment is as shown in FIG. As can be seen from FIG. 5, the energy gap Ea in the graded layer 44 is from the Al2InAs layer 45 to the InGa layer.
It gradually becomes smaller as it reaches the As layer 43, and substantially ΔE
V, becomes able to ignore 8 EC.

従って、InGaAs層43に発生したフオi・キャリ
アは速度劣化が殆ど生ぜす、AlInAS層45との界
面に2次元キアリアが殆ど形成されないようにすること
ができる。しかも、グレーデッド層44及び42はl 
nGaAsとの格子整合がとれていることとも相まって
、本実施例によれば、暗電流が極めて少ないフオトダイ
オードを(7ることができる。
Therefore, the pho-i carriers generated in the InGaAs layer 43 can be prevented from forming two-dimensional chiaria at the interface with the AlInAS layer 45, which causes almost no velocity deterioration. Moreover, the graded layers 44 and 42 are
Coupled with the fact that lattice matching with nGaAs is achieved, this embodiment makes it possible to create a photodiode with extremely low dark current.

一例として、本出願人の試作実験結束によれば、A4m
極線幅1μm、間隔1.5μm 、受光′?rJbAl
0μI角のフォトダイオードにおいて、印加電圧5■で
暗電流は数nAが得られ、また容Mは65fFが得られ
、更に波長1.3μmの入射光に対して数十GHzの高
周波数まで平坦な充電流特性が得られた。
As an example, according to the applicant's prototype experimental binding, A4m
Pole width 1μm, interval 1.5μm, light reception'? rJbAl
In a 0 μI square photodiode, an applied voltage of 5 μm results in a dark current of several nA, a capacitance M of 65 fF, and a flat rate up to a high frequency of several tens of GHz for incident light with a wavelength of 1.3 μm. Charge current characteristics were obtained.

次に本発明になる集積化受信器の一実施例について第6
図と共に説明する。同図中、第2図と同一構成部分には
同一符号を付し、その説明は省略する。
Next, a sixth embodiment of the integrated receiver according to the present invention will be described.
This will be explained with figures. In the figure, the same components as those in FIG. 2 are denoted by the same reference numerals, and the explanation thereof will be omitted.

第6図中、48及び50は夫々A[InAs層、49は
グレーデッド層、51は前記第1B図のAelnAs層
33に相当するAe I nAs層、52及び54は夫
々前記電極34及び36に相当するオーミック電極、5
3は前記電極35に相当するショットキー電極である。
In FIG. 6, 48 and 50 are A[InAs layers, 49 is a graded layer, 51 is an Ae I nAs layer corresponding to the AelnAs layer 33 in FIG. 1B, and 52 and 54 are A[InAs layers, respectively. Corresponding ohmic electrode, 5
3 is a Schottky electrode corresponding to the electrode 35 described above.

Al1 nAs層48とグレーデッドWJ49が前記第
3のグレーデッド層31に相当する。また、オーミック
電極52及び54は例えばAUGeNiからなり、ショ
ットキー電極53は例えばAeからなる。
The Al1 nAs layer 48 and the graded WJ 49 correspond to the third graded layer 31. Further, the ohmic electrodes 52 and 54 are made of, for example, AUGeNi, and the Schottky electrode 53 is made of, for example, Ae.

上記の集積化受信器は、まず、S、l−1nP基板40
上全面に亘って第2図に示した構成のフォトダイオード
(受光素子)を前記した方法で形成した後(ただし、こ
のとぎはまだ電極46及び47は形成されていない)、
トランジスタを形成すべき領域のフォトダイオード部分
を基板40を残してエツチング除去する。
The above integrated receiver first consists of an S, l-1nP substrate 40
After forming a photodiode (light receiving element) having the configuration shown in FIG. 2 over the entire upper surface by the method described above (however, electrodes 46 and 47 have not been formed yet),
The photodiode portion in the region where the transistor is to be formed is removed by etching, leaving the substrate 40 intact.

次にフォトダイオードとなるべき残った部分にS!3N
4111などを保護膜として被覆形成した後、   ・
基板40上にMBEによりフォトダイオードと同様構造
となるようAeInAs層48、グレーデッド層49、
l nGaAs層50を順次エピタキシャル成長する。
Next, apply S to the remaining part that should become the photodiode! 3N
After coating with 4111 etc. as a protective film,
On the substrate 40, an AeInAs layer 48, a graded layer 49,
1 nGaAs layers 50 are epitaxially grown in sequence.

次に、MBEでInGaAs1i50上にAlInAS
層51を100人の膜厚でエピタキシャル成長する。A
乏InAS層51はシリコン(S i )などのn形ド
ーパントが1 x 1018an’ ff1度の濃度に
ドーピングされる。
Next, AlInAS was deposited on InGaAs1i50 using MBE.
Layer 51 is epitaxially grown to a thickness of 100 nm. A
The InAS-poor layer 51 is doped with an n-type dopant such as silicon (S i ) to a concentration of 1×10 18 an' ff1 degree.

最後に、前記フォトダイオード上の保護膜を除去した後
、電極46.47.53を蓄積形成し、また電極52.
54を周知の合金化法で形成する。
Finally, after removing the protective film on the photodiode, electrodes 46, 47, 53 are deposited and electrodes 52.
54 is formed by a well-known alloying method.

上記の各層48〜51と電極52〜54はAl1nAs
層51とI nGaAs150とのへテロ接合界面に形
成される2次元電子ガス(2DEG)層をチャネル層に
使用する高電子移動度トランジスタ(1−I E M 
T )であり、電極52,53.54は夫々ドレイン、
ゲート、ソースの各電極として使用される。
The above layers 48 to 51 and electrodes 52 to 54 are made of Al1nAs.
A high electron mobility transistor (1-IE M
T), and the electrodes 52, 53, and 54 are the drain and the electrodes, respectively.
Used as gate and source electrodes.

このように、S、l−1nP基板40上に集積化された
MSM−PDとl−(EMTよりなる集積化受信器は、
MSM−PDに入射された長波長帯の光を光電変換した
後、HEMTにより増幅して出力するよう動作し、信号
伝送速度数Gb/s以上で超高速動作する。
In this way, the integrated receiver consisting of the MSM-PD and l-(EMT) integrated on the S, l-1nP substrate 40 is
After photoelectrically converting the long wavelength band light incident on the MSM-PD, the HEMT operates to amplify and output the light, and operates at extremely high speed at a signal transmission rate of several Gb/s or more.

本実施例の1!1化受信器は、素子はブレーナ型で、か
つ、画素子表面間の段差は極めて小さい(約3000人
)ので、配線パターニングされるレジストの膜厚を薄く
することができ、よってこのレジス1−をマスクどして
形成される電極46.47゜52〜54の幅を夫々細く
でき、また製作が容易である。
In the 1!1 receiver of this embodiment, the element is of the Brainer type, and the level difference between the surfaces of the pixel elements is extremely small (approximately 3,000 layers), so the thickness of the resist film used for wiring patterning can be made thinner. Therefore, the widths of the electrodes 46.47.degree. 52 to 54 formed by using the resist 1- as a mask can be made thinner, and manufacturing is easy.

なお、本発明は上記の実施例に限定されるものではなく
、その他種々の変形例を包含するものである。例えば、
第1のグレーデッド層26としてはI nGaASPの
組成を変化させたグレーデッド構造としてもよく、また
集積化受信器中のトランジスタはHEMT以外の構造の
FETでもよい。
Note that the present invention is not limited to the above embodiments, but includes various other modifications. for example,
The first graded layer 26 may be a graded structure in which the composition of InGaASP is changed, and the transistor in the integrated receiver may be an FET having a structure other than a HEMT.

また、受光素子や集積化受信器の製造に際しては有機金
1KcVD (MOCVD : metal orga
nicchelcal vapor depositi
on )法を適用することもできる。
In addition, when manufacturing photodetectors and integrated receivers, organic gold 1KcVD (MOCVD) is used.
nickel vapor depositi
on ) method can also be applied.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明によれば、長波長帯材料を用、いた
光吸収層の両側に光吸収層と格子整合性のある材質で第
1及び第2のグレーデッド層を形成するようにしたので
、暗電流が極めて小さい(1μA以下)良好な特性を得
ることができ、またΔEV、ΔEcの影響が実質上無視
できるので光励起キャリアのトラップが防止されて超高
速応答(10GHz以上)特性を得ることができ、更に
低容量で、受光領域を大にすることが可能であり、また
更に集積化受信器は受光素子部と増幅素子部との表面の
段差が極めて小さく製作が容易で、電極幅も小にするこ
とができる等の特長を有するものである。
As described above, according to the present invention, the first and second graded layers are formed on both sides of the light absorption layer using a long wavelength band material and made of a material that has lattice matching with the light absorption layer. Therefore, it is possible to obtain good characteristics with an extremely small dark current (1 μA or less), and the effects of ΔEV and ΔEc are virtually negligible, preventing trapping of photoexcited carriers and obtaining ultra-high-speed response characteristics (10 GHz or more). Furthermore, the integrated receiver has a very small surface step difference between the light receiving element part and the amplifying element part, and is easy to manufacture, and the electrode width can be increased. It also has the advantage of being able to be made smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図は本発明受光素子の原理構造図、第1B図は本
発明集積化受信器の原理#I構造図第2図は本発明受光
素子の一実施例の構造断面図、 第3図は第2図中の電極の一例の平面図、第4図は第2
図の要部の構成説明図、 第5図は本発明の一実施例のエネルギーバンド図、 第6図は本発明の集積化受信器の一実施例の構造断面図
、 第7図はp1nフォトダイオードの一例の断面構造図、 第8図はMSMフォl〜ダイオードの一例の構造断面図
、 第9図は本出願人が先に提案した受光系子の一例の構造
断面図、 第10図は第9図のエネルギーバンド図、第11図は本
出願人が先に提案した集積化受信器の一例の構造断面図
、 第12図はl nGaAs層上にAfllnAs層を設
けた場合の受光素子のエネルギーバンド図である。 図において、 25は半絶縁性化合物半導体基板、 26は第1のグレーデッド層、 27はI nGaAs光吸収層、 28は第2のグレーデッド層 29.33はA[I nAsL?f 30.34〜3Gは電極、 31は第3のグレーデッド層、 32は1nGaΔs15. 40は半絶縁性rnpM板、 42.44.49はAJ!Ga1nAsによるグレーデ
ッド層 を示す。 本発明受光素子の原理構造図 第1A図 本発明集積化受信器の原理構造図 第18図 本発明受光素子の一実施例の構造断面図第2図 第2図の要部の構成説明図 本発明の一実施例のエネルプーバンド図第5図 本発明の集積化受信器の一実施例の構造断面図第6図 第7図    第8図 ΔI 本出願人が先に提案した受光素子の 一例の構造断面図 第9図 第9図のエネルイーバンド図 第10図
Fig. 1A is a structural diagram of the principle of the light receiving element of the present invention, Fig. 1B is a structural diagram of principle #I of the integrated receiver of the present invention, Fig. 2 is a structural sectional view of an embodiment of the light receiving element of the present invention, and Fig. 3 is A plan view of an example of the electrode in Fig. 2, Fig. 4 is a plan view of an example of the electrode in Fig. 2;
Figure 5 is an energy band diagram of an embodiment of the present invention; Figure 6 is a cross-sectional view of the structure of an embodiment of the integrated receiver of the present invention; Figure 7 is a p1n photo Figure 8 is a cross-sectional view of an example of a diode, Figure 8 is a cross-sectional view of an example of a MSM diode, Figure 9 is a cross-sectional view of an example of a light-receiving element previously proposed by the applicant, and Figure 10 is FIG. 9 is an energy band diagram, FIG. 11 is a cross-sectional view of the structure of an example of an integrated receiver previously proposed by the applicant, and FIG. 12 is a photodetector element when an AfllnAs layer is provided on the lnGaAs layer. It is an energy band diagram. In the figure, 25 is a semi-insulating compound semiconductor substrate, 26 is a first graded layer, 27 is an InGaAs light absorption layer, 28 is a second graded layer 29.33 is A[InAsL? f 30.34-3G are electrodes, 31 is the third graded layer, 32 is 1nGaΔs15. 40 is a semi-insulating rmpM board, 42.44.49 is AJ! A graded layer of Ga1nAs is shown. Figure 1A is a diagram of the principle structure of the light receiving element of the present invention. Figure 18 is a diagram of the principle structure of the integrated receiver of the present invention. Figure 2 is a structural sectional view of an embodiment of the light receiving element of the present invention. Energy band diagram of an embodiment of the invention FIG. 5 Structural sectional view of an embodiment of the integrated receiver of the invention FIG. 6 FIG. 7 FIG. 8 ΔI An example of a light-receiving element previously proposed by the applicant Fig. 9 Structural cross-sectional diagram of Fig. 9 Energy-E band diagram of Fig. 9 Fig. 10

Claims (3)

【特許請求の範囲】[Claims] (1)半絶縁性化合物半導体基板(25)の上方に形成
されたInGaAsによる光吸収層(27)と、 InGaAsと格子整合のある材質により、該光吸収層
(27)の両側に夫々成長された第1及び第2のグレー
デッド層(26、28)と、該光吸収層(27)に対し
て光入射側に位置する該第2のグレーデッド層(28)
上に形成されたAlInAs層(29)と、 該AlInAs層(29)上に形成された電極(30)
とよりなることを特徴とする受光素子。
(1) A light absorption layer (27) made of InGaAs formed above the semi-insulating compound semiconductor substrate (25), and a light absorption layer (27) made of a material lattice matched to InGaAs grown on both sides of the light absorption layer (27). first and second graded layers (26, 28), and the second graded layer (28) located on the light incident side with respect to the light absorption layer (27).
an AlInAs layer (29) formed above, and an electrode (30) formed on the AlInAs layer (29)
A light receiving element characterized by:
(2)少なくとも該第2のグレーデッド層(28)は、
AlGaInAs中のAl及びGaのうちAlの組成の
割合が該光吸収層(27)方向に近付くにつれて漸次小
となり、かつ、Gaの組成の割合が漸次大となる、多段
階の組成変化構造であることを特徴とする請求項1記載
の受光素子。
(2) At least the second graded layer (28)
It has a multi-step compositional change structure in which the composition ratio of Al among Al and Ga in AlGaInAs gradually decreases as it approaches the light absorption layer (27) direction, and the composition ratio of Ga gradually increases. The light receiving element according to claim 1, characterized in that:
(3)半絶縁性化合物半導体基板(25)上に形成され
ており、前記第1のグレーデッド層(26)と同一組成
の第3のグレーデッド層(31)と、該第3のグレーデ
ッド層(31)上に形成されたInGaAs層(32)
と、 該InGaAs層(32)上に形成された AeInAs層(33)と、 該AlInAs層(33)上に形成された電極(34、
35、36)とよりなるトランジスタが、該半絶縁性化
合物半導体基板(25)上に請求項1記載の受光素子と
共に、かつ、互いに分離して形成されてなることを特徴
とする集積化受信器。
(3) a third graded layer (31) formed on the semi-insulating compound semiconductor substrate (25) and having the same composition as the first graded layer (26); InGaAs layer (32) formed on layer (31)
an AeInAs layer (33) formed on the InGaAs layer (32); and an electrode (34) formed on the AlInAs layer (33).
35, 36) are formed on the semi-insulating compound semiconductor substrate (25) together with the light receiving element according to claim 1 and separated from each other. .
JP63018391A 1988-01-28 1988-01-28 Photo detector and integrated receiver Pending JPH01194352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63018391A JPH01194352A (en) 1988-01-28 1988-01-28 Photo detector and integrated receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63018391A JPH01194352A (en) 1988-01-28 1988-01-28 Photo detector and integrated receiver

Publications (1)

Publication Number Publication Date
JPH01194352A true JPH01194352A (en) 1989-08-04

Family

ID=11970411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63018391A Pending JPH01194352A (en) 1988-01-28 1988-01-28 Photo detector and integrated receiver

Country Status (1)

Country Link
JP (1) JPH01194352A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5107318A (en) * 1990-04-16 1992-04-21 Fujitsu Limited Semiconductor device having light receiving diode element with capacitance
US5185272A (en) * 1990-04-16 1993-02-09 Fujitsu Limited Method of producing semiconductor device having light receiving element with capacitance
JP2006229156A (en) * 2005-02-21 2006-08-31 Ntt Electornics Corp Photodiode
WO2008026536A1 (en) * 2006-08-29 2008-03-06 Hamamatsu Photonics K.K. Photodetector and method for manufacturing photodetector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320881A (en) * 1976-08-11 1978-02-25 Nippon Telegr & Teleph Corp <Ntt> Photo semiconductor device
JPS5984417A (en) * 1982-11-04 1984-05-16 Nec Corp Iii-v family mixed crystalline semiconductor device
JPS61276314A (en) * 1985-05-31 1986-12-06 Fujitsu Ltd Liquid-phase epitaxial growth method of compound semiconductor
JPS62159477A (en) * 1986-01-08 1987-07-15 Fujitsu Ltd Photosemiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320881A (en) * 1976-08-11 1978-02-25 Nippon Telegr & Teleph Corp <Ntt> Photo semiconductor device
JPS5984417A (en) * 1982-11-04 1984-05-16 Nec Corp Iii-v family mixed crystalline semiconductor device
JPS61276314A (en) * 1985-05-31 1986-12-06 Fujitsu Ltd Liquid-phase epitaxial growth method of compound semiconductor
JPS62159477A (en) * 1986-01-08 1987-07-15 Fujitsu Ltd Photosemiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5107318A (en) * 1990-04-16 1992-04-21 Fujitsu Limited Semiconductor device having light receiving diode element with capacitance
US5185272A (en) * 1990-04-16 1993-02-09 Fujitsu Limited Method of producing semiconductor device having light receiving element with capacitance
JP2006229156A (en) * 2005-02-21 2006-08-31 Ntt Electornics Corp Photodiode
WO2008026536A1 (en) * 2006-08-29 2008-03-06 Hamamatsu Photonics K.K. Photodetector and method for manufacturing photodetector
JP2008060161A (en) * 2006-08-29 2008-03-13 Hamamatsu Photonics Kk Optical detector, and method of manufacturing optical detector
US8101940B2 (en) 2006-08-29 2012-01-24 Hamamatsu Photonics K.K. Photodetector and method for manufacturing photodetector

Similar Documents

Publication Publication Date Title
EP3229279B1 (en) Avalanche photodiode
EP2446483B1 (en) Low-level signal detection by semiconductor avalanche amplification
EP0789935B1 (en) Heterojunction energy gradient structure
EP3306679B1 (en) Light-receiving element and optical integrated circuit
US6831309B2 (en) Unipolar photodiode having a schottky junction contact
US5780916A (en) Asymmetric contacted metal-semiconductor-metal photodetectors
US5880482A (en) Low dark current photodetector
EP0452801B1 (en) Semiconductor device having light receiving element and method of producing the same
JP3254532B2 (en) Avalanche Photodiode
US5324959A (en) Semiconductor optical device having a heterointerface therein
JP2747299B2 (en) Semiconductor light receiving element
JP2002231992A (en) Semiconductor light receiving element
JPH01194352A (en) Photo detector and integrated receiver
JPH0656900B2 (en) Semiconductor optical device
US5115294A (en) Optoelectronic integrated circuit
JP2700492B2 (en) Avalanche photodiode
JPH05343731A (en) Photodetector
JPH07202254A (en) Semiconductor photodetector
JPH03253082A (en) Photoelectric conversion device
JPH0265279A (en) Semiconductor photodetecting element
JP2959681B2 (en) Photoelectric conversion device
KR100352816B1 (en) Epitaxial structure of high-speed photodetector
CN117936623A (en) Single-row carrier photoelectric detector and preparation method and application method thereof
JPS61154085A (en) Semiconductor photoreceptor
CN116885032A (en) Waveguide integrated photoelectric detector and preparation method thereof