JPH01187403A - Glass edge detecting device - Google Patents

Glass edge detecting device

Info

Publication number
JPH01187403A
JPH01187403A JP1083788A JP1083788A JPH01187403A JP H01187403 A JPH01187403 A JP H01187403A JP 1083788 A JP1083788 A JP 1083788A JP 1083788 A JP1083788 A JP 1083788A JP H01187403 A JPH01187403 A JP H01187403A
Authority
JP
Japan
Prior art keywords
point
glass
displacement gauge
laser
seaming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1083788A
Other languages
Japanese (ja)
Other versions
JPH0711407B2 (en
Inventor
Shigeto Shimizu
重人 清水
Yasukichi Ogawa
小川 保吉
Tamotsu Saito
保 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP1083788A priority Critical patent/JPH0711407B2/en
Publication of JPH01187403A publication Critical patent/JPH01187403A/en
Publication of JPH0711407B2 publication Critical patent/JPH0711407B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To easily measure an edge part without contacting by projecting laser light on the seaming of plate glass and detecting its reflected light. CONSTITUTION:Three axes X, Y, and Z are set having their reference point, i.e. origin at an optional point of, for example, a glass inspection pattern 2 in a three-dimensional space, and the quantity of movement of a laser displacement gauge 5 is counted according to the point as a reference. The curved plate glass 1 in a three-dimensional curved shape which has the polished seaming part formed at its peripheral part is mounted on the inspection pattern 2 and the laser displacement gauge 5 is provided to the rotatable hand 3c of a robot 3 having >=5 axes. The laser light from the movable laser projector 5a of this displacement gauge 5 is projected on the seaming part and its reflected light is photodetected by the photodetection sensor 5b of the displacement gauge 5. Then when object glass 1 is displaced, a spot on the sensor 5b moves and its quantity of the displacement is converted by the displacement gauge 5 into an electric signal, which is outputted. Further, a position detector 6 detects the position of the displacement gauge 5 and stores driving information represented based upon the three-dimensional coordinate system in a computer 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は3次元曲面形状を有する自動車用窓ガラスなど
その周縁部がシーミングされた彎曲板ガラスのエツジを
検出する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for detecting the edge of a curved sheet glass whose peripheral edge is seamed, such as an automobile window glass having a three-dimensional curved shape.

〔従来の技術〕[Conventional technology]

従来、このような装置としては、時開昭和55−897
08号などに示されるように、周縁部輪郭に沿って配置
された複数のプローブによって測定するもの、また特開
昭58−198710号で示されるように、移動自在な
アームの先端に位置計測センサーを備えたもので、基準
型に基づき測定の位置・順序を学習記憶させ、その後記
憶内容を反復再現することにより測定するものが知られ
ている。
Conventionally, as such a device, there was a
As shown in Japanese Patent Application Laid-Open No. 08-08, measurement is performed using multiple probes arranged along the peripheral edge contour, and as shown in Japanese Patent Application Laid-open No. 1987-1987, a position measurement sensor is installed at the tip of a movable arm. It is known that the device is equipped with a standard model, learns and memorizes the position and order of measurements based on a reference pattern, and then repeatedly reproduces the memorized contents to perform measurements.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、いずれもセンサーが接触タイプであり、
被対象物を傷つけ、またセンサー自身が摩耗することは
避けられないものであった。
However, both sensors are contact type,
It was inevitable that the object would be damaged and the sensor itself would wear out.

本発明はこのような点に鑑みてなされたもので非接触に
よりエツジ部分を簡易に測定する装置を提供することを
目的とする。
The present invention has been made in view of these points, and an object of the present invention is to provide a device for easily measuring edge portions without contact.

c問題点を解決するための手段〕 本発明は、自動車用窓ガラスなどとして使用されるシー
ミングされた彎曲板ガラスの検出装置であって、該シー
ミング部にレーザ光を投射する移動自在なレーザ投光器
と、シーミング部で反射された光を受光する受光センサ
と、前記レーザ投光器の位置を検出する位置検出器とを
具備することを特徴とする。
Means for Solving Problem c] The present invention is a detection device for a seamed curved plate glass used as an automobile window glass, which comprises a movable laser projector that projects a laser beam onto the seaming portion; , comprising: a light receiving sensor that receives light reflected by the seaming portion; and a position detector that detects the position of the laser projector.

〔実施例〕〔Example〕

以下、図面を参照しながら本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明の装置全体を示す概略構成図、第2図は
ガラス検査型に基づいて設定された3次元座標系、第3
図〜第5図はいずれも設計上の仮想曲面(ガラス検査型
)と彎曲板ガラスの関係と測定方法を示す図で、第3図
の(a)は平面図、(b)は(a)の内部拡大図、第4
図は第3図A−B線における一部断面図、第5図は第3
図においてAからBの方向を見た一部立面図である。
FIG. 1 is a schematic configuration diagram showing the entire apparatus of the present invention, FIG. 2 is a three-dimensional coordinate system set based on the glass inspection mold, and FIG.
Figures 5 to 5 are diagrams showing the relationship between the designed virtual curved surface (glass inspection type) and curved plate glass, and the measurement method. Enlarged internal view, No. 4
The figure is a partial sectional view taken along line A-B in Figure 3, and Figure 5 is a partial cross-sectional view taken along line A-B in Figure 3.
It is a partial elevational view seen from direction A to B in the figure.

第6図は位置−レーザ変位計出力特性図、第7図はレー
ザ変位針の概略構成図である。
FIG. 6 is a position-laser displacement meter output characteristic diagram, and FIG. 7 is a schematic configuration diagram of the laser displacement needle.

図面において、1はガラス検査型2に載置された3次元
曲面形状を有する彎曲板ガラスで周縁部分には第4図に
示すように研磨されたシーミング部1aが形成されてい
る。
In the drawings, reference numeral 1 denotes a curved plate glass having a three-dimensional curved shape placed on a glass inspection mold 2, and a polished seaming portion 1a is formed at the peripheral edge portion as shown in FIG.

3は5軸以上の軸を有するロボットで3次元空間におい
て移動自在なアーム3aと、その先端に軸重身回動自在
に取り付けされたアクチュエータ3bと、アクチュエー
タ3bに回動自在に取り付けられたハンド30などを具
備し、ロボットコントローラ4によって駆動される。
3 is a robot having five or more axes, and includes an arm 3a that can move freely in three-dimensional space, an actuator 3b that is rotatably attached to the tip of the arm 3a, and a hand that is rotatably attached to the actuator 3b. 30 and the like, and is driven by the robot controller 4.

5は第7図に示すようにレーザ投光器5aとイメージセ
ンサ−などの受光センサー5b等を一体的に組み込んだ
レーザ変位計で、対象物が変位すると受光センサー上の
スポットが移動するのでこのスポットの移動量を電気信
号に変換し出力する距離センサである。
5 is a laser displacement meter that integrally incorporates a laser projector 5a and a light receiving sensor 5b such as an image sensor, as shown in Fig. 7.When the object is displaced, the spot on the light receiving sensor moves, so the spot of this spot is It is a distance sensor that converts the amount of movement into an electrical signal and outputs it.

6はレーザ変位針の位置を検出する位置検出器でロボッ
トの5軸移動をそれぞれのパルス発生器、パルスカウン
ターなどにより検出するものである。
Reference numeral 6 is a position detector for detecting the position of the laser displacement needle, which detects the movement of the robot in five axes using respective pulse generators, pulse counters, etc.

このような装置を作動させるために3次元空間の任意の
点を基準点すなわち原点として水平面にY軸およびY軸
、垂直軸にY軸からなる3次元座標系を設定しこれを基
に表わした駆動情報をコンピュータ7に記憶させる。
In order to operate such a device, we set an arbitrary point in three-dimensional space as a reference point, that is, the origin, and set up a three-dimensional coordinate system consisting of the Y-axis and Y-axis on the horizontal plane and the Y-axis on the vertical axis, and expressed based on this. The drive information is stored in the computer 7.

〔作用〕[Effect]

3次元空間の任意の点、例えば第2図におけるガラス検
査型の任意の点Poを基準点、すなわち原点として水平
面にY軸およびY軸、垂直軸にY軸を設定し、この点を
基準にしてレーザ変位計5の移動量をカウントすること
とし、自動車メーカー等から指示される板ガラスの寸法
、形状すなわち設計上の曲面(ガラス検査型)から得ら
れる仮想測定点の位置P (X、Y、Z”)と仮想測定
点Pにおけるレーザ変位針の駆動方向としての方向ベク
トルU(u、v、w)、仮想測定点きPに対するセンサ
ーの向きとしての法線ベクトルI(i、j、、、k)な
どの情報を基にレーザ変位計5を駆動する。
Set an arbitrary point in the three-dimensional space, for example, an arbitrary point Po of the glass inspection mold in Fig. 2, as a reference point, that is, the origin, and set the Y-axis and Y-axis on the horizontal plane and the Y-axis on the vertical axis, and use this point as the reference point. The amount of movement of the laser displacement meter 5 is counted based on the position P (X, Y, Z”), the direction vector U (u, v, w) as the driving direction of the laser displacement needle at the virtual measurement point P, and the normal vector I (i, j, , , The laser displacement meter 5 is driven based on information such as k).

すなわち、仮想測定点p (xp 1Yp−Zp)の近
傍と反対側の近傍の位置をそれぞれA (XA。
That is, the positions near and on the opposite side of the virtual measurement point p (xp 1Yp-Zp) are respectively A (XA).

YAl ZA)、B (XIllYB、ZB)とし、A
B間の距離を例えば10nとすると、コンピュータ7に
よりAはXA =XP +10/2X (−1)Xu、
YA =YP +10/2X (−1)Xv、zA=Z
r +10/2×(1)XwXBはX1l=XP+10
/2X u、yB  =YP +10/2X vX Z
B  = Zp十10/2 X Wとして演算される。
YAl ZA), B (XIllYB, ZB), and A
For example, if the distance between B is 10n, the computer 7 calculates that A is XA =XP +10/2X (-1)Xu,
YA = YP +10/2X (-1)Xv, zA=Z
r +10/2×(1)XwXB is X1l=XP+10
/2X u,yB =YP +10/2X vX Z
It is calculated as B=Zp110/2×W.

レーザ変位計5は、このようにして得られた位置情報A
、Bと、仮想測定点Pにおける法線ベクトルI(iXj
、k)によって、その照射スポットが第3図(a) (
b)に示すように測定点PのX−Y平面における法線A
−P−Bに沿ってAから測定点Pを通ってBまで直線補
間するように、しかも第4図に示すようにx−y−z空
間における点Pの接平面A−P−Bに平行であって、レ
ーザ変位針のビーム照射角度をX−Y−Z空間における
点Pの法線方向に保つように、しかも、変位針の角度を
、シーミング部に照射されて反射されたレーザ光が受光
センサに戻るように調整して(従って板ガラス面に照射
されて反射されたレーザ光は受光センサに戻らない)、
ロボットコントローラー4を介してロボット3により駆
動される。
The laser displacement meter 5 uses the position information A obtained in this way.
, B, and the normal vector I(iXj
, k), the irradiation spot is shown in Figure 3(a) (
As shown in b), the normal A of the measurement point P in the X-Y plane
- Linear interpolation from A through measurement point P to B along P-B, and parallel to the tangential plane A-P-B of point P in x-y-z space as shown in Figure 4. The beam irradiation angle of the laser displacement needle is kept in the normal direction of point P in the X-Y-Z space, and the angle of the displacement needle is adjusted so that the laser beam irradiated to the seaming part and reflected is Adjust so that the laser beam returns to the light receiving sensor (therefore, the laser beam irradiated and reflected on the plate glass surface does not return to the light receiving sensor),
It is driven by the robot 3 via the robot controller 4.

このとき、レーザ変位針の出力は第6図に示すようにA
点からQ点までは出力はなく、Q点からP、まで出力さ
れ、21点で再び出力がなくなる。
At this time, the output of the laser displacement needle is A as shown in Figure 6.
There is no output from point Q to point Q, output from point Q to point P, and no output again at point 21.

Q点がシーミングの始発点で、この点において得られた
出力(距離m’)と予めコンピュータ7に記憶された板
ガラスの厚さt、基準の長さmを基に、曲率Mをm−(
m’+t)  として、コンピュータ7により演算して
求める。
Point Q is the starting point of seaming, and the curvature M is calculated by m-(
m'+t) is calculated by the computer 7.

つづいてP、点が板ガラスエツジであり、このときのレ
ーザ変位針の位置を位置検出器で検出し、さらに仮想測
定点Pにおける位置座標(X、Y、Z)と法線ベクトル
U(u、v、w)によって板ガラスのエツジを仮想エツ
ジP2の位置座標としては勿論、仮想曲面との寸法の差
しを演算して求めることができる。
Next, point P is the edge of the plate glass, the position of the laser displacement needle at this time is detected by a position detector, and the position coordinates (X, Y, Z) and normal vector U (u, v, w), the edge of the plate glass can be determined not only as the positional coordinates of the virtual edge P2 but also by calculating the difference in dimension with the virtual curved surface.

以下、複数の点において同様の測定を行なうことによっ
て実際の彎曲板ガラスのエツジ部を3次元の位置座標と
して把握することができる。
Hereinafter, by performing similar measurements at a plurality of points, the actual edge portion of the curved plate glass can be grasped as three-dimensional position coordinates.

このような装置により、例えば30点の測定をしたとこ
ろ、約6分で測定でき、測定精度も±0.3 vanと
良好であった。
Using such a device, for example, 30 points could be measured in about 6 minutes, and the measurement accuracy was as good as ±0.3 van.

本発明は、第3図(b)の点線で示すように、仮想測定
点PのX−Y平面における法線方向から外れて駆動した
り、第5図の点線で示すように光学式距離センサーのビ
ーム照射角度がX−Y−2空間における仮想測定点Pの
法線から外れて照射されると、それぞれ実測されるべき
点、Q、P+ からQ / 、P 、 l に外れてし
まうので補正して再度測定しなければならない不都合を
防ぐとともに測定精度を向上させるものである。
As shown by the dotted line in FIG. 3(b), the present invention is capable of driving the virtual measuring point P away from the normal direction in the X-Y plane, and as shown by the dotted line in FIG. If the beam irradiation angle deviates from the normal line of the virtual measurement point P in the X-Y-2 space, the points to be measured, Q and P+, will deviate from the actual measurement points to Q/, P, and l, so correction is necessary. This prevents the inconvenience of having to perform the measurement again after the measurement has been completed, and improves the measurement accuracy.

また、レーザビームスポットを仮想の測定点Pの近傍か
ら反対側の近傍Bに走査することにより、仮想測定点P
と計測点P2がずれていても必ず測定することができる
In addition, by scanning the laser beam spot from the vicinity of the virtual measurement point P to the vicinity B on the opposite side, the virtual measurement point P
Even if the measurement point P2 is shifted, the measurement can be performed without fail.

なお、本実施例において仮想曲面を基に説明したが、ガ
ラス検査型はこの仮想曲面に倣って精密に製作されてい
るので、実質的に等しいと考えてよいので、図面上はガ
ラス検査型と表示している。
Although this example has been explained based on a virtual curved surface, the glass inspection mold is precisely manufactured in imitation of this virtual curved surface, so it can be considered that they are substantially the same, so the glass inspection mold and the glass inspection mold are shown in the drawings. it's shown.

3次元曲面形状を有する板ガラスのエツジ部分の測定は
光や超音波を被測定物に照射してその反射を検出する方
式では従来不可能とされていたが、自動車用窓ガラスな
どに用いられる板ガラスには破壊の始発点となる凹凸を
除去するため、あるいは安全上の理由によりエツジ部分
が研磨されシーミングが施されているが、このシーミン
グ部は微小な凹凸を有しており、比較的不透明であるこ
とに着目して、この部分にコヒーレントで、エネルギー
密度の高いレーザ光を照射すれば、反射光の拡散が小さ
く、また光の減衰量が小さいので受光センサで充分高精
度に検出することを可能にしたものである。
Previously, it was thought that it was impossible to measure the edges of plate glass, which has a three-dimensional curved shape, by irradiating light or ultrasonic waves onto the object to be measured and detecting the reflection. The edges are polished and seamed to remove irregularities that can be the starting point of fracture, or for safety reasons, but these seams have minute irregularities and are relatively opaque. If we focus on a certain thing and irradiate this area with a coherent, high-energy-density laser beam, the diffusion of the reflected light will be small, and the attenuation of the light will be small, making it possible for the light receiving sensor to detect it with sufficient precision. It made it possible.

以上、好適な実施例により説明したが、本発明はこれら
に限定されるものではなく種々の応用が可能である。
Although the present invention has been described above using preferred embodiments, the present invention is not limited to these embodiments and can be applied in various ways.

ロボットは5軸ロボツト以外にも5軸以上の軸を有する
ロボットであればよく、またロボットとして一体的に製
作されたものだけでなく各軸の駆動装置を別々に製作し
て組み合せたものでもよいのは勿論である。
In addition to a 5-axis robot, the robot may be any robot that has 5 or more axes, and it may not only be manufactured as an integrated robot, but also one in which drive devices for each axis are manufactured separately and combined. Of course.

レーザ投光器と受光センサは一体に組み込ん一9= だレーザ変位計で説明したが別個に設けて、レーザ投光
器の位置と方向などを検出するようにしてもよい。
Although the laser projector and the light-receiving sensor are integrated into one unit, as explained in the description of the laser displacement meter, they may be provided separately to detect the position and direction of the laser projector.

また、実施例では、3次元空間の任意の点としてガラス
検査型上の点P。を設定したが、P。
Further, in the embodiment, a point P on the glass inspection mold is an arbitrary point in three-dimensional space. was set, but P.

を基準点として測定点の座標が与えられていればP。は
どこでもよい。さらに必ずしも3次元の座標を設定する
必要はなく、ロボットに測定手順をティーチングして、
その移動量によってガラスエツジを検出することも可能
である。
If the coordinates of the measurement point are given with reference point as P. can be anywhere. Furthermore, it is not always necessary to set three-dimensional coordinates; instead, you can teach the robot the measurement procedure.
It is also possible to detect glass edges based on the amount of movement.

本実施例では、彎曲板ガラスのエツジ部分を検出するこ
とを説明したが超音波距離センサを併用して、エツジ部
以外の彎曲面までの距離を測定すれば任意の点における
彎曲度(だぶり)を検出することもできる。
In this example, the edge portion of a curved plate glass is detected. However, if an ultrasonic distance sensor is also used to measure the distance to a curved surface other than the edge portion, the degree of curvature (overlap) at any point can be detected. It can also be detected.

〔発明の効果〕〔Effect of the invention〕

本発明はレーザ光を板ガラスのシーミングに照射してそ
の反射光を検出することにより、従来、不可能とされた
彎曲板ガラスのエツジ部分の検出を非接触方式で可能に
してものである。
The present invention makes it possible to detect edge portions of curved glass plates in a non-contact manner, which was previously impossible, by irradiating the seaming of the glass plate with a laser beam and detecting the reflected light.

さらに、3次元座標系を設定し、この座標によりレーザ
変位針を駆動させると、迅速かつ高精度に検出すること
ができる。
Furthermore, if a three-dimensional coordinate system is set and the laser displacement needle is driven using this coordinate, rapid and highly accurate detection can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の装置全体を示す概略構成図、第2図は
ガラス検査型に基づいて設定された3次元座標系、第3
図〜第5図はいずれも設計上の仮想曲面(ガラス検査型
)と彎曲板ガラスの関係と測定方法を示す図で、第3図
の(a)は平面図、(b)は(a)の内部拡大図、第4
図は第3図A−B線における一部断面図、第5図は第3
図においてAからBの方向を見た一部立面図である。 第6図は位置−レーザ変位計出力特性図、第7図はレー
ザ変位針の概略構成図である。 1・・彎曲板ガラス、la・・シーミング部2・・ガラ
ス検査型、3・・ロボット 5・・レーザ変位針、6・・位置検出器特許出願人 セ
ントラル硝子株式会社
FIG. 1 is a schematic configuration diagram showing the entire apparatus of the present invention, FIG. 2 is a three-dimensional coordinate system set based on the glass inspection mold, and FIG.
Figures 5 to 5 are diagrams showing the relationship between the designed virtual curved surface (glass inspection type) and curved plate glass, and the measurement method. Enlarged internal view, No. 4
The figure is a partial sectional view taken along line A-B in Figure 3, and Figure 5 is a partial cross-sectional view taken along line A-B in Figure 3.
It is a partial elevational view seen from direction A to B in the figure. FIG. 6 is a position-laser displacement meter output characteristic diagram, and FIG. 7 is a schematic configuration diagram of the laser displacement needle. 1...Curved plate glass, LA...Seaming part 2...Glass inspection type, 3...Robot 5...Laser displacement needle, 6...Position detector Patent applicant Central Glass Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims]  シーミングされた彎曲板ガラスの検出装置であって、
該シーミング部にレーザ光を投射する移動自在なレーザ
投光器と、シーミング部で反射された光を受光する受光
センサと、前記レーザ投光器の位置を検出する位置検出
器とを具備することを特徴とするガラスエッジ検出装置
A detecting device for seamed curved plate glass, comprising:
It is characterized by comprising a movable laser projector that projects laser light onto the seaming section, a light receiving sensor that receives the light reflected by the seaming section, and a position detector that detects the position of the laser projector. Glass edge detection device.
JP1083788A 1988-01-22 1988-01-22 Glass edge detector Expired - Lifetime JPH0711407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1083788A JPH0711407B2 (en) 1988-01-22 1988-01-22 Glass edge detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1083788A JPH0711407B2 (en) 1988-01-22 1988-01-22 Glass edge detector

Publications (2)

Publication Number Publication Date
JPH01187403A true JPH01187403A (en) 1989-07-26
JPH0711407B2 JPH0711407B2 (en) 1995-02-08

Family

ID=11761464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1083788A Expired - Lifetime JPH0711407B2 (en) 1988-01-22 1988-01-22 Glass edge detector

Country Status (1)

Country Link
JP (1) JPH0711407B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682224A (en) * 1992-08-31 1994-03-22 Central Glass Co Ltd Inspector for transparent plate-shaped body
JP2004294247A (en) * 2003-03-26 2004-10-21 Jfe Steel Kk Section steel material cross-section size measuring instrument and its method
KR100694531B1 (en) * 2004-09-22 2007-03-13 주식회사 에이디피엔지니어링 Device for appearance inspection
JP2013050468A (en) * 2006-03-23 2013-03-14 Nissan Motor Co Ltd Work position detection system
CN108942501A (en) * 2018-08-31 2018-12-07 东莞市银泰玻璃有限公司 A kind of bend glass grinding device and its polishing process
CN109084682A (en) * 2018-09-25 2018-12-25 福耀集团(上海)汽车玻璃有限公司 Vehicle glass automatic detection device and method
WO2020187776A1 (en) * 2019-03-21 2020-09-24 Saint-Gobain Glass France Method for time synchronization between an automatic moving means and a contactless detection means arranged on said automatic moving means
CN114264261A (en) * 2021-12-24 2022-04-01 哈尔滨工业大学芜湖机器人产业技术研究院 Flexible electronic glass detection tool and detection method thereof
RU2776103C1 (en) * 2019-03-21 2022-07-13 Сэн-Гобэн Гласс Франс Method for time synchronization between an automatic means of movement and a contactless means of detection located on the specified automatic means of movement

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682224A (en) * 1992-08-31 1994-03-22 Central Glass Co Ltd Inspector for transparent plate-shaped body
JP2004294247A (en) * 2003-03-26 2004-10-21 Jfe Steel Kk Section steel material cross-section size measuring instrument and its method
KR100694531B1 (en) * 2004-09-22 2007-03-13 주식회사 에이디피엔지니어링 Device for appearance inspection
JP2013050468A (en) * 2006-03-23 2013-03-14 Nissan Motor Co Ltd Work position detection system
CN108942501A (en) * 2018-08-31 2018-12-07 东莞市银泰玻璃有限公司 A kind of bend glass grinding device and its polishing process
CN109084682A (en) * 2018-09-25 2018-12-25 福耀集团(上海)汽车玻璃有限公司 Vehicle glass automatic detection device and method
WO2020187776A1 (en) * 2019-03-21 2020-09-24 Saint-Gobain Glass France Method for time synchronization between an automatic moving means and a contactless detection means arranged on said automatic moving means
FR3094101A1 (en) * 2019-03-21 2020-09-25 Saint-Gobain Glass France Method of timing synchronization between an automatic displacement means and a non-contact sensing means disposed on said automatic displacement means
RU2776103C1 (en) * 2019-03-21 2022-07-13 Сэн-Гобэн Гласс Франс Method for time synchronization between an automatic means of movement and a contactless means of detection located on the specified automatic means of movement
US12036681B2 (en) 2019-03-21 2024-07-16 Saint-Gobain Glass France Method for temporal synchronization between an automatic movement means and a contactless detection means arranged on said automatic movement means
CN114264261A (en) * 2021-12-24 2022-04-01 哈尔滨工业大学芜湖机器人产业技术研究院 Flexible electronic glass detection tool and detection method thereof

Also Published As

Publication number Publication date
JPH0711407B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
Feng et al. Analysis of digitizing errors of a laser scanning system
JP3511450B2 (en) Position calibration method for optical measuring device
US6825937B1 (en) Device for the contactless three-dimensional measurement of bodies and method for determining a co-ordinate system for measuring point co-ordinates
JPH01187403A (en) Glass edge detecting device
US5760906A (en) Shape measurement apparatus and method
JP2786070B2 (en) Inspection method and apparatus for transparent plate
JP5535095B2 (en) Work size measuring device
JP3768822B2 (en) 3D measuring device
JP2746511B2 (en) Method for measuring orientation flat width of single crystal ingot
JPH0123041B2 (en)
JPH0621767B2 (en) Curved surface shape measuring method and apparatus
JP2004163346A (en) Noncontact three-dimensional shape measuring device
JPH0854234A (en) Three-dimensional coordinate position measuring method
JPH08178642A (en) Surveying device for railway
JPH09505883A (en) Equipment for measuring the dimensions of large objects
JP2682773B2 (en) Inspection device for transparent plate
JPH0271107A (en) Apparatus for measuring profile and wall thickness of end part of steel pipe
JPH08226815A (en) Surface condition distortion measuring device
JP2557023B2 (en) Method and device for detecting velocity vector of moving object using laser Doppler method
JP2010169634A (en) Working device
JP4230758B2 (en) Non-contact sectional shape measuring method and apparatus
JP2004028792A (en) Non-contact sectional shape measurement method and measurement device
JPH0288913A (en) Angle measuring instrument
JPH02134505A (en) Thickness measuring apparatus
JP2584630B2 (en) Configuration of optical stylus for side profile measurement