JPH01191707A - Method and apparatus for manufacturing metal fine powder - Google Patents

Method and apparatus for manufacturing metal fine powder

Info

Publication number
JPH01191707A
JPH01191707A JP63015535A JP1553588A JPH01191707A JP H01191707 A JPH01191707 A JP H01191707A JP 63015535 A JP63015535 A JP 63015535A JP 1553588 A JP1553588 A JP 1553588A JP H01191707 A JPH01191707 A JP H01191707A
Authority
JP
Japan
Prior art keywords
resonator
atmospheric gas
ultrasonic
fine
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63015535A
Other languages
Japanese (ja)
Inventor
Motoji Tagashira
田頭 基司
Hitoshi Oishi
均 大石
Shuzo Fukuda
福田 脩三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP63015535A priority Critical patent/JPH01191707A/en
Publication of JPH01191707A publication Critical patent/JPH01191707A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To manufacture fine powder of metal or alloy having melting point from low to high by focusing atmospheric gas ultrasonic-vibrated on the surface of molten metal material, atomizing fine drip and flowing it on the stream of the atmospheric gas. CONSTITUTION:A resonator 13 arranged at upper part of a molten metal holding vessel 10 is excited with an ultrasonic vibrator 15 through an amplitude enlarger 14 to radiate sound wave 16 to the atmospheric gas. The sound wave 16 is reflected by a radiated direction transducer 17 and focused on surface of the molten metal 11. The radiated sound waves 16 from the resonator 13 radiate the sound waves 16 having opposite phases mutually at vibrator side and reverse vibrator side of the resonator 13, and the intense ultrasonic near the surface of the molten metal 11 acts and the fine drip files up from the surface of the molten metal 11. This fine drip is cooled and solidified with the atmospheric gas and also carried into a recovery vessel 18 with flowing of the atmospheric gas. By this method, the metal fine particle 19 without oxidation of particle surface and mixture of impurity, is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、気中強力超音波を用いて、溶融金属を微粒
化し金属粉末を製造する方法及びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and an apparatus for producing metal powder by atomizing molten metal using strong airborne ultrasonic waves.

〔従来技術〕[Prior art]

従来、超音波振動を用いて金属微粒子を製造する方法と
して、例えば、特開昭58−11064号や特開昭61
−295306号が開示されている。これらの方法の特
徴は、第2図及び第3図に示すように、超音波振動する
共振器1上に金属溶液に落下させ微小液滴2として飛散
させたり、超音波振動する共振器1を金属溶液の中に浸
漬させて、金属溶液の表面から微小液滴2を飛散させる
ものである。これらの方法では、以下のような問題があ
る。
Conventionally, as a method for manufacturing metal fine particles using ultrasonic vibration, for example, Japanese Patent Application Laid-Open No. 58-11064 and Japanese Patent Application Laid-open No. 61
-295306 is disclosed. As shown in FIGS. 2 and 3, the characteristics of these methods include dropping a metal solution onto a resonator 1 that vibrates ultrasonically and causing it to scatter as minute droplets 2, or dispersing the resonator 1 that vibrates ultrasonically. It is immersed in a metal solution, and minute droplets 2 are scattered from the surface of the metal solution. These methods have the following problems.

+1)  共振器lとしては、ステンレス鋼や、チタン
合金などが用いられるのが一般的である。しかし、溶融
物3が直接共振器1に触れるため耐熱性のある材料を使
用しなければならない。
+1) Stainless steel, titanium alloy, or the like is generally used for the resonator l. However, since the melt 3 directly contacts the resonator 1, a heat-resistant material must be used.

(2)  溶融物3の融点が高いと、共振器1に含まれ
る合金元素や不純物が溶融物に混入し純度の高い微粉末
ができない。
(2) If the melting point of the melt 3 is high, alloying elements and impurities contained in the resonator 1 will be mixed into the melt, making it impossible to produce fine powder with high purity.

(3)共振器1にセラミックス材料を用いると、振動特
性が悪く所望の振動が得られない。
(3) If a ceramic material is used for the resonator 1, the vibration characteristics are poor and desired vibration cannot be obtained.

(4)共振器1上に乗せる溶融金属の膜厚の制御が難し
く膜厚がバラツクと微粒化後の粉末の粒径もバラツキ、
所望の粒子径分布の粉末を製造することができない。
(4) It is difficult to control the film thickness of the molten metal placed on the resonator 1, and the film thickness varies and the particle size of the powder after atomization also varies;
It is not possible to produce powder with the desired particle size distribution.

以上のことから従来の技術では、半田などの比較的融点
の低い金属材料しか微粒化できなかった。
For the above reasons, with conventional techniques, only metal materials with a relatively low melting point, such as solder, can be atomized.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、従来の方法が直接共振器に溶融金属を接触さ
せる点に問題があることに着目して本発明を創作した。
The present invention was created by focusing on the problem that the conventional method involves bringing molten metal into direct contact with a resonator.

すなわち、■溶融金属と共振器を接触させず、■強力気
中音場の中で溶融金属を微粒化し、■不純物による微粉
末の汚染を防止する、ことができれば、前記(11〜(
4)の問題点が解決できることを究明した。
That is, if it is possible to (1) prevent the molten metal from coming into contact with the resonator, (2) atomize the molten metal in a strong aerial sound field, and (3) prevent contamination of the fine powder by impurities, the above (11-(
We have determined that the problem 4) can be solved.

本発明は、このような改善された金属微粉末の製造方法
とその装置を提供することを目的とするものである。
It is an object of the present invention to provide such an improved method and apparatus for producing fine metal powder.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、金属材料の溶融液の上方に超音波共振器を設
置し、該共振器を超音波振動させることにより雰囲気ガ
スを振動させ、音波の進行方向を放射方向変換器により
前記溶融液表面に集束し、前記溶融液表面から微小液滴
を霧化し、該液滴を冷却ガス気流中に飛行させつつ冷却
凝固させることを特徴とする金属微粒粉末の製造方法で
ある。
In the present invention, an ultrasonic resonator is installed above a molten liquid of a metal material, the atmospheric gas is vibrated by ultrasonic vibration of the resonator, and the traveling direction of the sound wave is changed to the surface of the molten liquid using a radial direction converter. This is a method for producing fine metal powder, characterized in that fine droplets are atomized from the surface of the molten liquid, and the droplets are cooled and solidified while flying in a cooling gas stream.

また、本発明は、金属材料を溶融する加熱源を備えた耐
火性の溶融物保持容器と、該溶融物保持容器の上方に設
けた超音波の共振器と、該共振器を振動させる振動子と
、前記共振器に振動を伝播させ振幅を拡大する振幅拡大
器と、前記共振器を囲むように設けられた放射方向変換
器と、前記共振器からの音波によって前記金属材料の溶
融源から霧化した液滴を冷却するガス供給装置と、前記
液滴の冷却凝固した微粒子を回収する回収器とからなる
ことを特徴とする金属微粉末の製造装置である。
The present invention also provides a fire-resistant melt holding container equipped with a heating source for melting a metal material, an ultrasonic resonator provided above the melt holding container, and a vibrator for vibrating the resonator. an amplitude expander that propagates vibrations to the resonator and expands its amplitude; a radial direction converter that surrounds the resonator; This is a metal fine powder production apparatus characterized by comprising a gas supply device that cools the liquid droplets, and a recovery device that collects fine particles that have been cooled and solidified from the liquid droplets.

すなわち、本発明では、まず、固体状の金属あるいは複
数の金属からなる合金を加熱溶融して溶融液を形成する
。溶融液の温度を一定に制御する。
That is, in the present invention, first, a solid metal or an alloy made of a plurality of metals is heated and melted to form a molten liquid. Control the temperature of the melt at a constant level.

溶融液保持容器の上方に配置した振動子からの振動を共
振器に伝え、雰囲気ガスを振動させる。共振器から発せ
られた音波放射方向変換器により溶融液表面方向に集束
させ強力気中音場ができる。
Vibrations from a vibrator placed above the melt holding container are transmitted to the resonator to vibrate the atmospheric gas. The sound waves emitted from the resonator are focused in the direction of the melt surface by a direction converter, creating a strong aerial sound field.

強力気中超音波が溶融液表面に作用すると、キャピラリ
ー波が発生し表面張力に打ち勝って溶融液が霧化される
。霧化された微小液滴をアルゴンガスなどの溶融液と反
応しないガス中に浮遊させ、この間に冷却凝固させる。
When strong aerial ultrasound waves act on the surface of a melt, capillary waves are generated that overcome surface tension and atomize the melt. The atomized minute droplets are suspended in a gas such as argon gas that does not react with the molten liquid, and during this time they are cooled and solidified.

凝固した微小粒子をガスとともに回収器に導き回収する
The solidified microparticles are guided to a recovery device together with gas and recovered.

ここで、溶融金属は比重量、粘性係数、表面張力が水と
比較して大きいため、溶融液近傍の音場の音圧レベルで
約170dB以上の強力音波でなければ霧化できない。
Here, since the specific weight, viscosity coefficient, and surface tension of molten metal are larger than those of water, it can only be atomized by powerful sound waves with a sound pressure level of approximately 170 dB or more in the sound field near the molten liquid.

このための対策としては、共振器として振動特性が良く
しかも疲労強度の大きいチタン合金性の矩形振動板とし
、この振動板の振動子側と反搬動子側の両面から放射さ
れる音波を放射方向変換器により、溶融液表面に音波が
放射されるように方向変換する。振動板からの放射音波
は振動子側と反搬動子側では互に逆位相の音波を放射す
るから、放射音波の位相を考えて互に強めあうように放
射方向変換器の位置を決める。
As a countermeasure for this, a rectangular diaphragm made of titanium alloy, which has good vibration characteristics and high fatigue strength, is used as a resonator, and the sound waves radiated from both sides of the diaphragm, the vibrator side and the anti-transfer element side, are radiated. A direction changer changes the direction of the sound waves so that they are radiated onto the surface of the melt. Since the radiated sound waves from the diaphragm radiate sound waves with opposite phases on the vibrator side and anti-carrier side, the positions of the radial direction converters are determined in consideration of the phases of the radiated sound waves so that they mutually intensify.

また、放射方向変換器は、音波を効率良く溶融液表面に
集束させるために、反射面を放物線型にすることが望ま
しい。
Furthermore, in order to efficiently focus sound waves on the surface of the melt, the radiation direction converter preferably has a parabolic reflecting surface.

このように共振器、放射方向変換器を構成することによ
り溶融液表面近傍で170dB以上の音場が容易に形成
される。
By configuring the resonator and the radiation direction converter in this way, a sound field of 170 dB or more can be easily formed near the surface of the melt.

この結果、気中音場を溶融金属の表面に作用させて溶融
金属を霧化する上記方法の問題点を容易に解消できる。
As a result, the problems of the above method of atomizing molten metal by applying an aerial sound field to the surface of the molten metal can be easily solved.

〔作 用〕[For production]

以下に本発明の構成と作用を詳しく説明する。 The structure and operation of the present invention will be explained in detail below.

第1図は、本発明の装置の構成を示している。FIG. 1 shows the configuration of the apparatus of the present invention.

溶融液保持器10に固体金属を図示していない全屈供給
装置により供給する。溶融液保持容器10は固体金属を
加熱し液体状にするとともに、溶融液11の温度を保持
する機能を有している。
Solid metal is supplied to the molten liquid holder 10 by a full-circle supply device (not shown). The melt holding container 10 has the function of heating solid metal to a liquid state and maintaining the temperature of the melt 11.

溶融液11は化学的な反応をしないようにアルゴンガス
などを用いて、ガス供給装置12により雰囲気の調整を
行っている。溶融液保持容器10の上方に設けた超音波
の共振器13は内部損失が小さくしかも共振の先鋭度が
大きくかつ疲労強度が大きい材料であることが必要であ
る。これらの条件を満たす材料としてはチタン合金また
はA1合金が最適である。また、共振器13は振幅拡大
器14を介して超音波振動子15により加振される。
The atmosphere of the melt 11 is adjusted by a gas supply device 12 using argon gas or the like to prevent chemical reactions. The ultrasonic resonator 13 provided above the melt holding container 10 needs to be made of a material with low internal loss, high resonance sharpness, and high fatigue strength. Titanium alloy or A1 alloy is optimal as a material that satisfies these conditions. Further, the resonator 13 is excited by an ultrasonic transducer 15 via an amplitude expander 14.

共振器13の振動により雰囲気ガスに音波16が放射さ
れる。放射された音波16は共振器13を取囲むように
設けられた放射方向変換器17により反射されて、共振
器13下方に設けた溶融液11の表面に集束される。と
ころで、共振器13からの放射音波は共振器13の振動
子側と反振動子側では互に逆位相の音波16を放射する
。この音波16は互に干渉しあって、同位相で重なれば
強めあい、また、逆位相で重なれば弱めあう。したがっ
て、溶融液11の表面で共振器13の振動子側の放射音
波と反振動子側の放射音波が放射方向変換器17をへて
同位相で重なりあうように、それぞれの放射方向変換器
17の位置を調整しておく。放射方向変換器17は、効
率良く音波を溶融液11の表面に到達させるため、その
反射面を放物線型にすることが望ましい。このようにす
ることにより、溶融液11の表面近傍で170dB以上
の音圧レベルの強力気中音場が形成できる。
The vibration of the resonator 13 causes a sound wave 16 to be radiated into the atmospheric gas. The emitted sound waves 16 are reflected by a radiation direction converter 17 provided surrounding the resonator 13 and focused on the surface of the melt 11 provided below the resonator 13 . Incidentally, the radiated sound waves from the resonator 13 radiate sound waves 16 having mutually opposite phases on the vibrator side and anti-vibrator side of the resonator 13. These sound waves 16 interfere with each other, and if they overlap in the same phase, they will strengthen each other, and if they overlap in opposite phases, they will weaken each other. Therefore, each radial direction converter 17 is arranged so that the radiated sound waves on the transducer side and the radiated sound waves on the anti-oscillator side of the resonator 13 pass through the radial direction converter 17 and overlap in the same phase on the surface of the melt 11. Adjust the position of. In order for the radiation direction converter 17 to efficiently cause the sound waves to reach the surface of the melt 11, it is desirable that its reflecting surface be parabolic. By doing so, a strong aerial sound field with a sound pressure level of 170 dB or more can be formed near the surface of the melt 11.

強力超音波が溶融液11の表面に作用すると、溶融液1
1の表面にキャピラリー波ができ表面張力に打ち勝って
微小液滴が溶融液11の表面から飛上がる。
When strong ultrasonic waves act on the surface of the melt 11, the melt 1
Capillary waves are formed on the surface of the melt 11 and the surface tension is overcome, causing minute droplets to fly up from the surface of the melt 11.

微小液滴の粒径の大きさは音波の周波数を適当に選択す
ることにより所望の粒径の微小液滴を得ることができる
The particle size of the micro droplets can be determined by appropriately selecting the frequency of the sound waves.

飛上がった微小液滴は雰囲気ガスによって冷却凝固され
るとともに、雰囲気ガスの流れにより回収器17に運ば
れる。冷却ガスの量は被溶融物の種類や液滴の発生量に
より変化させることが必要である。
The flying micro droplets are cooled and solidified by the atmospheric gas, and are carried to the collector 17 by the flow of the atmospheric gas. It is necessary to change the amount of cooling gas depending on the type of material to be melted and the amount of droplets generated.

凝固した微粒子19は回収器18により回収され、金属
微粒子を得ることができる。
The solidified fine particles 19 are collected by the collector 18, and metal fine particles can be obtained.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

第1図に示した装置を用いてアルゴンガス雰囲気で周波
数20kHzで共振器13を振動させ、片振幅で約16
ミクロンで振動させたところ、溶融液11の表面近傍で
172dBの音圧レベルの強力気中超音波が得られた。
Using the apparatus shown in Figure 1, the resonator 13 is vibrated at a frequency of 20 kHz in an argon gas atmosphere, and the half amplitude is approximately 16
When vibrated at microns, strong airborne ultrasonic waves with a sound pressure level of 172 dB were obtained near the surface of the melt 11.

共振器13としてはチタン合金を用いた。そして、アル
ミ合金を溶融しこの強力超音波を作用させた。
A titanium alloy was used as the resonator 13. The aluminum alloy was then melted and subjected to powerful ultrasonic waves.

得られたアルミ合金粉末は、粒径10〜30ミクロン、
平均粒径22ミクロンで球状の粒子が得られた。粒子表
面の酸化や、不純物元素の混入はまったくなく、極めて
純度の高い微粉末が得られた。また、粒子の生成量は約
800グラム/時間であった。
The obtained aluminum alloy powder has a particle size of 10 to 30 microns,
Spherical particles were obtained with an average particle size of 22 microns. A fine powder with extremely high purity was obtained, with no oxidation on the particle surface or contamination with impurity elements. The amount of particles produced was about 800 grams/hour.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明によれば、Pb、 Mg。 As explained above, according to the present invention, Pb, Mg.

Sn、 Zn + A Iなどの比較的溶融温度の低い
金属の微粉末から、Cu、 Ag、 Auなどの比較的
溶融温度の高い金属、および合金の微粉末を純度が高く
しかも安価に製造することができる。そして、これらは
高性能粉末冶金製造製品や電子材料の原料材となり、工
業的に利用価値の高いものである。
To manufacture fine powders of metals and alloys with relatively high melting temperatures, such as Cu, Ag, and Au, from fine powders of metals with relatively low melting temperatures, such as Sn, Zn + AI, etc., with high purity and at low cost. Can be done. These materials serve as raw materials for high-performance powder metallurgy products and electronic materials, and have high industrial utility value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の構成・作用を示すための説明図、第
2図及び第3図は、従来の金属微粒子製造装置の説明図
である。 10・・・溶融液保持容器、11・・・溶融液、12・
・・冷却ガス供給器、13・・・超音波の共振器、14
・・・振幅拡大器、15・・・超音波振動子、16・・
・音波、17・・・放射方向変換器、18・・・回収器
、19・・・微粒子。
FIG. 1 is an explanatory diagram for showing the structure and operation of the present invention, and FIGS. 2 and 3 are explanatory diagrams of a conventional metal fine particle manufacturing apparatus. 10... Melt liquid holding container, 11... Melt liquid, 12.
...Cooling gas supply device, 13...Ultrasonic resonator, 14
...Amplitude expander, 15...Ultrasonic transducer, 16...
-Sound wave, 17...Radiation direction converter, 18...Collector, 19...Particulates.

Claims (2)

【特許請求の範囲】[Claims] (1)金属材料の溶融液の上方に超音波共振器を設置し
、該共振器を超音波振動させることにより雰囲気ガスを
振動させ、音波の進行方向を放射方向変換器により前記
溶融液表面に集束し、前記溶融液表面から微小液滴を霧
化し、該液滴を冷却ガス気流中に飛行させつつ冷却凝固
させることを特徴とする金属微粒粉末の製造方法。
(1) An ultrasonic resonator is installed above the molten liquid of the metal material, the atmospheric gas is vibrated by ultrasonic vibration of the resonator, and the traveling direction of the sound wave is directed to the surface of the molten liquid using a radial direction converter. A method for producing fine metal powder, comprising: atomizing fine droplets from the surface of the molten liquid, and cooling and solidifying the droplets while flying them in a cooling gas stream.
(2)金属材料を溶融する加熱源を備えた耐火性の溶融
物保持容器と、該溶融物保持容器の上方に設けた超音波
の共振器と、該共振器を振動させる振動子と、前記共振
器に振動を伝播させ振幅を拡大する振幅拡大器と、前記
共振器を囲むように設けられた放射方向変換器と、前記
共振器からの音波によって前記金属材料の溶融液から霧
化した液滴を冷却するガス供給装置と、前記液滴の冷却
凝固した微粒子を回収する回収器とからなることを特徴
とする金属微粉末の製造装置。
(2) a fire-resistant melt holding container equipped with a heating source for melting a metal material; an ultrasonic resonator provided above the melt holding container; and a vibrator for vibrating the resonator; an amplitude expander that propagates vibrations to the resonator and expands its amplitude; a radial direction converter provided to surround the resonator; and a liquid atomized from the molten liquid of the metal material by the sound waves from the resonator. 1. An apparatus for producing fine metal powder, comprising a gas supply device that cools the droplets, and a collector that collects fine particles that have been cooled and solidified from the droplets.
JP63015535A 1988-01-26 1988-01-26 Method and apparatus for manufacturing metal fine powder Pending JPH01191707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63015535A JPH01191707A (en) 1988-01-26 1988-01-26 Method and apparatus for manufacturing metal fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63015535A JPH01191707A (en) 1988-01-26 1988-01-26 Method and apparatus for manufacturing metal fine powder

Publications (1)

Publication Number Publication Date
JPH01191707A true JPH01191707A (en) 1989-08-01

Family

ID=11891502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63015535A Pending JPH01191707A (en) 1988-01-26 1988-01-26 Method and apparatus for manufacturing metal fine powder

Country Status (1)

Country Link
JP (1) JPH01191707A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198157A (en) * 1990-08-20 1993-03-30 Dynamad S. A. R. L. Ultrasonic device for the continuous production of particles
CN107138733A (en) * 2017-07-10 2017-09-08 山东科技大学 Ultrasonic vibration atomization prepares device, method and the 3D printing system of metal dust

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5625578A (en) * 1979-08-08 1981-03-11 Kayoko Kiuchi Method of construction of exchanging of fence* etc*
JPS59190826U (en) * 1983-06-04 1984-12-18 株式会社 長谷川工務店 Handrail support installation device
JPS6126841U (en) * 1984-07-23 1986-02-18 株式会社 サンレ−ル handrail attachment device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5625578A (en) * 1979-08-08 1981-03-11 Kayoko Kiuchi Method of construction of exchanging of fence* etc*
JPS59190826U (en) * 1983-06-04 1984-12-18 株式会社 長谷川工務店 Handrail support installation device
JPS6126841U (en) * 1984-07-23 1986-02-18 株式会社 サンレ−ル handrail attachment device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198157A (en) * 1990-08-20 1993-03-30 Dynamad S. A. R. L. Ultrasonic device for the continuous production of particles
CN107138733A (en) * 2017-07-10 2017-09-08 山东科技大学 Ultrasonic vibration atomization prepares device, method and the 3D printing system of metal dust
CN107138733B (en) * 2017-07-10 2019-07-02 山东科技大学 Ultrasonic vibration atomization prepares device, method and the 3D printing system of metal powder

Similar Documents

Publication Publication Date Title
US5183493A (en) Method for manufacturing spherical particles out of liquid phase
US6309711B1 (en) Method for manufacturing a three-dimensional object
JP2582223B2 (en) Method and apparatus for producing metal globules of approximately equal diameter
US4553917A (en) Apparatus for production of ultrapure amorphous metals utilizing acoustic cooling
EP0638130B1 (en) Vibrating ring motor for feeding particular substances
Passow A study of spray forming using uniform droplet sprays
JPH01191706A (en) Method and apparatus for manufacturing metal fine powder
Lierke et al. The formation of metal powders by ultrasonic atomization of molten metals
JPH01191707A (en) Method and apparatus for manufacturing metal fine powder
JPH0336205A (en) Method and apparatus for manufacturing metal fine powder
JPH01208407A (en) Method and apparatus for manufacturing metal powder
JP2808836B2 (en) Powder manufacturing apparatus and powder manufacturing method
JPH0336204A (en) Method and apparatus for manufacturing metal fine powder
JP2001064702A (en) Prodution of fine spherical metal powder
JP2577173B2 (en) Method and apparatus for producing fine metal powder
JPH02247314A (en) Method for adding ultrasonic oscillation into molten metal
JPH0310005A (en) Method and apparatus for manufacturing metal fine powder
JPH01247507A (en) Method for converting molten metal into drops
SU1380863A1 (en) Method of dispersing material
JPH0310004A (en) Method and apparatus for manufacturing metal fine powder
JP2003138303A (en) Ultrasonic metal powder preparing device
JP2808835B2 (en) Powder manufacturing apparatus and powder manufacturing method
JPH0310008A (en) Method and apparatus for manufacturing metal fine powder
JPH02236208A (en) Method and apparatus for manufacturing metal fine powder
JP2001226705A (en) Method for manufacturing fine metallic ball and apparatus for manufacturing fine metallic ball