JP5535095B2 - Work size measuring device - Google Patents

Work size measuring device Download PDF

Info

Publication number
JP5535095B2
JP5535095B2 JP2011003975A JP2011003975A JP5535095B2 JP 5535095 B2 JP5535095 B2 JP 5535095B2 JP 2011003975 A JP2011003975 A JP 2011003975A JP 2011003975 A JP2011003975 A JP 2011003975A JP 5535095 B2 JP5535095 B2 JP 5535095B2
Authority
JP
Japan
Prior art keywords
workpiece
laser beam
dimension
vertex
line image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011003975A
Other languages
Japanese (ja)
Other versions
JP2012145441A (en
Inventor
正宏 冨松
陽二 小澤
久二和 伊熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
OHM Electric Co Ltd
Original Assignee
Daido Steel Co Ltd
OHM Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, OHM Electric Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2011003975A priority Critical patent/JP5535095B2/en
Publication of JP2012145441A publication Critical patent/JP2012145441A/en
Application granted granted Critical
Publication of JP5535095B2 publication Critical patent/JP5535095B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Description

本発明はワークの外形寸法を迅速かつ正確に測定できるワーク寸法測定装置に関する。   The present invention relates to a workpiece dimension measuring apparatus that can quickly and accurately measure an outer dimension of a workpiece.

ワーク外形を自動測定する測定装置としては特許文献1に示すようなものが知られている。これは三次元空間を移動可能としたZ軸スピンドルの先端にタッチセンサを設けたものである。また、特許文献2には、測定寸法方向へ移動可能に配設した一対のCCDカメラの光学的中心軸をワークの測定対象部の端に一致させることによってワークの平面的寸法を測定するものが示されている。さらに、特許文献3には、平行光線をワークに照射して、ワークの背後と側方にそれぞれ設置したCCD受光器の受光状況からワークの寸法を測定するものが示されている。   As a measuring device for automatically measuring the workpiece outer shape, a device as shown in Patent Document 1 is known. This is a touch sensor provided at the tip of a Z-axis spindle that can move in a three-dimensional space. Japanese Patent Application Laid-Open No. H10-228561 measures the planar dimension of a workpiece by matching the optical center axis of a pair of CCD cameras arranged so as to be movable in the measurement dimension direction with the end of the workpiece measurement target portion. It is shown. Further, Patent Document 3 discloses a technique in which a workpiece is irradiated with parallel light rays and the dimensions of the workpiece are measured from the light receiving conditions of CCD light receivers installed behind and on the sides of the workpiece.

特開平7−159151JP-A-7-159151 特開平7−294219JP-A-7-294219 特開2007−17202JP2007-17202

しかし、特許文献1に記載の装置では正確なワーク外形を得ようとするとタッチセンサをかなり多くのワーク外形点に順次接触させる必要があって測定に時間を要するという問題がある。また、特許文献2に記載の装置では帯状ワークの幅寸法等を測定することはできるが、円形ワーク等の直径を正確に測定することは困難である。さらに特許文献3に記載の装置ではワークの背後や側方に複数設けたCCD受光器の受光状況を判定するアルゴリズムが比較的複雑であるという問題がある。   However, the apparatus described in Patent Document 1 has a problem that it takes time for measurement because it is necessary to sequentially bring a touch sensor into contact with a large number of workpiece outline points in order to obtain an accurate workpiece outline. Moreover, although the apparatus of patent document 2 can measure the width dimension etc. of a strip | belt-shaped workpiece | work, it is difficult to measure the diameter of a circular workpiece | work etc. correctly. Furthermore, the apparatus described in Patent Document 3 has a problem that the algorithm for determining the light reception status of a plurality of CCD light receivers provided behind or on the side of the workpiece is relatively complicated.

そこで、本発明はこのような課題を解決するもので、円形ワーク等を含む種々のワークの形状を短時間で簡易かつ正確に測定できるワーク寸法測定装置を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves such a problem, and an object of the present invention is to provide a workpiece dimension measuring apparatus that can easily and accurately measure the shapes of various workpieces including circular workpieces in a short time.

上記目的を達成するために、本第1発明では、ワーク(W)を挟んで両側に位置させられ、ワーク(W)に向けて一定長の線状レーザ光(L)を照射する一対のレーザ光照射手段(4A,4B)と、これらレーザ光照射手段(4A,4B)を互いに対向する方向で離間ないし接近方向へ移動させる移動駆動手段(2A,2B)と、ワーク(W)に照射された線状レーザ光(L)がワーク(W)の表面に線像(M)を生じさせた際の移動距離に基づいてワーク(W)の外形寸法を算出する外形算出手段(6)とを備え、かつワーク(W)は円形であり、その外周面に生じる線像(M)は頂点(M1)を有する円弧状をなし、外形算出手段(6)は上記移動距離と頂点(M1)の位置に基づいてワーク(W)の外径を算出するものであるIn order to achieve the above object, according to the first aspect of the present invention, a pair of lasers that are positioned on both sides of a workpiece (W) and irradiate the workpiece (W) with a linear laser beam (L) of a certain length The light irradiation means (4A, 4B), the movement drive means (2A, 2B) for moving the laser light irradiation means (4A, 4B) in a direction opposite to each other or in the approaching direction, and the work (W) are irradiated. An outer shape calculating means (6) for calculating the outer dimension of the workpiece (W) based on the moving distance when the linear laser beam (L) generates a line image (M) on the surface of the workpiece (W). The workpiece (W) has a circular shape, and the line image (M) generated on the outer peripheral surface thereof has an arc shape having a vertex (M1), and the outer shape calculation means (6) has the moving distance and the vertex (M1). The outer diameter of the workpiece (W) is calculated based on the position .

本第1発明においては、レーザ光照射手段からワークに照射された線状レーザ光がワークの表面に線像を生じさせた際の移動距離に基づいてワークの外形寸法を算出しているから、ワークの形状を短時間で簡易かつ正確に測定できる。特に本第1発明ではレーザ光照射手段によって頂点を有する円弧状の線像を生じさせ、線像を生じさせた際の移動距離と頂点の位置より円形ワークの外径を短時間で簡易かつ正確に測定できる。 In the first invention, since the linear laser beam irradiated to the workpiece from the laser beam irradiation means calculates the outer dimension of the workpiece based on the moving distance when the line image is generated on the surface of the workpiece, The shape of the workpiece can be measured easily and accurately in a short time. In particular, in the first invention, an arc-shaped line image having a vertex is generated by the laser beam irradiation means, and the outer diameter of the circular workpiece is easily and accurately determined in a short time from the moving distance and the position of the vertex when the line image is generated. Can be measured.

本第発明では、移動駆動手段(2A,2B)によって互いに対向する方向で離間ないし接近方向へ移動させられる一対の接触式検知器(5A,5B)を設け、外形算出手段(6)は頂点(M1)間を結ぶ線上で接触式検知器(5A,5B)がワーク(W)の内周面に接触した際の移動距離よりワーク(W)の内径を算出するものである。 In the second aspect of the present invention, a pair of contact detectors (5A, 5B) that are moved away from each other or in an approaching direction by the movement drive means (2A, 2B) are provided, and the outer shape calculation means (6) is the apex. The inner diameter of the workpiece (W) is calculated from the moving distance when the contact detectors (5A, 5B) contact the inner peripheral surface of the workpiece (W) on the line connecting (M1).

本第発明においては、線像の頂点を結ぶ線上で接触式検知器がワークの内周面に接触した際の移動距離よりワークの内径を短時間で簡易かつ正確に測定できる。 In the second invention, the inner diameter of the workpiece can be measured easily and accurately in a short time from the moving distance when the contact detector contacts the inner peripheral surface of the workpiece on the line connecting the vertices of the line image.

上記カッコ内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   The reference numerals in the parentheses indicate the correspondence with specific means described in the embodiments described later.

以上のように、本発明のワーク寸法測定装置によれば、円形ワーク等を含む種々のワークの形状を短時間で簡易かつ正確に測定することができる。   As described above, according to the workpiece dimension measuring device of the present invention, the shapes of various workpieces including circular workpieces can be measured easily and accurately in a short time.

ワーク測定装置の全体側面図である。It is a whole side view of a workpiece measuring device. 外径測定時の円形ワークの平面図である。It is a top view of the circular workpiece | work at the time of an outer diameter measurement. 内径測定時の円形ワークの平面図である。It is a top view of the circular workpiece | work at the time of an internal diameter measurement. 他の円形ワークの側面図である。It is a side view of another circular workpiece. 他の円形ワークの側面図である。It is a side view of another circular workpiece. 他の円形ワークの側面図である。It is a side view of another circular workpiece.

図1にはワーク測定装置の側面図を示す。図1において、一定幅の長板状の基体1には下面の両側に長手方向へ延びる移動駆動手段としてのスライダ機構2A,2Bが設けられている。スライダ機構2A,2Bは本実施形態では基体1を長手方向へ等分する同一長としてあり、小間隙をおいて対向位置している。各スライダ機構2A,2Bには支持部材3A,3Bが垂設されており、これら支持部材3A,3Bにはそれぞれレーザ光照射手段たるレーザ変位計(例えば(株)キーエンス製LJ−G080)4A,4Bが互いに対向させて設けてある。   FIG. 1 shows a side view of the workpiece measuring apparatus. In FIG. 1, a long plate-like substrate 1 having a constant width is provided with slider mechanisms 2A and 2B as movement driving means extending in the longitudinal direction on both sides of the lower surface. In this embodiment, the slider mechanisms 2A and 2B have the same length that equally divides the base 1 in the longitudinal direction, and are opposed to each other with a small gap. Support members 3A and 3B are suspended from the slider mechanisms 2A and 2B, respectively, and a laser displacement meter (for example, LJ-G080 manufactured by Keyence Co., Ltd.) 4A serving as a laser beam irradiation unit is provided on each of the support members 3A and 3B. 4B are provided to face each other.

レーザ変位計4A,4Bは、一定長の線状レーザ光を出力するレーザ出力器41と、線状レーザ光の反射光を受光するCCD受光器42を備えている。また、各支持部材3A,3Bには側面に接触式検知器たるタッチプローブ5A,5Bが設けられて、その接触子51が下方へ突出している。CCD受光器42およびタッチプローブ5A,5Bの出力信号は外形算出手段としてのパソコン6に入力している。なお、上記スライド機構2A,2Bの駆動モータ21がパソコン6の出力信号で制御されるようになっている。   The laser displacement meters 4A and 4B include a laser output device 41 that outputs linear laser light having a predetermined length, and a CCD light receiver 42 that receives reflected light of the linear laser light. The support members 3A and 3B are provided with touch probes 5A and 5B, which are contact detectors, on the side surfaces, and the contacts 51 protrude downward. The output signals of the CCD light receiver 42 and the touch probes 5A and 5B are input to the personal computer 6 as the outer shape calculating means. The drive motor 21 of the slide mechanisms 2A and 2B is controlled by the output signal of the personal computer 6.

上記支持部材3A,3Bの移動位置はスライダ機構2A,2B内に設けたリニアスケール(図示略)によって検出されている。また、基体1は中央上面がロボットアームHに結合されており、ロボットアームHによって、支持台S上に載置されたワークWに対して予めティーチングされた所定の位置に位置決めされる。すなわち各支持部材3A,3Bが基体1の中央から遠い外端にあるときに、これら支持部材3A,3BがワークWの中心線から大きくずれない範囲で、ワークWを挟んでその両側に位置するように基体1が水平姿勢で位置決めされる。   The movement positions of the support members 3A and 3B are detected by a linear scale (not shown) provided in the slider mechanisms 2A and 2B. The base 1 has a central upper surface coupled to the robot arm H, and is positioned by the robot arm H at a predetermined position taught in advance with respect to the workpiece W placed on the support base S. That is, when the support members 3A and 3B are at the outer ends far from the center of the base 1, the support members 3A and 3B are positioned on both sides of the work W so as not to deviate greatly from the center line of the work W. Thus, the base body 1 is positioned in a horizontal posture.

ワークWが円形の場合は、左右の支持部材3A,3Bを互いに接近する方向へ移動させて、図1に示すように線状レーザ光LをワークWの外周面に照射する。支持部材3A,3Bは、レーザ出力器41の光軸とCCD受光器42の光軸が交差する点がワークWの外周面上になる距離までワークWの外周面に接近させられる。そして、図2に示すように、この時ワークWの外周面に生じた線像Mが各レーザ変位計4A,4BのCCD受光器42で捉えられる。線像Mは、ロボットアームHの軸心を中心に回転することで図2に示すようにワークWの外周面に沿った円弧となる。   When the workpiece W is circular, the left and right support members 3A and 3B are moved in directions approaching each other, and the linear laser beam L is irradiated onto the outer peripheral surface of the workpiece W as shown in FIG. The supporting members 3A and 3B are brought close to the outer peripheral surface of the workpiece W up to a distance where the point where the optical axis of the laser output device 41 and the optical axis of the CCD light receiver 42 intersect is on the outer peripheral surface of the workpiece W. As shown in FIG. 2, the line image M generated on the outer peripheral surface of the workpiece W at this time is captured by the CCD light receivers 42 of the laser displacement meters 4A and 4B. The line image M becomes an arc along the outer peripheral surface of the workpiece W as shown in FIG. 2 by rotating around the axis of the robot arm H.

この円弧は頂点M1を有するから、左右のCCD受光器42で捉えられた各線像Mの頂点M1を結ぶ線がワークWの中心Oを通る中心線Cであり、上記頂点M1を結ぶ線の長さがワークWの外径Dとなる。そこで、パソコン6内では、両支持部材3A,3Bが移動した際の、基体1の中央から両支持部材3A,3Bまでの距離Yl,Yr(図1)と、レーザ変位計4A,4Bの寸法X、および各レーザ変位計4A,4Bから頂点M1までの、基体1の長手方向に沿った距離Sl,Srから以下の計算式(1)で円形ワークの直径Dを算出する。なお、ワークWの周方向の複数個所で直径Dを算出する必要がある場合にはロボットアームHの軸心を中心に左右の支持部材3A,3Bを適当角度旋回させることによって行う。
D=Yl−(Sl+X)+Yr−(Sr+X)
=Yl+Yr−(Sl+Sr+2X) …(1)
Since this circular arc has a vertex M1, the line connecting the vertexes M1 of the line images M captured by the left and right CCD light receivers 42 is the center line C passing through the center O of the workpiece W, and the length of the line connecting the vertexes M1. Is the outer diameter D of the workpiece W. Therefore, in the personal computer 6, the distances Yl and Yr (FIG. 1) from the center of the base 1 to the support members 3A and 3B and the dimensions of the laser displacement meters 4A and 4B when the support members 3A and 3B move. The diameter D of the circular workpiece is calculated by X and the distances S1 and Sr along the longitudinal direction of the substrate 1 from the laser displacement meters 4A and 4B to the vertex M1 by the following calculation formula (1). When it is necessary to calculate the diameter D at a plurality of locations in the circumferential direction of the work W, the left and right support members 3A and 3B are turned by an appropriate angle around the axis of the robot arm H.
D = Yl− (Sl + X) + Yr− (Sr + X)
= Yl + Yr- (Sl + Sr + 2X) (1)

ワークWの内径Eを測定する必要がある場合には、各支持部材3A,3Bを基体1の中央に近い内端へ移動させた状態で、左右のタッチプローブ5A,5Bを結ぶ線が、上述の方法で検出されたワークWの中心線Cと一致するようにロボットアームHによって基体1を平行移動させる(図3)。そして、スライダ機構2A、2Bにより各支持部材3A,3Bを、タッチプローブ5A,5Bの接触子51がワークWの内周面に当接するまで互いに外方へ移動させ、この間の支持部材3A,3Bの移動距離からパソコン6内でワークWの内径Eを算出する。このようにタッチプローブ5A,5Bの接触子51をワークWの内周面に一回接触させるだけでその内径Eを迅速かつ正確に測定することができる。   When it is necessary to measure the inner diameter E of the workpiece W, the lines connecting the left and right touch probes 5A and 5B with the support members 3A and 3B moved to the inner ends close to the center of the base 1 are the above-mentioned lines. The base 1 is translated by the robot arm H so as to coincide with the center line C of the workpiece W detected by the method (FIG. 3). Then, the support members 3A and 3B are moved outward by the slider mechanisms 2A and 2B until the contacts 51 of the touch probes 5A and 5B come into contact with the inner peripheral surface of the work W, and the support members 3A and 3B in the meantime. The inner diameter E of the workpiece W is calculated in the personal computer 6 from the movement distance of. As described above, the inner diameter E can be measured quickly and accurately only by bringing the contact 51 of the touch probes 5A and 5B into contact with the inner peripheral surface of the workpiece W once.

以上のように、本実施形態のワーク寸法測定装置によれば、円形ワークWの外径Dと内径Eを短時間で簡易かつ正確に測定することができる。本実施形態のワーク寸法測定装置は、例えばスパッタリングターゲット(ターゲット材)のようなワークWの各部寸法を迅速かつ正確に測定することができる。例えば、図4に示す凹陥部のある円形ワークWの場合、ワークWの厚み寸法J,Kは基体1の姿勢を垂直にして、スライダ機構2A、2Bにより各支持部材3A,3B上のレーザ変位計4A,4Bを上下方向からワークWを挟むように接近させることによって測定する。なお、この場合の線像は頂点の無い直線状のものとなり、各CCD受光器42で得られた直線間の距離がワークWの厚み寸法J,Kとなる。外径D1,D2および内径Eは基体1の姿勢を水平に戻して上述の方法で迅速に測定できる。   As described above, according to the workpiece dimension measuring apparatus of the present embodiment, the outer diameter D and the inner diameter E of the circular workpiece W can be easily and accurately measured in a short time. The workpiece dimension measuring apparatus of this embodiment can measure each part dimension of the workpiece | work W like a sputtering target (target material) rapidly and correctly, for example. For example, in the case of the circular workpiece W having the recessed portion shown in FIG. 4, the thickness dimensions J and K of the workpiece W are set so that the posture of the base body 1 is vertical, and the laser displacements on the support members 3A and 3B by the slider mechanisms 2A and 2B. Measurement is performed by bringing the total 4A and 4B close to each other so as to sandwich the workpiece W from above and below. The line image in this case is a straight line having no apex, and the distance between the straight lines obtained by each CCD light receiver 42 is the thickness dimension J, K of the workpiece W. The outer diameters D1 and D2 and the inner diameter E can be quickly measured by returning the posture of the base body 1 to the horizontal and using the method described above.

また、図5に示すような段付きの円形ワークWについても、その厚みJ,K、外径D1,D2を上述の方法で迅速に測定でき、さらには図6に示すような円錐台形ワークWについてもその厚みJと外径Dを上述の方法で迅速に測定できる。   Further, for the stepped circular workpiece W as shown in FIG. 5, the thicknesses J and K and the outer diameters D1 and D2 can be quickly measured by the above-described method. Furthermore, the truncated cone workpiece W as shown in FIG. The thickness J and the outer diameter D can be quickly measured by the above method.

1…基体、2A,2B…スライダ機構(移動駆動手段)、4A,4B…レーザ変位計(レーザ光照射手段)、5A,5B‥タッチプローブ(接触式検知器)、6…パソコン(外形算出手段)、H‥ロボットアーム、L…線状レーザ光、M‥線像、M1…頂点、W…ワーク。 DESCRIPTION OF SYMBOLS 1 ... Base | substrate, 2A, 2B ... Slider mechanism (movement drive means), 4A, 4B ... Laser displacement meter (laser beam irradiation means), 5A, 5B ... Touch probe (contact type detector), 6 ... Personal computer (outline calculation means) ), H ... robot arm, L ... linear laser beam, M ... line image, M1 ... vertex, W ... work.

Claims (2)

ワークを挟んで両側に位置させられ、前記ワークに向けて一定長の線状レーザ光を照射する一対のレーザ光照射手段と、これらレーザ光照射手段を互いに対向する方向で離間ないし接近方向へ移動させる移動駆動手段と、前記ワークに照射された前記線状レーザ光が前記ワークの表面に線像を生じさせた際の移動距離に基づいて前記ワークの外形寸法を算出する外形算出手段とを備え、かつ前記ワークは円形であり、その外周面に生じる前記線像は頂点を有する円弧状をなし、前記外形算出手段は前記移動距離と前記頂点の位置に基づいて前記ワークの外径を算出するものであるワーク寸法測定装置。 A pair of laser beam irradiation means that are positioned on both sides of the workpiece and irradiate a linear laser beam of a certain length toward the workpiece, and these laser beam irradiation means are moved away from each other or in an approaching direction. Movement driving means for causing the workpiece, and outer shape calculation means for calculating an outer dimension of the workpiece based on a movement distance when the linear laser light applied to the workpiece generates a line image on the surface of the workpiece. The workpiece is circular, and the line image generated on the outer peripheral surface has an arc shape having a vertex, and the outer shape calculating means calculates the outer diameter of the workpiece based on the moving distance and the position of the vertex. A workpiece dimension measuring device. 前記移動駆動手段によって互いに対向する方向で離間ないし接近方向へ移動させられる一対の接触式検知器を設け、前記外形算出手段は前記頂点間を結ぶ線上で前記接触式検知器が前記ワークの内周面に接触した際の移動距離より前記ワークの内径を算出するものである請求項に記載のワーク寸法測定装置。 A pair of contact-type detectors that are moved away from each other in a direction facing each other by the movement driving means or an approaching direction are provided, and the outer shape calculation means is configured such that the contact-type detector is located on the inner circumference of the workpiece on a line connecting the vertices. The workpiece dimension measuring apparatus according to claim 1 , wherein an inner diameter of the workpiece is calculated from a moving distance when contacting the surface.
JP2011003975A 2011-01-12 2011-01-12 Work size measuring device Expired - Fee Related JP5535095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011003975A JP5535095B2 (en) 2011-01-12 2011-01-12 Work size measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011003975A JP5535095B2 (en) 2011-01-12 2011-01-12 Work size measuring device

Publications (2)

Publication Number Publication Date
JP2012145441A JP2012145441A (en) 2012-08-02
JP5535095B2 true JP5535095B2 (en) 2014-07-02

Family

ID=46789144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011003975A Expired - Fee Related JP5535095B2 (en) 2011-01-12 2011-01-12 Work size measuring device

Country Status (1)

Country Link
JP (1) JP5535095B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103776404B (en) * 2012-10-22 2016-03-30 昆山杰士德精密工业有限公司 Arc-shaped product detection and location tool
JP6285847B2 (en) * 2014-11-13 2018-02-28 三菱日立パワーシステムズ株式会社 Pipe circumference measurement system and pipe circumference measurement method
JP6953922B2 (en) 2017-09-06 2021-10-27 株式会社デンソー Vehicle driving support device and vehicle driving support method
CN108225249B (en) * 2018-04-09 2023-11-03 福建理工大学 Machining precision data measurement experiment table
CN117405060B (en) * 2023-12-14 2024-02-06 东北石油大学 Inner diameter measuring device for machining and detection method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0424011U (en) * 1990-06-20 1992-02-27
JPH05240621A (en) * 1992-02-27 1993-09-17 Sumitomo Metal Ind Ltd Instrument for measuring outer diameter and wall thickness of pipe
JP3435016B2 (en) * 1997-05-07 2003-08-11 株式会社ミツトヨ Inner / outer surface measuring machine
JP2000146564A (en) * 1998-11-04 2000-05-26 Kubota Corp Precision confirmation device for contact system measuring instrument of tube inner diameter
JP2007187634A (en) * 2006-01-16 2007-07-26 Moritex Corp Three-dimensional shape measuring device
JP5072635B2 (en) * 2008-02-12 2012-11-14 株式会社ニチリン Outside diameter measuring apparatus and outside diameter measuring method using the same
JP2010145340A (en) * 2008-12-22 2010-07-01 Ntn Corp Device and method for measuring size of large component

Also Published As

Publication number Publication date
JP2012145441A (en) 2012-08-02

Similar Documents

Publication Publication Date Title
Feng et al. Analysis of digitizing errors of a laser scanning system
RU2606901C2 (en) Method and device for pipe internal dimensions optical measurement
JP5535095B2 (en) Work size measuring device
US20170160077A1 (en) Method of inspecting an object with a vision probe
JP2007187593A (en) Inspection device for piping and inspection method for piping
CA2825250A1 (en) Calibration of laser light section sensors during simultaneous measurement
JP6488073B2 (en) Stage apparatus and charged particle beam apparatus using the same
JP5535031B2 (en) Measuring method of laser beam in optical axis direction, length measuring system, and inspection method of positioning accuracy
JP6370928B2 (en) Object geometric measurement apparatus and method
JP2010518385A (en) Measuring device and method for determining geometrical properties of contours
CN100549614C (en) Be used to detect the device of the locus of the balladeur train that can on coordinate axis, move
JP6480979B2 (en) Measuring device
JP2012220341A (en) Shape measuring device, shape measuring method, and program therefor
CN106338259B (en) The curvature measuring device and measuring method of bar
JP6163342B2 (en) Groove shape measuring method and apparatus
JP2006200970A (en) Laser ultrasonic flaw detection method and laser ultrasonic flaw detector
JP2010145340A (en) Device and method for measuring size of large component
Tong et al. A novel laser-based system for measuring internal thread parameters
JP2006234427A (en) Flatness measuring method and instrument
CN107438750B (en) Method and apparatus for measuring long profiles
JP6203502B2 (en) Structure and method for positioning a machining tool relative to a workpiece
JP2016024067A (en) Measurement method and measurement device
JP6457574B2 (en) Measuring device
JP2012145550A (en) Inter-target absolute distance measurement method of tracking laser interference measuring apparatus and tracking laser interference measuring apparatus
JP2009031170A (en) Surface shape calibrating device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140422

R150 Certificate of patent or registration of utility model

Ref document number: 5535095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees