JPH01189544A - Extremely small hardness meter - Google Patents

Extremely small hardness meter

Info

Publication number
JPH01189544A
JPH01189544A JP1415088A JP1415088A JPH01189544A JP H01189544 A JPH01189544 A JP H01189544A JP 1415088 A JP1415088 A JP 1415088A JP 1415088 A JP1415088 A JP 1415088A JP H01189544 A JPH01189544 A JP H01189544A
Authority
JP
Japan
Prior art keywords
measured
substance
hardness
presser
indenter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1415088A
Other languages
Japanese (ja)
Inventor
Masayuki Kamegawa
亀川 正之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1415088A priority Critical patent/JPH01189544A/en
Publication of JPH01189544A publication Critical patent/JPH01189544A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the highly reproducible and accurate evaluation of hardness without inflicting damage on a substance to be measured, by a method wherein a change in an internal stress before and after pressing by a presser is taken as a change in a Raman spectrum. CONSTITUTION:A presser 1 whose fore end is formed in the shape of a sphere having a prescribed very small curvature is fitted to a load mechanism 2 and pressed vertically onto the surface of a substance S to be measured, such as an oxide film, which is an object of evaluation. In the vicinity of a part pressed by the presser 1 on the surface of the substance S to be measured, a laser beam from a laser 3 is condensed into a spot. A reflected scattered light of the laser light caused by the substance S is led to a spectroscope 5 and the intensity thereof in each wavelength zone is detected by a photomultiplier tube 6. A detection signal is taken in a computer 8 through an interface 7. The computer 8 stores only a Raman spectrum out of spectral data taken in and determines the quantity of change in the Raman spectrum before and after the pressing by the presser 1. This quantity of change is a quantity correlating to the hardness of the substance S to be measured, and therefore the hardness of the substance in a very small area and very small depth in the vicinity of the part pressed by the presser 1 is obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、例えば半導体プロセス等で製作される薄膜や
、超電導体薄膜、あるいは光学要素等のコーテイング膜
の極微小領域の硬度を評価するための極微小硬度計に関
する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is applicable to evaluating the hardness of extremely small regions of thin films produced in semiconductor processes, superconductor thin films, or coating films for optical elements, etc. Regarding ultra-micro hardness tester.

〈従来の技術〉 半導体プロセス等で製造される薄膜等の硬度を評価する
には、従来、例えば第5図にその構造を示すような微小
硬度計が使用されている。この装置によれば、サンプル
Sの表面に負荷機構51によって圧子52を所定の力で
押圧し、この押圧によって生じるサンプルSの変形量を
差動トランス53によって測定し、変形量と押圧力とか
らサンプルSの微小領域の硬度を評価する。
<Prior Art> In order to evaluate the hardness of thin films manufactured by semiconductor processes, etc., a microhardness tester, the structure of which is shown in FIG. 5, has conventionally been used. According to this device, an indenter 52 is pressed with a predetermined force on the surface of a sample S by a loading mechanism 51, the amount of deformation of the sample S caused by this pressing is measured by a differential transformer 53, and the amount of deformation and the pressing force are calculated. The hardness of the micro region of sample S is evaluated.

〈発明が解決しようとする問題点〉 上述のような微小硬度計によれば、差動トランス53等
の変位計を用いているので、少くとも100人程皮取上
の変形量を与えないと測定ができない。
<Problems to be solved by the invention> According to the microhardness meter described above, since a displacement meter such as a differential transformer 53 is used, it is necessary to apply the deformation amount for skin removal by at least 100 people. Unable to measure.

半導体プロセス等において作られる薄膜は、その厚さが
数百人程度の薄い膜が多く、このような薄膜の硬度に係
る物理定数を測定するために、100Å以上の変形を生
じさせることはその膜の弾性限界を越える応力を加える
ことになり、膜に対して大きなダメージを与えてしまい
、その測定値を基に正確な評価をすることは困難である
Thin films made in semiconductor processes, etc. are often thin films with a thickness of several hundred layers, and in order to measure the physical constants related to the hardness of such thin films, deformation of 100 Å or more is difficult to detect. This applies a stress that exceeds the elastic limit of the membrane, causing significant damage to the membrane, and it is difficult to make accurate evaluations based on the measured values.

本発明の目的は、薄膜等のサンプルにその弾性限界以内
の極微小な応力を加えるだけで、その硬度に係る情報を
得ることができ、もってサンプルにダメージを与えるこ
となく再現性のよい正確な硬度評価をすることのできる
、極微小硬度計を提供することにある。
The purpose of the present invention is to obtain information on the hardness of a sample such as a thin film by simply applying a microscopic stress within its elastic limit, thereby providing accurate and reproducible information without damaging the sample. An object of the present invention is to provide a microhardness meter that can evaluate hardness.

〈問題点を解決するための手段〉 上記の目的を達成するため、本発明の極微小硬度計は、
実施例に対応する第1図に示すように、圧子1と、その
圧子1を被測定物S表面に所定の力で押圧する負荷機構
2と、圧子1による押圧部近傍にレーザ光を照射するた
めのレーザ3と、そのレーザ光の反射散乱光のラマンス
ペクトルを検出する検出手段(例えば集光レンズ4、分
光器5、光電子増倍管6)を備え、検出されたラマンス
ペクトルの圧子1押圧による変化量と圧子1の押圧力か
ら被測定物Sの微小領域の硬度に係る情報を得るよう構
成したことによって、特徴づけられる。
<Means for solving the problems> In order to achieve the above object, the microhardness tester of the present invention has the following features:
As shown in FIG. 1 corresponding to the embodiment, an indenter 1, a load mechanism 2 that presses the indenter 1 against the surface of the object to be measured S with a predetermined force, and a laser beam irradiated near the pressed part by the indenter 1. It is equipped with a laser 3 and a detection means (for example, a condensing lens 4, a spectrometer 5, a photomultiplier tube 6) for detecting the Raman spectrum of the reflected and scattered light of the laser beam, and a detection means for detecting the Raman spectrum of the detected Raman spectrum by pressing the indenter 1. It is characterized by being configured to obtain information regarding the hardness of a minute region of the object to be measured S from the amount of change due to the amount of change and the pressing force of the indenter 1.

〈作用〉 第2図に示すように、被測定物Sの表面に圧子1の先端
が押圧されると、被測定物Sはその近傍において変形す
る。この変形の仕方は、例えば押圧力を被測定物Sの弾
性限界内で一定にした場合、被測定物Sの硬度に応じて
異なる。被測定物Sの変形の仕方が異なることは、その
内部応力の分布も異なるということになる。
<Operation> As shown in FIG. 2, when the tip of the indenter 1 is pressed against the surface of the object to be measured S, the object to be measured S is deformed in the vicinity thereof. The manner of this deformation differs depending on the hardness of the object to be measured S, for example, when the pressing force is kept constant within the elastic limit of the object to be measured. The fact that the object to be measured S is deformed differently means that its internal stress distribution is also different.

一方、被測定物Sの表面にレーザ光を照射して全反射さ
せると、被測定物Sの内部へわずかなレーザ光の浸み出
しが生じる。従って、この反射光の中には、被測定物S
の結晶状態の情報となり得るラマン散乱光が含まれる。
On the other hand, when the surface of the object to be measured S is irradiated with laser light and is totally reflected, a small amount of laser light seeps into the inside of the object to be measured S. Therefore, this reflected light includes the object to be measured S.
This includes Raman scattered light that can provide information about the crystal state of

ラマン散乱光のスペクトルは、被測定物Sに存在する内
部応力に相関し、従って、圧子1を所定の力で押圧する
前後のラマンスペクトルの変化量を検出すれば、被測定
物Sの硬度に係る情報が得られる。
The spectrum of Raman scattered light correlates with the internal stress existing in the object S to be measured. Therefore, by detecting the amount of change in the Raman spectrum before and after pressing the indenter 1 with a predetermined force, the hardness of the object S to be measured can be determined. Such information can be obtained.

〈実施例〉 本発明の実施例を、以下、図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第1図は本発明実施例の構成図である。FIG. 1 is a block diagram of an embodiment of the present invention.

先端が所定の微小曲率を有する球面形に形成された圧子
1は、例えば電磁力発生装置等をアクチュエータとする
負荷機構2に装着され、評価対称となる酸化膜等の被測
定物Sの表面に対して垂直に押圧される。
An indenter 1 whose tip is formed into a spherical shape with a predetermined minute curvature is attached to a load mechanism 2 whose actuator is an electromagnetic force generator, for example, and is applied to the surface of an object to be measured S such as an oxide film to be evaluated. It is pressed perpendicularly to the object.

被測定物Sの表面の圧子1押圧部近傍には、レーザ3か
らのレーザビームがスポット状に集光される。このレー
ザ3としては、比較的パワーが強く、集光の容易なA 
r+レーザ等が適している。
A laser beam from the laser 3 is focused into a spot near the pressing portion of the indenter 1 on the surface of the object S to be measured. The laser 3 is A, which has relatively strong power and is easy to focus.
r+ laser etc. are suitable.

レーザ光の被測定物Sによる反射散乱光は集光レンズ4
を介して分光器5に導かれ、光電子増倍管6によってそ
の各波長域での強度が検出される。
The reflected and scattered light of the laser beam by the object to be measured S is collected by the condenser lens 4.
The light is guided to a spectrometer 5 via a photomultiplier tube 6, and the intensity in each wavelength range is detected by a photomultiplier tube 6.

その検出信号は、増幅器やA−D変換器を主体とするイ
ンターフェース7を介してコンピュータ已に採り込まれ
るよう構成されている。
The detection signal is configured to be input into the computer via an interface 7 mainly consisting of an amplifier and an AD converter.

コンピュータ8は、採り込んだスペクトルデータのうち
、後述するラマンスペクトルのみを記憶し、圧子1の押
圧前後のラマンスペクトルの変化量を求める。コンピュ
ータ8はまた、上述した負荷機構2に対し、定められた
押圧力で圧子1が被測定物Sに押し付けられるよう、イ
ンターフェース9を介して圧力制御指令を供給するよう
構成されている。
Of the acquired spectrum data, the computer 8 stores only the Raman spectrum, which will be described later, and calculates the amount of change in the Raman spectrum before and after the indenter 1 is pressed. The computer 8 is also configured to supply a pressure control command to the load mechanism 2 described above via the interface 9 so that the indenter 1 is pressed against the object S with a predetermined pressing force.

次に作用を述べる。Next, we will discuss the effect.

第2図は圧子1を押し付けたときの被測定物Sの弾性変
形の様子を模式的に示す図である。圧子1を被測定物S
にその弾性限界内の力で押し付けると、その近傍で被測
定物Sは弾性変形するが、その変形の仕方は、圧子1の
先端形状および押圧力が一定であれば被測定物Sの硬度
によって異なり、従ってその内部における応力の分布も
硬度に応じたものとなる。
FIG. 2 is a diagram schematically showing how the object to be measured S undergoes elastic deformation when the indenter 1 is pressed against it. Place the indenter 1 on the object to be measured S
When pressed with a force within its elastic limit, the object to be measured S is elastically deformed in the vicinity, but the manner of deformation depends on the hardness of the object S as long as the shape of the tip of the indenter 1 and the pressing force are constant. Therefore, the stress distribution inside it also depends on the hardness.

レーザ光を被測定物Sの表面で全反射するよう照射する
と、レーザ光は被測定物Sの内部のわずかな領域にまで
浸み出し、従って、その反射光内にはラマン散乱光が含
まれる。例えば半導体分野において評価対称となる酸化
膜や窒化膜等は、結晶性のよいものが多く、第3図に例
示するように特徴的なラマンスペクトルを示すことが知
られている。このラマンスペクトルは、結晶に応力を作
用させたとき、その応力により歪みが結晶方位に沿った
方向に発生する場合、第3図に示すように、ピーク波長
のシフトとなって現れる。歪が等方的に発生する場合に
は、スペクトルピークの半値幅の広がりになって現れる
。このようなうマンスペクトルの変化量は、第4図に示
すように結晶に作用している応力とよい相関関係を示す
When the laser beam is irradiated so as to be totally reflected on the surface of the object to be measured S, the laser beam penetrates into a small area inside the object to be measured S, and therefore, the reflected light includes Raman scattered light. . For example, it is known that many of the oxide films, nitride films, etc. that are evaluated in the semiconductor field have good crystallinity and exhibit characteristic Raman spectra as illustrated in FIG. In this Raman spectrum, when stress is applied to the crystal and the stress causes strain in the direction along the crystal orientation, the peak wavelength appears as a shift as shown in FIG. 3. When distortion occurs isotropically, it appears as a broadening of the half-width of the spectral peak. The amount of change in the Uman spectrum shows a good correlation with the stress acting on the crystal, as shown in FIG.

以上のことから、圧子1の押圧中心に対してその近傍に
一定の位置関係で、かつ、一定のスポットでレーザ光を
照射し、その反射光の圧子1の押圧前後におけるラマン
スペクトルの変化量を求めれば、その量は被測定物Sの
硬度に相関する量となる。すなわち、圧子1による押圧
部近傍の微小領域、微小深さの被測定物硬度が得られる
From the above, we irradiate laser light at a fixed spot in a fixed positional relationship and in the vicinity of the pressing center of the indenter 1, and calculate the amount of change in the Raman spectrum of the reflected light before and after pressing the indenter 1. Once determined, the amount will be correlated to the hardness of the object S to be measured. In other words, the hardness of the object to be measured in a minute area and a minute depth near the part pressed by the indenter 1 can be obtained.

なお、以上のような測定を被測定物Sの表面各部におい
て行い、マツピングすることにより被測定物Sの2次元
硬度分布が得られる。
Note that the two-dimensional hardness distribution of the object to be measured S can be obtained by performing the above-mentioned measurements on each part of the surface of the object to be measured and mapping them.

〈発明の効果〉 以上説明したように、本発明によれば、一定条件下で圧
子を被測定物に押圧することにより生ずる変形に伴う被
測定物の内部応力の変化が、被測定物の硬度に相関する
ことに着目し、圧子押圧前後の内部応力の変化をラマン
スペクトルの変化として捕捉することによって、被測定
物の硬度情叩を得るよう構成したから、従来の差動トラ
ンス等を用いて被測定物の変形量を測定する方式に比し
て、極めて微小な変形を与えることによって硬度情報が
得られる。すなわち、被測定物の弾性限界内での応力を
作用させることによって硬度情報が得られることになり
、被測定物にダメージを与えることなく、再現性のよい
測定が可能となる。また、本発明によれば、被測定物の
前処理が特に必要でなく、かつ、大気中での測定も可能
であり、測定の作業性に関しても特に問題はなく、その
実施が容易である。
<Effects of the Invention> As explained above, according to the present invention, the change in the internal stress of the object to be measured due to the deformation caused by pressing the indenter against the object to be measured under certain conditions changes the hardness of the object to be measured. By focusing on the correlation between Compared to methods that measure the amount of deformation of the object to be measured, hardness information can be obtained by applying extremely minute deformation. That is, hardness information can be obtained by applying stress within the elastic limit of the object to be measured, making it possible to measure with good reproducibility without damaging the object. Further, according to the present invention, there is no particular need for pretreatment of the object to be measured, and measurement can be performed in the atmosphere, and there are no particular problems with the workability of measurement, and it is easy to carry out.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の構成図、 第2図はその圧子1を押し付けたときの被測定物Sの弾
性変形の様子を模式的に示す図、第3図はレーザ光の反
射光のスペクトルの説明図、 第4図は被測定物Sの内部応力とラマンスペクトル変化
量の関係を示すグラフである。 第5図は従来の微小硬度計の構造説明図である。 1・・・圧子 2・・・負荷機構 3・・・レーザ 4・・・集光レンズ 5・・・分光器 6・・・光電子増倍管 特許出願人    株式会社島津製作所代 理 人  
  弁理士 西1)新 築2図 レーし−貴含L
Fig. 1 is a configuration diagram of an embodiment of the present invention, Fig. 2 is a diagram schematically showing the state of elastic deformation of the object S to be measured when the indenter 1 is pressed, and Fig. 3 is a diagram showing the state of elastic deformation of the object S when the indenter 1 is pressed. 4 is a graph showing the relationship between the internal stress of the object to be measured S and the amount of change in the Raman spectrum. FIG. 5 is a structural explanatory diagram of a conventional microhardness meter. 1...Indenter 2...Loading mechanism 3...Laser 4...Condensing lens 5...Spectrometer 6...Photomultiplier tube Patent applicant Representative of Shimadzu Corporation
Patent Attorney Nishi 1) New construction 2 drawings - Kikan L

Claims (1)

【特許請求の範囲】[Claims] 圧子と、その圧子を被測物表面に所定の力で押圧する負
荷機構と、上記圧子による押圧部近傍にレーザ光を照射
するためのレーザと、そのレーザ光の反射散乱光のラマ
ンスペクトルを検出する検出手段を備え、検出されたラ
マンスペクトルの上記圧子押圧による変化量と上記圧子
の押圧力から被測定物の微小領域の硬度に係る情報を得
るよう構成されてなる、極微小硬度計。
An indenter, a load mechanism that presses the indenter against the surface of the object to be measured with a predetermined force, a laser that irradiates a laser beam near the area pressed by the indenter, and detects the Raman spectrum of the reflected and scattered light of the laser beam. What is claimed is: 1. A microhardness tester, comprising: a detecting means for detecting the indentation, and is configured to obtain information regarding the hardness of a microscopic region of the object to be measured from the amount of change in the detected Raman spectrum due to the pressure of the indenter and the pressure of the indenter.
JP1415088A 1988-01-25 1988-01-25 Extremely small hardness meter Pending JPH01189544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1415088A JPH01189544A (en) 1988-01-25 1988-01-25 Extremely small hardness meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1415088A JPH01189544A (en) 1988-01-25 1988-01-25 Extremely small hardness meter

Publications (1)

Publication Number Publication Date
JPH01189544A true JPH01189544A (en) 1989-07-28

Family

ID=11853119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1415088A Pending JPH01189544A (en) 1988-01-25 1988-01-25 Extremely small hardness meter

Country Status (1)

Country Link
JP (1) JPH01189544A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996010737A1 (en) * 1994-09-30 1996-04-11 Renishaw Plc Methods and apparatus for indentation, scratch or tribological testing
WO1997003346A1 (en) * 1995-07-13 1997-01-30 Renishaw Plc Strain and/or stress sensitive devices
KR100836199B1 (en) * 2006-10-02 2008-06-09 한양대학교 산학협력단 A hardness measuring apparatus
WO2013115146A1 (en) * 2012-02-03 2013-08-08 日東電工株式会社 Sample fixing member for nano indenter
EP4273533A1 (en) * 2022-05-06 2023-11-08 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Strain measurement apparatus and method for measuring mechanical strain

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996010737A1 (en) * 1994-09-30 1996-04-11 Renishaw Plc Methods and apparatus for indentation, scratch or tribological testing
WO1997003346A1 (en) * 1995-07-13 1997-01-30 Renishaw Plc Strain and/or stress sensitive devices
KR100836199B1 (en) * 2006-10-02 2008-06-09 한양대학교 산학협력단 A hardness measuring apparatus
WO2013115146A1 (en) * 2012-02-03 2013-08-08 日東電工株式会社 Sample fixing member for nano indenter
CN104094097A (en) * 2012-02-03 2014-10-08 日东电工株式会社 Sample fixing member for nano indenter
EP4273533A1 (en) * 2022-05-06 2023-11-08 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Strain measurement apparatus and method for measuring mechanical strain
WO2023213647A1 (en) * 2022-05-06 2023-11-09 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V. Strain measurement apparatus and method for measuring mechanical strain

Similar Documents

Publication Publication Date Title
US4551030A (en) Procedure and means for examining the surface quality of materials in solid state
US5080484A (en) Method of measuring the contact angle of wetting liquid on a solid surface
EP0162681B1 (en) Method and apparatus for evaluating surface conditions of a sample
US8622612B2 (en) Method and apparatus for determining the thermal expansion of a material
US5965896A (en) Apparatus and method for scratch wear testing of thin films
EP0443322B1 (en) Method and apparatus for measuring the thickness of a coating
US10261305B2 (en) Three-dimensional focusing device and method for a microscope
JPH01189544A (en) Extremely small hardness meter
EP1999460B1 (en) Method and sensor for determining the hydrocarbon dew point in a gas
WO2023185950A1 (en) Nondestructive in-situ high-complexity structure testing device and method based on raman analysis
US5092676A (en) Method and system for evaluating gloss and brightness character of coated paint film
GB2379011A (en) Apparatus for measuring the thickness of materials using the focal length of a lensed fibre
EP0721101A2 (en) Method and apparatus for identifying and characterizing a material
Quan et al. Inspection of micro-cracks on solderball surface using a laser scattering method
JPH0665963B2 (en) Fine groove depth measuring device
US5141320A (en) Method and system for evaluating gloss and brightness character of coated paint film
EP3918275B1 (en) Method of determining the strength limit and the degree of cracking of a material using an optical interferometry method
Itoh et al. Reliable evaluation of the lateral resolution of a confocal Raman microscope by using the tungsten-dot array certified reference material
US6476906B1 (en) Apparatus for measuring stress in a thin film and method of manufacturing a probe used therefor
JP2957482B2 (en) Surface analysis method and device
EP0435829B1 (en) Arrangement for the analysis of thermal waves in layered systems
RU2727762C1 (en) Method to determine thickness of thin films
JP2011064536A (en) Method, system and program for sample analysis
KR101878909B1 (en) Simultaneous measurement method and system for raman signal and phase change
JPS6088349A (en) Hardness tester