JPH01186556A - Nonaqueous electrolyte secondary cell - Google Patents

Nonaqueous electrolyte secondary cell

Info

Publication number
JPH01186556A
JPH01186556A JP63004828A JP482888A JPH01186556A JP H01186556 A JPH01186556 A JP H01186556A JP 63004828 A JP63004828 A JP 63004828A JP 482888 A JP482888 A JP 482888A JP H01186556 A JPH01186556 A JP H01186556A
Authority
JP
Japan
Prior art keywords
aromatic
metal
alloy
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63004828A
Other languages
Japanese (ja)
Inventor
Takeshi Morimoto
剛 森本
Naoki Yoshida
直樹 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP63004828A priority Critical patent/JPH01186556A/en
Publication of JPH01186556A publication Critical patent/JPH01186556A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve the discharge capacity and charge and discharge cycle characteristic by using a mixture of a carbon material with the specific structure obtained by carbonizing a condensation polymer compound containing aromatic and nitrogen atoms and a metal or an alloy capable of electrochemically absorbing or desorbing an alkali metal for a negative electrode. CONSTITUTION:A mixture of a carbonized material having the hydrogen/carbon atomic ratio of 0.35 or below and the structure of the spacing of the (002) plane of carbon determined by the X-ray diffraction method of 3.37Angstrom or above and obtained by partially graphitizing a condensation polymer compound containing aromatic and nitrogen atoms and a metal or an alloy capable of electrochemically absorbing or desorbing an alkali metal is used for a negative electrode. For the mixing ratio of this mixture, the carbonized material exceeds 5wt.%, and the metal or alloy is less than 95wt.%. Aluminum or lithium-aluminum alloy is used for the metal or alloy capable of electrochemically absorbing or desorbing an alkali metal. The condensation polymer compound containing aromatic and nitrogen atoms is selected among aromatic polyimide, aromatic polyamide or the like and their derivatives.

Description

【発明の詳細な説明】 [技術分野] 本発明は非水電解液二次電池に関し、さらには放電容量
が大きく、充放電す゛イクル特性に優れた非水電解液二
次電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a nonaqueous electrolyte secondary battery, and more particularly to a nonaqueous electrolyte secondary battery that has a large discharge capacity and excellent charge/discharge cycle characteristics.

[従来の技術] 近年、小型、軽量、高エネルギー密度の高性能エネルギ
ー貯蔵装置として、アルカリ金属、特にリチウムを負極
活物質に用いた二次電池が注目されている。
[Prior Art] In recent years, secondary batteries using alkali metals, particularly lithium, as negative electrode active materials have been attracting attention as small, lightweight, high-energy density, high-performance energy storage devices.

負極材料としてリチウム−次電池のようにアルカリ金属
をそのまま負極に用いると、充電時にアルカリ金属がデ
ンドライト状に析出することにより、電池の内部短絡や
、活物質の脱落による充放電効率の低下を引き起こして
しまう。
If alkali metals are used as negative electrode materials, such as in lithium secondary batteries, the alkali metals will precipitate in the form of dendrites during charging, resulting in internal short circuits in the battery and a decrease in charge/discharge efficiency due to active material falling off. It ends up.

このような欠点を改良するため、アルカリ金属との合金
を負極に用いることが提案されている。たとえばアルミ
ニウムとの合金が提案されているが、このような合金は
充放電によりアルカリ金属の吸蔵・放出を繰り返すこと
で負極の脱落を生じ、充放電サイクル寿命の低下の原因
となっている。
In order to improve these drawbacks, it has been proposed to use an alloy with an alkali metal for the negative electrode. For example, alloys with aluminum have been proposed, but such alloys repeatedly absorb and release alkali metals during charging and discharging, causing the negative electrode to fall off, resulting in a shortened charge-discharge cycle life.

また、負極をより軽量化、無公害化するために導電性高
分子化合物のポリアセチレンを負極とし、アルカリ金属
イオンをドープ、脱ドープさせることで充放電を行なう
ことも試みられている。しかし、この材料では充電状態
(ドープした状態)が不安定なため、電池としての自己
放電が大きく、また、アルカリ金属の下−ブによる劣化
が著しく、充放電サイクル特性が十分でないという欠点
を有している。
Furthermore, in order to make the negative electrode more lightweight and pollution-free, attempts have been made to use polyacetylene, which is a conductive polymer compound, as the negative electrode, and to perform charging and discharging by doping and dedoping alkali metal ions. However, this material has the disadvantage that the charged state (doped state) is unstable, so the battery self-discharges significantly, and the material deteriorates significantly due to alkali metal lowering, resulting in insufficient charge-discharge cycle characteristics. are doing.

さらに、黒鉛を負極材料として、電気化学的に生成させ
たアルカリ金属の黒鉛層間化合物を使用した二次電池が
報告されている。しかし、このようなアルカリ金属の黒
鉛層間化合物は不安定であり、自己放電が大きく、充放
電サイクル特性も不十分であるという問題がある。
Furthermore, a secondary battery using graphite as a negative electrode material and an electrochemically generated graphite intercalation compound of an alkali metal has been reported. However, such graphite intercalation compounds of alkali metals are unstable, have large self-discharge, and have insufficient charge-discharge cycle characteristics.

[発明が解決しようとする課題] 本発明の目的は、従来技術が有していた前述の欠点を解
消し、放電容量が大きく、充放電サイクル特性に優れた
非水電解液二次電池を提供することを目的とするもので
ある。
[Problems to be Solved by the Invention] An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and provide a non-aqueous electrolyte secondary battery with a large discharge capacity and excellent charge-discharge cycle characteristics. The purpose is to

[課題を解決するための手段] 前述の目的を達成すべく検討を加えた結果。[Means to solve the problem] This is the result of consideration to achieve the above objectives.

負極に芳香族と窒素原子を含む縮合系高分子化合物から
得られ2少なくとも部分的に黒鉛化された炭素化物であ
って、好ましくは水素/炭素原子比が0.35以下でX
線回折法により求めた炭素の(0021面の面間隔が3
.37Å以上の構造を有する材料と電気化学的にアルカ
リ金属な吸蔵、放出しうる金属または合金との混合物を
用いることにより、長持性の非水電解液二次電池が得ら
れることを見出した。
The negative electrode is an at least partially graphitized carbonate obtained from a condensed polymer compound containing aromatic and nitrogen atoms, preferably with a hydrogen/carbon atomic ratio of 0.35 or less.
The spacing of the (0021 plane) of carbon determined by line diffraction is 3
.. It has been found that a long-lasting non-aqueous electrolyte secondary battery can be obtained by using a mixture of a material having a structure of 37 Å or more and a metal or alloy that can electrochemically intercalate and desorb alkali metals.

本発明の非水電解液二次電池の負極の第1の材料の原料
となる芳香族系縮合高分子化合物としては、例えば芳香
族ポリイミド、芳香族ポリアミド、芳香族ポリアミドイ
ミド、芳香族ポリオキサジアゾール、芳香族ポリベンズ
イミダゾール、及びこれらの誘導体から選ばれたものが
好ましい。更には、芳香環、複素環、複素多環および/
または縮合複素環が2個以下の原子で連結されたものが
好ましい。これらの例として芳香族ポリアミド、及び芳
香族ポリオキサジアゾールの構造式を以下に示すが、勿
論これらに限られるものではない。
Examples of the aromatic condensation polymer compound that is a raw material for the first material of the negative electrode of the non-aqueous electrolyte secondary battery of the present invention include aromatic polyimide, aromatic polyamide, aromatic polyamideimide, and aromatic polyoxadiol. Those selected from azoles, aromatic polybenzimidazoles, and derivatives thereof are preferred. Furthermore, aromatic rings, heterocycles, heteropolycycles and/
Alternatively, those in which fused heterocycles are connected through two or less atoms are preferred. As examples of these, the structural formulas of aromatic polyamides and aromatic polyoxadiazoles are shown below, but of course they are not limited to these.

(COoc ON HGN H)。(COoc ON HGN H).

本発明の負極の第1の材料は、上記芳香族と窒素原子を
含む縮合系高分子化合物を熱処理して、少なくとも部分
的に黒鉛化されるように炭素化して得られたものであり
、水素/炭素の原子比が0.35以下、好ましくは0.
1以下であり、かつX線回折法により求めた炭素の (
002)面の面間隔が3.37Å以上、好ましくは3.
40Å以上でかつ3.80Å以下であるものである。こ
のような材料を得るための、芳香族と窒素原子を含む縮
合系高分子化合物の炭素化の方法は、その高分子化合物
を真空中または窒素、アルゴン等の不活性雰囲気中で熱
処理することである。熱処理の温度は原料高分子化合物
によって異なるが、750〜3000℃であることが好
ましい。
The first material of the negative electrode of the present invention is obtained by heat-treating the above-mentioned condensed polymer compound containing an aromatic group and a nitrogen atom and carbonizing it so that it is at least partially graphitized. /carbon atomic ratio is 0.35 or less, preferably 0.35 or less, preferably 0.
1 or less, and the carbon (
002) The spacing between the planes is 3.37 Å or more, preferably 3.37 Å or more.
The thickness is 40 Å or more and 3.80 Å or less. The method for carbonizing condensed polymer compounds containing aromatic and nitrogen atoms to obtain such materials is to heat-treat the polymer compounds in vacuum or in an inert atmosphere such as nitrogen or argon. be. The temperature of the heat treatment varies depending on the raw material polymer compound, but is preferably 750 to 3000°C.

本発明の負極の第2の材料は、電気化学的にアルカリ金
属な吸蔵、放出しうる金属または合金であれば特に限定
されるものではないが、充放電特性、サイクル特性、装
造及び加工の容易さの点でアルミニウムまたはリチウム
−アルミニウム合金が好ましい。リチウム−アルミニウ
ム合金の組成は、リチウムが原子比で90%を超えると
合金が軟らかく粉末化しにくいため90%以下が好まし
く、60%以下が特に好ましい。
The second material of the negative electrode of the present invention is not particularly limited as long as it is a metal or alloy that can electrochemically occlude and release alkali metals, but may be Aluminum or lithium-aluminum alloy is preferred in terms of ease. The composition of the lithium-aluminum alloy is preferably 90% or less, particularly preferably 60% or less, because if the atomic ratio of lithium exceeds 90%, the alloy becomes soft and difficult to powder.

さらに、これらの材料を負極にする形態は、芳香族系縮
合高分子化合物を炭素化した後粉砕して粉末とし、電気
化学的にアルカリ金属を吸蔵、放出しうる金属または合
金の粉末と所定の割合で混合し、必要ならば適宜バイン
ダー等を添加して好ましい形状に成形するのが良い。
Furthermore, in order to use these materials as negative electrodes, an aromatic condensation polymer compound is carbonized and then ground into a powder, which is then mixed with a metal or alloy powder that can electrochemically occlude and release an alkali metal and a predetermined amount. It is preferable to mix them in the appropriate proportions, add a binder, etc. as needed, and mold them into a desired shape.

芳香族と窒素原子を含む縮合系高分子化合物から得られ
る少なくとも部分的に黒鉛化された炭素化物と電気化学
的にアルカリ金属を吸蔵、放出しうる金属または合金の
混合比は、両者の含量に対して、1)1)者は5重量%
を超えること、後者は95 (Q量%未満であることが
必要で、さらには、前者が20〜95重量%、後者は8
0〜5屯晴%、さらには前者が50〜90重量%、後者
が50〜10重量%であることが好ましい。混合物中の
該炭素化物の含有割合が95重帛%を超えると電池の内
部抵抗の増加と放電容量の減少が生じやすい。また、混
合物中において、該金属または該合金の割合が高くなる
と充放電サイクルの繰り返しによる特性の低Fを生ずる
The mixing ratio of the at least partially graphitized carbonate obtained from the condensation polymer compound containing aromatic and nitrogen atoms and the metal or alloy capable of electrochemically occluding and desorbing alkali metals depends on the content of both. On the other hand, 1) 1) is 5% by weight
The latter must be less than 95% by weight, and the former must be 20 to 95% by weight, and the latter must be less than 8% by weight.
It is preferable that the amount of the former is 50 to 90% by weight, and the latter is 50 to 10% by weight. If the content of the carbonized substance in the mixture exceeds 95% by weight, the internal resistance of the battery tends to increase and the discharge capacity tends to decrease. Furthermore, when the proportion of the metal or the alloy in the mixture increases, low F characteristics occur due to repeated charging and discharging cycles.

本発明の非水電解液二次電池の正極材料は特に限定され
るものではなく、活性炭、活性炭素繊維等の炭素材料、
ポリアニリン、ポリピロール、ポリチオフェン、ポリ(
p−フェニレン)などのアニオンを可逆的にドープ・脱
ドープできる導電性高分子材料、アルカリ金属イオンを
充放電時に可逆的に放出または取り込む金属カルコゲン
化合物などが挙げられる。金属カルコゲン化合物の具体
的な例は、V、Os、、 Cr、Oa。
The positive electrode material of the non-aqueous electrolyte secondary battery of the present invention is not particularly limited, and includes carbon materials such as activated carbon and activated carbon fiber;
Polyaniline, polypyrrole, polythiophene, poly(
Conductive polymer materials that can be reversibly doped and undoped with anions such as p-phenylene), metal chalcogen compounds that reversibly release or incorporate alkali metal ions during charging and discharging, and the like. Specific examples of metal chalcogen compounds include V, Os, Cr, and Oa.

VaO+ 3. CuzVaOw、 MO03などの酸
化物、 Ti5a、VzSr、。
VaO+ 3. Oxides such as CuzVaOw, MO03, Ti5a, VzSr,.

Mo52. MO33,NbzSs、 Cu5iなどの
硫化物、N1PS、などのリン・イ才つ化物、VSe2
などのセレン化物などがあり、これらの金属カルコゲン
化合物は結晶状のものでも、非晶質状のものでもよい。
Mo52. Sulfides such as MO33, NbzSs, and Cu5i, phosphorous compounds such as N1PS, and VSe2
These metal chalcogen compounds may be crystalline or amorphous.

本発明の非水電解液二次電池に使用される電解液は特に
限定されるものではなく、リチウム電池、電気二重層コ
ンデンサなどの非水電解液を用いる電気化学装置に使用
されつるものが適宜使用される。このような非水電解液
としては、たとえば過塩素酸1.6フツ化リン酸、4フ
ツ化ホウ酸、バーアルキルスルホン酸または、トリフル
オロメタンスルホン酸などのアニオンとリチウムイオン
、ナトリウムイオン、カリウムイオン等のアルカリ金属
カチオンとを組み合せた溶質を、プロピレンカーボネー
ト、ブチレンカーボネート、γ−ブチロラクトン、アセ
トニトリル、ジメチルホルムアミド、1.2−ジメトキ
シエタン、スルホラン、ニトロメタン、テトロヒドロフ
ランなどの極性有機溶媒に0.3〜!、5mol/l程
度溶解させたものがあげられる。
The electrolyte used in the non-aqueous electrolyte secondary battery of the present invention is not particularly limited, and any electrolyte used in electrochemical devices using non-aqueous electrolytes such as lithium batteries and electric double layer capacitors may be used as appropriate. used. Examples of such a non-aqueous electrolyte include anions such as perchloric acid, 1.6-fluorinated phosphoric acid, tetrafluorinated boric acid, bar-alkylsulfonic acid, or trifluoromethanesulfonic acid, and lithium ions, sodium ions, and potassium ions. A solute in combination with an alkali metal cation such as 0.3% is added to a polar organic solvent such as propylene carbonate, butylene carbonate, γ-butyrolactone, acetonitrile, dimethylformamide, 1,2-dimethoxyethane, sulfolane, nitromethane, tetrahydrofuran, etc. ~! , dissolved at about 5 mol/l.

1)1)述の負極及び正極を装置の形状に合せて加工、
成形し、両電極間に多孔質のセパレータを挟み、前記の
ような電解液を含浸または満たしてケース中に密閉する
ことによって本発明による非水電解液二次電池が得られ
る。多孔質セパレータとしては、たとえば、ポリプロピ
レン繊維不織布、ガラス繊維混抄不織布などが好適であ
る。また、セパレータのI’7みは50〜200μmが
適当であり、100〜150μmとするのが特に好適で
ある。
1) Processing the negative electrode and positive electrode described in 1) to match the shape of the device,
A non-aqueous electrolyte secondary battery according to the present invention is obtained by molding, sandwiching a porous separator between both electrodes, impregnating or filling the electrolyte as described above, and sealing the case in a case. As the porous separator, for example, polypropylene fiber nonwoven fabric, glass fiber mixed paper nonwoven fabric, etc. are suitable. Further, the I'7 diameter of the separator is suitably 50 to 200 μm, and particularly preferably 100 to 150 μm.

[実施例] 以下、本発明の実施例および比較例を図面に基づいて具
体的に説明する。
[Example] Examples and comparative examples of the present invention will be specifically described below based on the drawings.

実施例1〜7、比較例1 表1のポリイミドを窒素雰囲気中で2000℃で1時間
焼成して得られた材料を微粉末に粉砕した。この熱処理
物の水素/炭素原子比及び炭素の (0021面の面間
隔は表1に示した通りであった。
Examples 1 to 7, Comparative Example 1 The polyimide shown in Table 1 was fired at 2000° C. for 1 hour in a nitrogen atmosphere, and the resulting material was ground into fine powder. The hydrogen/carbon atomic ratio and the (0021 plane spacing of carbon) of this heat-treated product were as shown in Table 1.

この炭素化物粉末とアルミニウム粉末を表2に示した重
量比で、■形ブレンダー中で混合し、負極材料粉末とし
た。この負極材料粉末90重量%、ポリエチレン粉末1
0重量%、再び■形ブレンダー中で混合し、この混合物
を厚さ0.4mm、直径15mmのベレットにプレス成
形して負極2とした。
This carbonide powder and aluminum powder were mixed in a ■-shaped blender at the weight ratio shown in Table 2 to obtain a negative electrode material powder. This negative electrode material powder 90% by weight, polyethylene powder 1
0% by weight was mixed again in the ■-shaped blender, and this mixture was press-molded into a pellet having a thickness of 0.4 mm and a diameter of 15 mm to obtain a negative electrode 2.

石油コークスを40メツシユに粉砕し、これに重量比で
約3倍の苛性カリウムを加えて窒素雰囲気中において、
385℃で1時間仮焼し、840℃で2時間本焼成を行
なった。得られた活性炭粉末を冷却した後、水で洗浄し
て乾燥し最終的に 1)0℃で真空乾燥して正極用の活
性炭を得た。この活性炭は比表面積3000m” 7g
を有していた。
Petroleum coke was crushed into 40 meshes, about 3 times the weight of caustic potassium was added thereto, and the mixture was placed in a nitrogen atmosphere.
Calcination was performed at 385°C for 1 hour, and main firing was performed at 840°C for 2 hours. After cooling the obtained activated carbon powder, it was washed with water, dried, and finally 1) vacuum-dried at 0° C. to obtain activated carbon for a positive electrode. This activated carbon has a specific surface area of 3000m" 7g
It had

この活性炭70重量%、カーボンブラック20重量%お
よびPTFE粉末10重量%よりなる粉末混合物100
重量部に対して水200重量部を添加し、V形ブレンダ
ー中で混和した。得られたベースト状混和物をロール成
型機を用いて圧延し、厚さ 1.4mmのシートとした
。このシートを300℃に予熱した状態で一軸方向に 
1.1倍の倍率で、延伸処理して厚さ0.9mmのシー
ト状成型体を得た。このシート状形成体を直径15mm
の円盤状に打ち抜いて正極1とした。前述の負極2をリ
チウムを対極として1モル/βの過塩素酸リチウムを含
むプロピレンカーボネート溶液中において端子電圧が5
0mVになるまで予、備充電した後、正極1と負極2と
を繊維不織布よりなるセパレータ3を介してステンレス
鋼製のキャップ4及びステンレス鋼製の缶5からなる外
装容器に収納する。次に、ユニットセル中に電解液とし
て1モル/℃の過塩素酸リチウムを含むプロピレンカー
ボネート溶液を注入して、正極1、負極2、及びユニッ
トセル3中に電解液を十分に含浸させた後、ポリプロピ
レン製バッキング6を介してキャップ4及び缶5の端部
をかしめて封口した。上記のように製作した非水電解液
二次電池で、交流二端子法により、1にllzで内部抵
抗を測定した。
A powder mixture 100 consisting of 70% by weight of this activated carbon, 20% by weight of carbon black and 10% by weight of PTFE powder
200 parts by weight of water was added to each part by weight and mixed in a V-type blender. The obtained base-like mixture was rolled using a roll forming machine to form a sheet having a thickness of 1.4 mm. This sheet was preheated to 300℃ and then uniaxially
A sheet-like molded body having a thickness of 0.9 mm was obtained by stretching at a magnification of 1.1 times. This sheet-like formed body has a diameter of 15 mm.
The positive electrode 1 was punched out into a disk shape. The above-mentioned negative electrode 2 was placed in a propylene carbonate solution containing 1 mol/β lithium perchlorate with lithium as the counter electrode, and the terminal voltage was 5.
After pre-charging to 0 mV, the positive electrode 1 and the negative electrode 2 are housed in an outer container consisting of a stainless steel cap 4 and a stainless steel can 5 via a separator 3 made of a nonwoven fiber fabric. Next, a propylene carbonate solution containing 1 mol/°C of lithium perchlorate is injected into the unit cell as an electrolyte to sufficiently impregnate the positive electrode 1, negative electrode 2, and unit cell 3 with the electrolyte. The ends of the cap 4 and the can 5 were caulked and sealed via the polypropylene backing 6. The internal resistance of the non-aqueous electrolyte secondary battery manufactured as described above was measured at 1 llz by the AC two-terminal method.

またこの二次電池を用いて充放電サイクル試験を行なっ
た。0.5mAの定電流で充電及び放電を行ない、充電
終止電圧を3.5■、放電終止電圧を1.OVとした。
A charge/discharge cycle test was also conducted using this secondary battery. Charging and discharging were carried out with a constant current of 0.5 mA, and the end-of-charge voltage was 3.5 cm, and the end-of-discharge voltage was 1. It was set as OV.

200サイクルまで充放電を繰り返し、5サイクル目と
 200サイクル゛目の放電容量を測定した。結果は第
2表に示した。
Charge and discharge were repeated up to 200 cycles, and the discharge capacity was measured at the 5th cycle and the 200th cycle. The results are shown in Table 2.

実施例8 第1表のポリアミドを窒素雰囲気中で2000℃で1時
間焼成して得られた材料を微粉末に粉砕した。この熱処
理物の水素/炭素原子比及び炭素の (0(121面の
面間隔は表1に示した通りであった。この炭素化物粉末
60重量%、リチウムを原子比で50%含有するリチウ
ムアルミニウム合金粉末30重量%、ポリエチレン粉末
10重量%をアルゴン雰囲気下で■形ブレンダー中で混
合した。この混合物を厚さ0.4mm、直径I 5mm
のベレットにプレス成形して負極2とした。
Example 8 The polyamide shown in Table 1 was fired at 2000° C. for 1 hour in a nitrogen atmosphere, and the resulting material was ground into fine powder. The hydrogen/carbon atomic ratio and the interplanar spacing of carbon (0(121) planes of this heat-treated product were as shown in Table 1. This carbonized powder was made of lithium aluminum containing 60% by weight and 50% lithium in atomic ratio. 30% by weight of alloy powder and 10% by weight of polyethylene powder were mixed in a ■-shaped blender under an argon atmosphere.This mixture was made into a material with a thickness of 0.4 mm and a diameter I of 5 mm.
Negative electrode 2 was prepared by press molding into a pellet.

0.5モル/℃の過塩素酸テトラエチルアンモニウムを
含有するアセトニトリル溶液にアニリンを0.1モル/
β溶解させた溶液中に電極として2枚の黒鉛板を浸漬し
、5 mA/cm”   で定電流電解を行なった。こ
れにより陽極上に析出したポリアニリン及び、電解液中
に沈殿したポリアニリンを捕集し、アセトンで洗浄、乾
燥後、粉砕し、再度アセトンで洗浄した後、乾燥して粉
末状のポリアニリンを得た。
Aniline was added at 0.1 mol/°C to an acetonitrile solution containing 0.5 mol/°C of tetraethylammonium perchlorate.
Two graphite plates were immersed as electrodes in the β-dissolved solution, and constant current electrolysis was performed at 5 mA/cm. As a result, polyaniline precipitated on the anode and polyaniline precipitated in the electrolyte were captured. The mixture was collected, washed with acetone, dried, pulverized, washed again with acetone, and dried to obtain powdered polyaniline.

この粉末状のポリアニリン90重量%およびPTFE粉
末lO重量%よりなる粉末混1合物 100Ifffi
部に対して水200重量部を添加しV形ブレンダー中で
混合した。得られたペースト状混合物をロール成型機を
用いて圧延し、厚さ 0.9mmのシート状成型体を得
た。このシート状成型体を直径15mmの円盤状に打ち
抜いて正極1とした。
A powder mixture consisting of 90% by weight of this powdered polyaniline and 10% by weight of PTFE powder 100Iffi
200 parts by weight of water was added to each part and mixed in a V-type blender. The obtained paste-like mixture was rolled using a roll molding machine to obtain a sheet-like molded product having a thickness of 0.9 mm. This sheet-like molded body was punched out into a disk shape with a diameter of 15 mm to obtain a positive electrode 1.

上述の正極1及び負極2を用いて、負極2の予備充電を
行わなかったこと以外は、実施例1と同様にして、非水
電解液二次電池を製作し、内部抵抗の測定と、充放電サ
イクル試験を行った。結果を表3に示した。
A non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 using the positive electrode 1 and negative electrode 2, except that the negative electrode 2 was not pre-charged, and the internal resistance was measured and the charging was carried out. A discharge cycle test was conducted. The results are shown in Table 3.

実施例9 実施例8のポリアミドイミドを表1のポリベンズイミダ
ゾールに変え、またリチウム−アルミニウム合金中のリ
チウムの含有率を40%(原子比)とした以外は、全〈
実施例8と同様に行った。ポリベンズイミダゾールを炭
素化して得られた材料の水素/炭素原子比及び炭素の(
0021面の面間隔は表1に示した通りであった。非水
電解液二次電池としての性能は表3に示した。
Example 9 The polyamide-imide of Example 8 was changed to the polybenzimidazole shown in Table 1, and the lithium content in the lithium-aluminum alloy was changed to 40% (atomic ratio).
The same procedure as in Example 8 was carried out. Hydrogen/carbon atomic ratio and carbon (
The spacing between the 0021 planes was as shown in Table 1. The performance as a non-aqueous electrolyte secondary battery is shown in Table 3.

比較例2、及び3 リチウム−アルミニウム合金を使用せずに、実施例8の
炭素化物粉末90重量%、ポリエチレン粉末10重量%
の混合物により負極を製造した。正極には実施例8と同
様のものを用いた。
Comparative Examples 2 and 3 90% by weight of the carbonide powder of Example 8 and 10% by weight of the polyethylene powder without using lithium-aluminum alloy
A negative electrode was manufactured using a mixture of the above. The same positive electrode as in Example 8 was used.

比較例2では、負極の予備充電を行った後、比較例3で
は負極の予備充電をせずに、実施例8と同様にしてセル
を組み、評価した結果を表3に示した。
In Comparative Example 2, the negative electrode was precharged, and in Comparative Example 3, the cell was assembled in the same manner as in Example 8 without precharging the negative electrode. Table 3 shows the evaluation results.

実施例10 実施例1で使用したのポリイミドの炭素化物粉末70屯
量%、リチウムを原子比で80%含有するリチウム−ア
ルミニウム合金粉末20重iu%、ポリエチレン粉末1
0重量%を、アルゴン雰囲気下で■形ブレンダー中で混
合した。この混合物を厚さ0.65mm、直径15mm
のベレットにプレス成形して負極2とした。
Example 10 Polyimide carbonide powder used in Example 1 70% by weight, lithium-aluminum alloy powder containing 80% lithium by atomic ratio 20% by weight IU, polyethylene powder 1
0% by weight were mixed in a ■-shaped blender under an argon atmosphere. This mixture is 0.65mm thick and 15mm in diameter.
Negative electrode 2 was prepared by press molding into a pellet.

ボールミルにて微粉末に粉砕したV2O5800mm%
、アセチレンブラック10重h1%、P T l?r已
扮末10川徂%をV型ブレシダー中で混合した。
V2O5800mm% ground into fine powder using a ball mill
, acetylene black 10w h1%, P T l? 10% of r.

この混合物を厚さ0.65mm、直径l 5mmのベレ
ットにプレス成形して正極lとした。
This mixture was press-molded into a pellet having a thickness of 0.65 mm and a diameter l of 5 mm to obtain a positive electrode l.

上述の正極I及び負極2を用いて、実施例8と同様にし
て非水電解液二次電池を製作し、内部抵抗の測定と充放
電サイクル試験を行った。
Using the above-described positive electrode I and negative electrode 2, a non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 8, and internal resistance was measured and a charge/discharge cycle test was performed.

結果を表3に示した。The results are shown in Table 3.

実施例1) 実施例10の熱処理温度を800℃に変えた以外は、実
施例1Oと同様に負極2を製造した。得られたポリイミ
ドの炭素化物粉末の水素/炭素原子比は0.20であり
、炭素の(0021面の面間隔は3、525人であった
Example 1) Negative electrode 2 was manufactured in the same manner as Example 1O except that the heat treatment temperature in Example 10 was changed to 800°C. The hydrogen/carbon atomic ratio of the obtained polyimide carbonide powder was 0.20, and the interplanar spacing between the carbon (0021 planes) was 3,525.

v20.を空気中で750℃に加熱し溶融状態で3時間
保持した後、急冷して非晶質状のv20.を製造し、微
粉末に粉砕した。この材料をX線回折法で測定したとこ
ろ、■206結品にみられるピークはほとんど消失し、
2θが26°付近に非常にブロードな弱いピークが見ら
れるだけだった。
v20. was heated to 750°C in air, kept in a molten state for 3 hours, and then rapidly cooled to form an amorphous v20. was produced and ground into a fine powder. When this material was measured by X-ray diffraction, the peaks seen in ■206 crystals almost disappeared;
Only a very broad and weak peak was observed around 2θ of 26°.

この非晶質状の■205粉末85重量%、アセチレンブ
ラック10重+ffi%、PTFE粉末5重量%よりな
る粉末混合物 100重量部に対して水100重量部を
添加し、V形ブレンダー中で混和した。
100 parts by weight of water was added to 100 parts by weight of a powder mixture consisting of 85% by weight of this amorphous 205 powder, 10% by weight + ffi of acetylene black, and 5% by weight of PTFE powder, and the mixture was mixed in a V-shaped blender. .

得られたペースト状混合物をロール成型機を用いて圧延
し、厚さ0.65mmのシート状成型体を得た。このシ
ート状成型体を直径15mmの円板状に打抜いて正極l
とした。
The obtained paste-like mixture was rolled using a roll molding machine to obtain a sheet-like molded product having a thickness of 0.65 mm. This sheet-like molded body was punched out into a disk shape with a diameter of 15 mm, and the positive electrode l
And so.

上述の正極l及び負極2を用いて、実施例8と同様にし
て非水電解液二次電池を製作し、内部抵抗の測定と充放
電サイクル試験を行った。
Using the above-described positive electrode 1 and negative electrode 2, a non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 8, and internal resistance was measured and a charge/discharge cycle test was performed.

結果を表3に示した。The results are shown in Table 3.

以上説明したように、本発明によれば、芳香族と窒素原
子を含む縮合系高分子化合物を炭素化して得られる特定
の構造を有する炭素材料と電気化学的にアルカリ金属を
吸蔵、放出しうる金属または合金との混合物を負極に用
いることにより内部抵抗が小さく、放電容量が大きく、
充放電サイクル特性に優れた非水電解液二次電池を得る
ことができる。
As explained above, according to the present invention, an alkali metal can be electrochemically occluded and released with a carbon material having a specific structure obtained by carbonizing a condensed polymer compound containing an aromatic group and a nitrogen atom. By using a mixture with metal or alloy for the negative electrode, the internal resistance is low and the discharge capacity is large.
A nonaqueous electrolyte secondary battery with excellent charge/discharge cycle characteristics can be obtained.

表2 表3Table 2 Table 3

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による、非水電解液二次電池の一実施例
を示す7MS分断面図である。 1−−−一正極 2−一一一負極 3−−−−セパレータ 4−一一一キャップ 5−一一一缶 6−−−−パッキング
FIG. 1 is a 7MS cross-sectional view showing one embodiment of a non-aqueous electrolyte secondary battery according to the present invention. 1----1 Positive electrode 2-11-1 Negative electrode 3----Separator 4-111 Cap 5-111 Can 6----Packing

Claims (5)

【特許請求の範囲】[Claims] (1)正極、負極及び非水電解液を備えてなる非水電解
液二次電池において、負極が芳香族と窒素原子を含む縮
合系高分子化合物から得られる少なくとも部分的に黒鉛
化された炭素化物と電気化学的にアルカリ金属を吸蔵、
放出しうる金属または合金との混合物であって、該炭素
化物が5重量%を超え、該金属または該合金が95重量
%未満である混合物を主成分とするものであることを特
徴とする非水電解液系二次電池。
(1) In a nonaqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a nonaqueous electrolyte, the negative electrode is at least partially graphitized carbon obtained from a condensed polymer compound containing an aromatic group and a nitrogen atom. Absorbs alkali metals electrochemically with compounds,
A mixture with a releasable metal or alloy, the main component of which is a mixture in which the carbonized substance is more than 5% by weight and the metal or the alloy is less than 95% by weight. Water electrolyte secondary battery.
(2)電気化学的にアルカリ金属を吸蔵、放出しうる金
属または合金がアルミニウム、またはリチウム−アルミ
ニウム合金である特許請求の範囲第1項記載の非水電解
液系二次電池。
(2) The non-aqueous electrolyte secondary battery according to claim 1, wherein the metal or alloy that can electrochemically occlude and release an alkali metal is aluminum or a lithium-aluminum alloy.
(3)芳香族と窒素原子を含む縮合系高分子化合物から
得られる少なくとも部分的に黒鉛化された炭素化物が、
水素/炭素の原子比が0.35以下であって、X線回折
法により求めた炭素の(002)面の面間隔が3.37
Å以上を有する特許請求の範囲第1項または第2項記載
の非水電解液系二次電池。
(3) At least partially graphitized carbonate obtained from a condensation polymer compound containing an aromatic group and a nitrogen atom,
The hydrogen/carbon atomic ratio is 0.35 or less, and the interplanar spacing of the carbon (002) plane determined by X-ray diffraction is 3.37.
The non-aqueous electrolyte secondary battery according to claim 1 or 2, which has a particle diameter of Å or more.
(4)芳香族と窒素原子を含む縮合系高分子化合物が、
芳香族ポリイミド、芳香族ポリアミ ド、芳香族ポリアミドイミド、芳香族ポリオキサジアゾ
ール、芳香族ポリベンズイミダ ゾール及びこれらの誘導体から選ばれたものである特許
請求の範囲第1〜3項いずれかに記載の非水電解液系二
次電池。
(4) A condensed polymer compound containing an aromatic group and a nitrogen atom,
Claims 1 to 3 are selected from aromatic polyimide, aromatic polyamide, aromatic polyamideimide, aromatic polyoxadiazole, aromatic polybenzimidazole, and derivatives thereof. Non-aqueous electrolyte secondary battery.
(5)芳香族と窒素原子を含む縮合系高分子化合物から
得られる少なくとも部分的に黒鉛化された炭素化物と電
気化学的にアルカリ金属を吸蔵、放出しうる金属または
合金の混合比 が、両者の合量に対し、前者が20〜95重量%、後者
が80〜5重量%である特許請求の範囲第1〜4項いず
れかに記載の非水電解液系二次電池。
(5) The mixing ratio of the at least partially graphitized carbonate obtained from the condensation polymer compound containing aromatic and nitrogen atoms and the metal or alloy that can electrochemically occlude and release an alkali metal is 5. The nonaqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the former is 20 to 95% by weight and the latter is 80 to 5% by weight.
JP63004828A 1988-01-14 1988-01-14 Nonaqueous electrolyte secondary cell Pending JPH01186556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63004828A JPH01186556A (en) 1988-01-14 1988-01-14 Nonaqueous electrolyte secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63004828A JPH01186556A (en) 1988-01-14 1988-01-14 Nonaqueous electrolyte secondary cell

Publications (1)

Publication Number Publication Date
JPH01186556A true JPH01186556A (en) 1989-07-26

Family

ID=11594558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63004828A Pending JPH01186556A (en) 1988-01-14 1988-01-14 Nonaqueous electrolyte secondary cell

Country Status (1)

Country Link
JP (1) JPH01186556A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06187988A (en) * 1991-12-17 1994-07-08 Mitsubishi Gas Chem Co Inc Improved nonaqueous solvent lithium secondary battery
US6475461B1 (en) 1995-03-30 2002-11-05 Nippon Sanso Corporation Porous carbonaceous material, manufacturing method therefor and use thereof
JP2014029847A (en) * 2012-06-29 2014-02-13 Semiconductor Energy Lab Co Ltd Secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06187988A (en) * 1991-12-17 1994-07-08 Mitsubishi Gas Chem Co Inc Improved nonaqueous solvent lithium secondary battery
US6475461B1 (en) 1995-03-30 2002-11-05 Nippon Sanso Corporation Porous carbonaceous material, manufacturing method therefor and use thereof
JP2014029847A (en) * 2012-06-29 2014-02-13 Semiconductor Energy Lab Co Ltd Secondary battery

Similar Documents

Publication Publication Date Title
JP3956384B2 (en) Secondary battery
US7229713B2 (en) Electrode and battery using the same
JP6355163B2 (en) Lithium ion battery
US20040096733A1 (en) Battery
JP5917361B2 (en) Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2561556B2 (en) Positive electrode active material for lithium secondary battery
JP2007042601A (en) Carbon electrode, production method therefor and nonaqueous electrolyte secondary battery
JP4014637B2 (en) Lithium ion secondary battery negative electrode material, manufacturing method thereof, and lithium ion secondary battery using the negative electrode material
JP4416232B2 (en) Anode material for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same
JP3154719B2 (en) Non-aqueous electrolyte secondary battery
KR20180087169A (en) Negative electrode for lithium secondary battery, lithium secondary battery comprising the same, and preparing method thereof
JP2003157900A (en) Battery
JPH04162357A (en) Nonaqueous secondary battery
JP2007042602A (en) Polymer battery
EP1369951A1 (en) Battery
JPH0636797A (en) Lithium secondary battery
JPS63314766A (en) Organic electrolyte cell having activated carbon metal oxide composite as positive electrode
JPH01186556A (en) Nonaqueous electrolyte secondary cell
WO2007009363A1 (en) An electrochemical supercapacitor using organic polymer free radical /carbon composite material as positive electrode
JP2002279995A (en) Battery
JP3393621B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP2003151627A (en) Battery
JPH01186555A (en) Nonaqueous electrolyte secondary cell
JP2003045487A (en) Battery
JP3053672B2 (en) Manufacturing method of organic solvent secondary battery