JPH01185167A - Ac to dc converter - Google Patents

Ac to dc converter

Info

Publication number
JPH01185167A
JPH01185167A JP343888A JP343888A JPH01185167A JP H01185167 A JPH01185167 A JP H01185167A JP 343888 A JP343888 A JP 343888A JP 343888 A JP343888 A JP 343888A JP H01185167 A JPH01185167 A JP H01185167A
Authority
JP
Japan
Prior art keywords
phase
current
circuit
correction
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP343888A
Other languages
Japanese (ja)
Inventor
Tomoyuki Matsushita
松下 友幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP343888A priority Critical patent/JPH01185167A/en
Publication of JPH01185167A publication Critical patent/JPH01185167A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)

Abstract

PURPOSE:To hold each phase current constant and to operate an apparatus stably by providing a circuit for correcting a phase control so that each phase current value is balanced. CONSTITUTION:An AC to DC converter is composed of a DC transformer 2 for a main circuit 1, a current-voltage converter circuit 3, a current control circuit 4, a current reference setter 5, a firing pulse decision circuit 6, a synchronizing signal generator circuit 7, a pulse generator circuit 8 and others. Then, each phase AC value is detected by an AC transformer 12 provided at a three- phase AC line, and the deviation of said each phase AC value from the mean of DC values detected by the DC transformer 2 is obtained by a current correction circuit 15 and amplified to form a correction signal. This apparatus is constituted so as to add said correction signal for each phase to a control signal from a constant current control circuit 4 by an adder 14 and to decide a firing angle for each phase by said firing pulse decision circuit 6 based on said corrected control signal to perform a current correction. Thus, the firing angle is corrected so that each phase current value is balanced.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、交流電力系統に設けられ位相制御により直流
電流または直流電圧を制御する交直変換装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an AC/DC converter that is installed in an AC power system and controls DC current or DC voltage by phase control.

(従来の技術) 第5図を参照して、従来の交直変換装置における直流電
流の一般的制御方法を説明する。
(Prior Art) A general method for controlling direct current in a conventional AC/DC converter will be described with reference to FIG.

主回路1の直流電線路に設けられた直流変流器2により
直流電流値を検出し、これを電流電圧変換回路3により
電圧信号に変換して電流制御回路4に入力する。電流制
御回路4は入力された直流電流値を電流基準設定器5か
らの電流基準と比較し、その誤差を増幅して制御信号を
形成して点弧パルス決定回路6に出力する。点弧パルス
決定回路6は同期信号発生回路7からの信号により交流
電線路の電圧波形と同期をとりつつ、電流制御回路4か
らの制御信号に基づき各相点弧パルスの出力時期を決定
する。そして、決定された出力時期にパルス発生回路8
が変換装置1に点弧パルスを出力する。尚、図中、参照
番号9は変換装置用変圧器、10は交流リアクトル、1
1は計器用変成器である。
A DC current value is detected by a DC current transformer 2 provided in a DC power line of the main circuit 1, and this is converted into a voltage signal by a current-voltage conversion circuit 3 and inputted to a current control circuit 4. The current control circuit 4 compares the input DC current value with the current reference from the current reference setter 5, amplifies the error, forms a control signal, and outputs the control signal to the ignition pulse determining circuit 6. The ignition pulse determination circuit 6 synchronizes with the voltage waveform of the AC power line using the signal from the synchronization signal generation circuit 7, and determines the output timing of each phase ignition pulse based on the control signal from the current control circuit 4. Then, at the determined output timing, the pulse generating circuit 8
outputs an ignition pulse to the converter 1. In the figure, reference number 9 is a converter transformer, 10 is an AC reactor, and 1
1 is an instrument transformer.

このように従来は、直流電流を検出し、あるいは3相交
流電流の平均値を検出して、これを一定値とするように
位相制御をおこなっている。
In this way, conventionally, phase control is performed by detecting the direct current or by detecting the average value of the three-phase alternating current, and making this a constant value.

(発明が解決しようとする課題) 上記従来の交直変換装置では、直流負荷が小さく平滑リ
アクトルが無い又は小さい場合、極めて小さな点弧角の
ばらつきにより各相の交流電流にばらつきが生じ、直流
電流に脈動が生じる。また、電力変換装置一般に言える
ことであるが、系統交流電圧の不平衡や高調波の発生等
は位相制御に影響を与え、場合によっては系統の波形歪
みを増加させ、さらに、直流電流の脈動により変換器用
変圧器の直流偏磁を誘発させる原因となる。
(Problems to be Solved by the Invention) In the conventional AC/DC converter described above, when the DC load is small and there is no or small smoothing reactor, the AC current of each phase will vary due to extremely small variations in firing angle, and the DC current will vary. Pulsation occurs. In addition, as can be said of power converters in general, unbalanced grid AC voltage and generation of harmonics affect phase control, and in some cases increase grid waveform distortion, and furthermore, DC current pulsations may cause This causes DC bias in the converter transformer.

これらの問題は、系統の短絡容量等の条件により影響の
大きさは変わるが、逆変換装置においては転流失敗の原
因となり運転継続を困難にし、また電圧制御形の変換装
置においては系統電圧の不平衡が特定相の過電流を生じ
させる。
The magnitude of these problems varies depending on conditions such as the short-circuit capacity of the grid, but in inverter converters they cause commutation failure and make it difficult to continue operation, and in voltage-controlled converters, the grid voltage Unbalance causes overcurrent in a particular phase.

さらに、交流系統の事故、例えば交直変換装置の遠方端
での一線地絡事故、において運転を継続する必要がある
場合にも、電圧不平衡、三相交流電圧の位相ずれが発生
する。この様な場合、同期信号発生回路(第5図参照番
号7)の作る等間隔パルスに位相ずれが発生し、系統電
圧の波形歪みを増加させ、転流失敗を誘発して運転継続
を困難にする。
Further, voltage unbalance and phase shift of the three-phase AC voltage also occur when operation needs to be continued in the event of an accident in the AC system, for example, a line-to-ground fault at the far end of the AC/DC converter. In such a case, a phase shift occurs in the equally spaced pulses generated by the synchronization signal generation circuit (see number 7 in Figure 5), increasing waveform distortion of the grid voltage, inducing commutation failure, and making it difficult to continue operation. do.

また、交流系統が事故や点検等により弱小となった場合
にも、系統の持つ共振周波数のずれ等により制御系と交
流系統の干渉が発生し、直流電流の脈動により系統の波
形歪みを増加させ、転流失敗を誘発して運転継続を困難
にする。
In addition, even if the AC system becomes weak due to an accident or inspection, interference between the control system and the AC system will occur due to a shift in the system's resonant frequency, and the pulsation of the DC current will increase the waveform distortion of the system. , causing commutation failure and making it difficult to continue operation.

従って、本発明の目的は上述した様な場合における交流
系統に与える影響を最少限にして、安定な運転を維持で
きる交直変換装置を提供することにある。
Therefore, an object of the present invention is to provide an AC/DC converter that can maintain stable operation while minimizing the influence on the AC system in the above-mentioned cases.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、多相の交流電力系統に設けられ位相制御によ
り直流電流または直流電圧を制御する交直変換装置にお
いて、主回路の各相スイッチング素子の電流値を検出し
この各相電流値が平衡するように前記位相制御による各
相スイッチング素子の点弧角を補正する回路を有するこ
とを特徴とする交直変換装置を提供するものである。
(Means for Solving the Problems) The present invention detects the current value of each phase switching element of a main circuit in an AC/DC converter that is installed in a multiphase AC power system and controls DC current or DC voltage by phase control. The present invention provides an AC/DC converter characterized in that it has a circuit that corrects the firing angle of each phase switching element by the phase control so that the current values of each phase are balanced.

(作 用) 上記構成によれば、交流電圧の不平衡や点弧パルスのば
らつきが発生した場合、各相の電流値が平衡するように
点弧角が補正される。従って、直流電流の脈動が解消さ
れ安定した運転が維持される。
(Function) According to the above configuration, when an unbalance in the AC voltage or a variation in the firing pulse occurs, the firing angle is corrected so that the current values of each phase are balanced. Therefore, pulsation of the direct current is eliminated and stable operation is maintained.

(実施例) 以下、実施例により説明する。(Example) Examples will be explained below.

第1図は、本発明に係る交直変換装置の一実施例の構成
を示すブロック図である。尚、第5図の従来例と同一の
要素は同一番号を付してその説明は省略する。
FIG. 1 is a block diagram showing the configuration of an embodiment of an AC/DC converter according to the present invention. Incidentally, the same elements as those in the conventional example shown in FIG. 5 are given the same numbers, and the explanation thereof will be omitted.

図示のようにこの実施例は、第5図の従来例の構成に加
えて、三相交流電線路に設けられた交流変流器12によ
り各相の交流電流値を検出し、電流補正回路13により
前記各相交流電流値と直流変流器2で検出した直流電流
値の平均値(三相交流電流値の平均値)との誤差を求め
、これを増幅して補正信号を形成し、この補正信号を各
相毎に加算器14により定電流制御回路4からの制御信
号に加算し、こうして補正された制御信号に基づき点弧
パルス決定回路6により各相の点弧角を決定することに
より電流補正を行なうよう構成されている。
As shown in the figure, in addition to the configuration of the conventional example shown in FIG. The error between the AC current value of each phase and the average value of the DC current values detected by the DC current transformer 2 (average value of the three-phase AC current values) is determined by, and this is amplified to form a correction signal. By adding the correction signal to the control signal from the constant current control circuit 4 by the adder 14 for each phase, and determining the firing angle of each phase by the firing pulse determining circuit 6 based on the thus corrected control signal. It is configured to perform current correction.

第2図は電流補正回路13の詳細構成を示すブロック図
である。
FIG. 2 is a block diagram showing the detailed configuration of the current correction circuit 13.

この電流補正回路13は、交流変流器12(u相の回路
のみ図示する)からの各相交流電流値信号を相毎に2つ
のルートに分けて電流電圧変換回路15.16を介して
比較器17.18に入力し、各比較器17.18にて直
流変流器2から電流電圧変換回路3及び平均化回路19
を介して入力される直流電流の平均値(三相交流電流の
平均値)信号との誤差を計算し、各誤差信号を増幅回路
20.21により増幅して補正信号を形成し、各補正信
号をフリップフロップ22.23により制御されるアナ
ログスイッチ24.25を介して加算器14に出力して
定電流制御回路4からの制御信号の補正を行うように構
成されている。尚、ここでは三相交流のU相に対応する
回路のみ図示しであるが、実際にはV相、W相共に同様
の回路が設けられている。
This current correction circuit 13 divides each phase AC current value signal from the AC current transformer 12 (only the U-phase circuit is shown) into two routes for each phase, and compares them via current-voltage conversion circuits 15 and 16. 17.18, and each comparator 17.18 converts the current from the DC current transformer 2 to the current-voltage conversion circuit 3 and the averaging circuit 19.
The error with the average value of the DC current (average value of the three-phase AC current) signal inputted via the is calculated, and each error signal is amplified by the amplifier circuit 20.21 to form a correction signal, and each correction signal is is output to the adder 14 via analog switches 24 and 25 controlled by flip-flops 22 and 23 to correct the control signal from the constant current control circuit 4. Although only the circuit corresponding to the U phase of the three-phase alternating current is shown here, similar circuits are actually provided for both the V phase and the W phase.

フリップフロップ22.23は、各相個別に補正を行う
ために、主回路1の対応するスイッチング素子(サイリ
スタ、GTO等)の動作時期に合せてアナログスイッチ
24.25をオン/オフする。例えば、U相すイリスタ
に対応するフリップフロップ22は、自相(U相)の6
0度前のY相の点弧パルスでセットされて自相の点弧パ
ルスでリセットされ、このセットとリセットの間のみア
ナログスイッチ24を閉じてU相すイリスタの点弧角の
補正を行なう。また、X相すイリスタに対応するフリッ
プフロップ23は、自相(X相)の60度前のv相の点
弧パルスでセットされて自相の点弧パルスでリセットさ
れ、その間のみX相の点弧角の補正を行なう。このよう
に、時分割方式で60度の期間づつ各相克弧角の補正を
行なう。
Flip-flops 22 and 23 turn analog switches 24 and 25 on and off in accordance with the operating timing of the corresponding switching element (thyristor, GTO, etc.) of main circuit 1 in order to perform correction for each phase individually. For example, the flip-flop 22 corresponding to the U-phase iris is 6 of its own phase (U-phase).
It is set by the firing pulse of the Y phase before 0 degrees and reset by the firing pulse of the own phase, and the analog switch 24 is closed only between this setting and reset to correct the firing angle of the U-phase iris. In addition, the flip-flop 23 corresponding to the X-phase iris is set by the v-phase firing pulse 60 degrees before the own phase (X-phase) and reset by the own-phase firing pulse, and only during that time the X-phase Correct the firing angle. In this way, each conflicting arc angle is corrected for each period of 60 degrees in a time-sharing manner.

またそのために、増幅回路20.21は入力された自相
の誤差信号に適当な遅延を与えて、これに基づく補正信
号が自相の上記60度期間に出力されるようにする。こ
うして、各相毎に他相に影響を与えることなく個別に電
流補正が加えられる。
For this purpose, the amplifier circuits 20 and 21 give an appropriate delay to the input error signal of the own phase so that a correction signal based on this is output during the 60 degree period of the own phase. In this way, current correction is applied to each phase individually without affecting other phases.

次に、第3図を参照してこの実施例の電流補正の動作に
ついて説明する。
Next, the current correction operation of this embodiment will be explained with reference to FIG.

同図(a)の実線は直流電流波形、破線はその平均値を
示すが、ここで交流電圧の不平衡や点弧角のばらつきに
より図示のように直流電流の脈動が発生したとする。(
a)に示す直流電流の脈動波形と(b)に示す各相点弧
パルスのタイミングとから、U相とX相を例にとれば、
U相電流は平均値より大きく、X相電流は平均値より小
さくなっていることがわかる。従って、U相、X相電流
と平均値との誤差を増幅した補正信号は夫々(C)、(
d)に示すような波形となる。つまり、U相電流の補正
信号はU相電流を減少させるように働き、またX相電流
の補正信号はX相電流を増加させるように働くことにな
る。
The solid line in Figure (a) shows the DC current waveform, and the broken line shows its average value, but it is assumed here that pulsations in the DC current occur as shown in the figure due to imbalance in the AC voltage or variations in the firing angle. (
Taking the U phase and X phase as an example, from the pulsating waveform of the DC current shown in a) and the timing of each phase firing pulse shown in
It can be seen that the U-phase current is larger than the average value, and the X-phase current is smaller than the average value. Therefore, the correction signals that amplify the errors between the U-phase and X-phase currents and their average values are (C) and (
The waveform will be as shown in d). In other words, the correction signal for the U-phase current acts to decrease the U-phase current, and the correction signal for the X-phase current acts to increase the X-phase current.

そして、U相点弧パルスのほぼ60度前のY相点弧パル
スの出力時にスイッチ24が閉じ、U相電流の補正信号
が制御信号に加算される。この補正された制御信号によ
りU相点弧パルスの位相角が決められ、U相点弧パルス
の出力と同時にスイッチ24が開きU相電流の補正が終
了する。同様に、X相点弧パルスのほぼ60度前のV相
点弧パルスの出力時にスイッチ25が閉じ、X相電流の
補正信号が制御信号に加算される。その補正された制御
信号によりX相点弧パルスの位相角が決定され、X相点
弧パルスの出力と同時にスイッチ25が開きX相電流の
補正が終了する。(e)はこのようにしてスイッチ24
.25から出力されるU相、X相の補正信号の波形を示
し、(f)はU相、X相の補正信号が加算された制御信
号の波形を示している。
Then, the switch 24 is closed when the Y-phase ignition pulse is output approximately 60 degrees before the U-phase ignition pulse, and the U-phase current correction signal is added to the control signal. The phase angle of the U-phase firing pulse is determined by this corrected control signal, and the switch 24 is opened simultaneously with the output of the U-phase firing pulse to complete the correction of the U-phase current. Similarly, when the V-phase firing pulse is output approximately 60 degrees before the X-phase firing pulse, the switch 25 is closed, and the X-phase current correction signal is added to the control signal. The phase angle of the X-phase ignition pulse is determined by the corrected control signal, and the switch 25 is opened simultaneously with the output of the X-phase ignition pulse to complete the correction of the X-phase current. (e) is the switch 24 in this way.
.. 25, and (f) shows the waveform of the control signal to which the U-phase and X-phase correction signals are added.

尚、ここではU相、X相の二相のみについて説明したが
、実際にはこのようにして全ての相について順次に電流
補正が行われ、その結果、各相交流電流が同値になるよ
うにつまり直流電流の脈動が無くなるように制御される
Although only the two phases, the U phase and the In other words, it is controlled so that the pulsation of the DC current is eliminated.

上記実施例では直流電流を制御する場合を説明したが、
直流電圧を制御する場合においても本発明が適用できる
。第4図はこのような場合における本発明の一実施例を
示す。尚、第2図の実施例と同一の要素には同一参照番
号を付してその説明は省略する。
In the above embodiment, the case of controlling DC current was explained, but
The present invention can also be applied to the case of controlling DC voltage. FIG. 4 shows an embodiment of the present invention in such a case. Incidentally, the same elements as those in the embodiment of FIG. 2 are given the same reference numerals, and the explanation thereof will be omitted.

この実施例では、分圧器26により直流電圧を検出し、
この検出値と電圧基準設定器27からの電圧基準との誤
差を定電圧制御回路28により増幅して制御信号を形成
し、この制御信号に基づき点弧角を制御することにより
定電圧制御を行っている。そして、第2図の電流制御の
場合と同様に、電流補正回路13により各相の電流と直
流電流の平均値との誤差を増幅した補正信号を形成して
、この補正信号を各相毎に60度期間づつ定電圧制御回
路28からの制御信号に加算することにより電流補正を
行なう。
In this embodiment, the DC voltage is detected by the voltage divider 26,
The error between this detected value and the voltage reference from the voltage reference setter 27 is amplified by the constant voltage control circuit 28 to form a control signal, and the firing angle is controlled based on this control signal to perform constant voltage control. ing. Then, as in the case of current control in FIG. 2, the current correction circuit 13 forms a correction signal that amplifies the error between the current of each phase and the average value of the DC current, and this correction signal is applied to each phase. The current is corrected by adding it to the control signal from the constant voltage control circuit 28 every 60 degrees.

このように定電圧制御に電流補正を加えることにより、
点弧角のばらつきや系統電圧の不平衡時等に三相交流電
流を一定つまり直流電流を一定に制御することになり、
系統に与える影響を少なくし安定な運転が行なえるよう
になる。
By adding current correction to constant voltage control in this way,
The three-phase AC current is controlled to be constant, that is, the DC current is controlled to be constant when there are variations in the firing angle or unbalanced system voltage.
This reduces the impact on the grid and allows for stable operation.

尚、上記実施例では定電流制御または定電圧制御される
6相の変換装置について、時分割方式により各相毎の補
正信号を位相制御回路に与える回路構成を示して説明し
たが、位相制御回路が各相個別に設けられる回路構成に
おいて、各位相制御回路にそれぞれ補正信号を与えるよ
うな構成も本発明に含まれることは勿論である。
In the above embodiment, a six-phase converter that is controlled by constant current or constant voltage is explained by showing a circuit configuration that provides a correction signal for each phase to the phase control circuit using a time division method. Of course, the present invention also includes a circuit configuration in which a correction signal is provided to each phase control circuit individually in a circuit configuration in which a correction signal is provided to each phase control circuit.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、各相の電流値が
平衡するように位相制御を補正する回路を設けたため、
交流電圧の不平衡や点弧パルスのばらつきが生じても各
相の電流を一定に保ち安定した運転が確保できる。
As explained above, according to the present invention, since a circuit is provided for correcting phase control so that the current values of each phase are balanced,
Even if unbalanced AC voltage or variations in ignition pulses occur, the current in each phase can be kept constant to ensure stable operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る交直変換装置の一実施例のブロッ
ク構成図、第2図は第1図の実施例の電流補正回路のブ
ロック構成図、第3図は第1図の実施例の動作を説明す
るためのタイムチャート、第4図は本発明の別の実施例
のブロック構成図、第5図は従来の交直変換装置のブロ
ック構成図である。 1・・・主回路、2・・・直流変流器、3. 15. 
16・・・電流電圧変換回路、4・・・定電流制御回路
、5・・・電流基準設定器、6・・・点弧パルス決定回
路、8・・・パルス発生回路、12・・・交流変流器、
13・・・電流補正回路、14・・・加算器、17.1
8・・・比較器、19・・・平均化回路、20.21・
・・増幅回路、22゜23・・・フリップフロップ、2
4.25・・・アナログスイッチ、26・・・分圧器、
27・・・電圧基準設定器、28・・・定電圧制御回路
。 出願人代理人  佐  藤  −雄 第1図 第2図 第Δ図
FIG. 1 is a block diagram of an embodiment of an AC/DC converter according to the present invention, FIG. 2 is a block diagram of a current correction circuit of the embodiment of FIG. 1, and FIG. 3 is a block diagram of the current correction circuit of the embodiment of FIG. FIG. 4 is a block diagram of another embodiment of the present invention, and FIG. 5 is a block diagram of a conventional AC/DC converter. 1... Main circuit, 2... DC transformer, 3. 15.
16... Current voltage conversion circuit, 4... Constant current control circuit, 5... Current reference setting device, 6... Firing pulse determination circuit, 8... Pulse generation circuit, 12... AC Current transformer,
13... Current correction circuit, 14... Adder, 17.1
8...Comparator, 19...Averaging circuit, 20.21.
...Amplification circuit, 22゜23...Flip-flop, 2
4.25...analog switch, 26...voltage divider,
27... Voltage reference setter, 28... Constant voltage control circuit. Applicant's agent Mr. Sato Figure 1 Figure 2 Figure Δ

Claims (1)

【特許請求の範囲】[Claims] 多相の交流電力系統に設けられ位相制御により直流電流
または直流電圧を制御する交直変換装置において、主回
路の各相スイッチング素子の電流値を検出しこの各相電
流値が平衡するように前記位相制御による各相スイッチ
ング素子の点弧角を補正する回路を有することを特徴と
する交直変換装置。
In an AC/DC converter that is installed in a multiphase AC power system and controls DC current or DC voltage by phase control, the current value of each phase switching element of the main circuit is detected, and the phase change is performed so that the current values of each phase are balanced. An AC/DC converter comprising a circuit that corrects the firing angle of each phase switching element by control.
JP343888A 1988-01-11 1988-01-11 Ac to dc converter Pending JPH01185167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP343888A JPH01185167A (en) 1988-01-11 1988-01-11 Ac to dc converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP343888A JPH01185167A (en) 1988-01-11 1988-01-11 Ac to dc converter

Publications (1)

Publication Number Publication Date
JPH01185167A true JPH01185167A (en) 1989-07-24

Family

ID=11557358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP343888A Pending JPH01185167A (en) 1988-01-11 1988-01-11 Ac to dc converter

Country Status (1)

Country Link
JP (1) JPH01185167A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0595091A2 (en) * 1992-10-26 1994-05-04 Hughes Aircraft Company Active three phase power conditioner
AT512886A1 (en) * 2012-04-26 2013-11-15 Siemens Ag Method and device for adjusting the delay time of a semiconductor valve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0595091A2 (en) * 1992-10-26 1994-05-04 Hughes Aircraft Company Active three phase power conditioner
EP0595091A3 (en) * 1992-10-26 1994-09-07 Hughes Aircraft Co Active three phase power conditioner
AT512886A1 (en) * 2012-04-26 2013-11-15 Siemens Ag Method and device for adjusting the delay time of a semiconductor valve
AT512886B1 (en) * 2012-04-26 2014-03-15 Siemens Ag Method and device for adjusting the delay time of a semiconductor valve

Similar Documents

Publication Publication Date Title
JP3185257B2 (en) Power conversion unit parallel operation device
US5212630A (en) Parallel inverter system
US5257180A (en) Controlling system for parallel operation of AC output inverters with restrained cross currents
US6172889B1 (en) Inverter apparatus islanding operation detecting method and inverter apparatus capable of surely detecting an islanding operation with a simple construction
US5600548A (en) DC content control for an inverter
US4947310A (en) Parallel operating system for alternate current output converters
US4882120A (en) DC content control for an inverter
US20090040797A1 (en) Pulse Width Modulation Method for a Power Converter
JPH0614555A (en) Parallel operation controller for power converter
JPH09149660A (en) Controller for pwm control inverter
JPH01185167A (en) Ac to dc converter
US4875149A (en) Phase separation control
JPH08223920A (en) Method and apparatus for control of comparator, and correction method of converter ac current used for them
JPH0956170A (en) Controller for inverter for system linkage
JP3110898B2 (en) Inverter device
JPH10229609A (en) Controller for ac electric vehicle
JP2626274B2 (en) Inverter
JP6758242B2 (en) Inverter controller
JP3235651B2 (en) Periodic signal controller
JPH11206020A (en) Pwm controller
JPH0715970A (en) Control device of parallel configuration power converter
JP3252625B2 (en) On delay time compensation method for PWM inverter
JPH056414B2 (en)
JPH0690535A (en) Superconducting energy storage device
JPH10164757A (en) Power conversion device