JPH01184801A - Manufacture of magnetic iron oxide powder for magnetic recording - Google Patents

Manufacture of magnetic iron oxide powder for magnetic recording

Info

Publication number
JPH01184801A
JPH01184801A JP63005386A JP538688A JPH01184801A JP H01184801 A JPH01184801 A JP H01184801A JP 63005386 A JP63005386 A JP 63005386A JP 538688 A JP538688 A JP 538688A JP H01184801 A JPH01184801 A JP H01184801A
Authority
JP
Japan
Prior art keywords
iron oxide
cobalt
magnetic
salt
oxide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63005386A
Other languages
Japanese (ja)
Inventor
Yuji Fukumoto
福本 祐二
Nobuaki Kaji
亘章 加治
Kenichi Okazaki
健一 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP63005386A priority Critical patent/JPH01184801A/en
Publication of JPH01184801A publication Critical patent/JPH01184801A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain magnetic iron oxide powder for magnetic recording having excellent magnetic characteristics by using Mg salt, Ca salt, etc., as group IIa metallic salt to treat gamma-iron oxide particles when gamma-iron oxide particles are washed after their cobalt denaturation. CONSTITUTION:Alkaline slurry including cobalt-denatured gamma-iron oxide acquired by cobalt denaturation of gamma-iron oxide particles in an alkaline aqueous solution is washed with water. One kind of magnesium salt, calcium salt, strontium salt or barium salt is added previously to at least one of alkaline slurry or wash water at that time. It is considered that these metallic ions adhere on the surfaces of cobalt-denatured gamma-iron oxide particles in any shape under alkali conditions and have any action to the magnetic properties of cobalt-denatured magnetic particles. Accordingly, magnetic iron oxide powder for magnetic recording having superior magnetic characteristics is obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は磁気記録用磁性粉末の製造に係り、より詳細に
は、高密度記録が可能なコバルト変成磁性酸化鉄粉の製
造方法に関する。 (従来の技術) 磁気記録用磁性粉としては、形状異方性により高保磁力
を有する磁性酸化鉄粒子(γ−酸化鉄粒子)が用いられ
ており、また高歯度記録が可能な高保磁力の磁気記録用
磁性粉として、コバルト若しくはコバルトと他の元素で
変成したコバルト変成磁性酸化鉄粒子が用いられている
。 このうち、後者のコバルト変成磁性酸化鉄粒子の製造方
法としてほこ些までに種々提案されてきているが、その
中でも有用な方法の一つとして、アルカリ溶液中に磁性
酸化鉄粒子を分散させ、コバルト塩若しくはコバルト塩
と第1鉄塩等の他の成分を加え、コバルト変成磁性酸化
鉄粒子とする方法がある。この方法により、磁性酸化鉄
粒子表面にコバルトを含有する層が形成され、保磁力や
単位重量当りの飽和磁化が増加するなど、磁気特性が向
上する。このようにして得られたコバルト変成酸化鉄粒
子は磁気記録用磁性粉末として非常に適したものとなる
。 (発明が解決しようとする問題点) しかし乍ら、上記方法では、γ−酸化鉄粒子の保磁力は
用いるコバルト量の増加と共に増大するが、保磁力を6
000s以上に高めるためは、コバルトの添加量を極端
に多くすると共に反応時間も長くする必要があり、また
コバルトの添加量の増加は経時変化を惹き起こすという
問題があった。 本発明の目的は、上記従来技術の欠点を解消し、γ−酸
化鉄に対し多量のコバルト添加並びに長時間のコバルト
変成処理を要することなく、高い保磁力を得ると共に、
経時変化を惹き起こさない磁気記録用磁性酸化鉄粉を得
る方法を提供することにある。 (問題点を解決するための手段) 上記目的を達成するため、本発明者は、コバルト変成及
びそのスラリーの処理に関し、種々検討した結果、コバ
ルト変成処理後のスラリーを水洗する際にIla族元素
を特定の態様で添加することにより、最終洗浄品のγ−
酸化鉄の保磁力を高めることが可能であると同時にその
経時変化を効果的に防止し得ることを見い出し1本発明
をなすに至ったものである。 すなわち、本発明に係る磁気記録用磁性酸化鉄粉の製造
法は、γ−酸化鉄粒子をアルカリ性水溶液中においてコ
バルト変成処理して得られたコバルト変成γ−酸化鉄を
含むアルカリ性スラリーを水を用いて洗浄するに際し、
このアルカリ性スラリー若しくは洗浄水の少なくとも一
方に、予めマグネシウム塩、カルシウム塩、ストロンチ
ウム塩及びバリウム塩の少なくとも1種を添加すること
を特徴とするものである。 以下に本発明を更に詳細に説明する。 本発明においては、コバルト変成γ−酸化鉄を得るまで
の工程は従来と同様であり、γ−酸化鉄粒子をアルカリ
性水溶液中においてコバルト変成処理して得る。しかし
、このコバルト変成処理により得られたコバルト変成γ
−酸化鉄を含むアルカリ性スラリーを水にて洗浄するに
際しては、水に可溶な特定のIla族金属塩を添加する
必要がある。 ここで、使用可能な塩としては、Ila族元素のうちで
も、マグネシウム、カルシウム、ストロンチウム及びバ
リウムのうちの少なくとも1種の塩化物、硫酸塩、硝酸
塩などで、水に可溶なものなら如何なる塩でも良い。 添加態様としては、このような■a族金属塩を、コバル
ト変成処理後得られるアルカリ性スラリー中に添加する
態様、或いは洗浄水に添加する態様のいずれでも良い、
また添加時期は、コバルト変成処理後得られるスラリー
に添加する場合は、コバルト変成処理後のどの時点に添
加しても良く、また洗浄水に加える場合は、洗浄中の該
洗浄水にこれら塩を添加することは勿論のことであるが
、いずれの場合でも゛スラリーのpH値が9以下になる
と、これらna族金属塩の添加の効果はなくなるので、
留意すべきである。 また、これらIIa族金属塩の添加量は、コバルト処理
γ−酸化鉄に対し、0.1〜2.0重量%が好ましい、
添加量が0.1重量%より少なくなると、保磁力を高め
る効果が小さくなると共に経時変化も大きくなり、一方
、2.0重量%よりも多く添加しても、それ以上の添加
効果は得られず、却って、特にマグネシウム塩やカルシ
ウム塩を使用した場合には、これらの塩が水酸化物とし
て粒子表面に付着し、飽和磁化の値を低下させたり。 更にテープ化の際のバインダーとの濡れ性を低下させる
等の悪影響を与えるので、好ましくない。 なお、バリウム塩を使用する場合は、コバルト変成処理
時に使用するコバルト塩等に硫酸塩を用いない方が本発
明の効果を発揮し易くなる。これは、バリウムの硫酸塩
が難溶性のためと考えられる。 (作用) 本発明におけるUp族金属塩の添加の作用は必ずしも明
らかではないが、本発明者の元素分析の結果によれば、
添加した■a族金属塩の種類に応じて、最終洗浄品のγ
−酸化鉄にマグネシウム。 カルシウム、ストロンチウム又はバリウムが検出された
ことから、コバルト変成処理したγ−酸化鉄粒子表面に
これらの金属イオンがアルカリ条件下で何らかの形で付
着し、これがコバルト変成磁性粒子の磁気的性質に何ら
かの作用があるものと考えられる。 更に、経時的な保磁力の低下が少なくなることから、コ
バルト変成処理したγ−酸化鉄粒子表面にこれらの金属
イオンがアルカリ性条件下で何らかの形で付着し、コバ
ルト変成処理により高まった保磁力を安定化させる働き
もあるものと考えられる。 (実施例) 以下に本発明の実施例を示す。 寒産桝工 常法により製造したγ−酸化鉄粉末(保磁カニ3500
e、飽和磁化: 74emu/g) 400gを2.4
Qの2.5N苛性ソーダ水溶液に加え、充分に分散させ
た後、この分散液の温度を100℃まで昇温しで塩化コ
バルト溶液を加え、7時間反応させ、その後、塩化第1
鉄溶液を添加して1時間反応させて、γ−酸化鉄粒子表
面にCo(n)及びFe(II)を被着させた。被着量
はγ−酸化鉄に対してコバルト原子として2.5重量%
、鉄原子として5.0重量%である。 コバルト変成処理終了後、アルカリ性スラリーに、γ−
酸化鉄に対しカルシウムとして0.5vt%を含む塩化
カルシウム溶液を50mQ添加した。 このスラリーを水で希釈し、デカンテーション後。 この上澄を捨て、更に同様な操作を繰り返し、スラリー
のpH値が8.5以下になるまで水洗した。 次いでこれを濾過し、60℃で12時間乾燥して磁性酸
化鉄粉を得た。 叉凰叢ス 実施例1において、塩化カルシウムに代えて塩化バリウ
ムを用い、塩化バリウム量はγ−酸化鉄に対しバリウム
として0.5%+1%とした以外は、実施例1の場合と
同様にして、磁性酸化鉄粉を得た。 去111ジ 実施例1において、塩化カルシウムに代えて塩化マグネ
シウムを用い、塩化マグネシウム量はγ−酸化鉄に対し
マグネシウムとして0.5wt%として以外は、実施例
1の場合と同様にして、磁性酸化鉄粉を得た。 失襄爽土 実施例1において、塩化カルシウムに代えて塩化ストロ
ンチウムを用いシ塩化ストロンチウム量はγ−酸化鉄に
対しストロンチウムとして0.5wt%とした以外は、
実施例1の場合と同様にして、磁性酸化鉄粉を得た。 裏施剪旦二旦 実施例1〜4では、na族金属塩として塩化物溶液をア
ルカリ性スラリーへ添加したが、実施例5〜8では、洗
浄液にそれぞれの塩化物溶液を添加した。すなわち、ア
ルカリ性スラリーをデカンテーションしながら洗浄する
際の第1回目のデカンテーション時の洗浄水に、それぞ
れ塩化カルシウム(実施例5)、塩化バリウム(実施例
6)、塩化マグネシウム(実施例7)、塩化ストロンチ
ウム(実施例8)をγ−酸化鉄に対し0.5wt%、2
.0wt%の2水準の添加量となるように溶かして洗浄
した。 ル」1粍 実施例1において、コバルト変成処理により塩化コバル
ト及び塩化第1鉄を被着後、塩化カルシウムを用いるこ
となく洗浄し、他は実施例1の場合と同様にして、磁性
酸化鉄粉を得た。洗浄にはイオン交換水(比較例1)と
工業用濾過水(比較例2)を用いた。 以上の各実施例及び比較例のそれぞれにおいて得られた
磁性酸化鉄粉について、洗浄乾燥直後、洗浄乾燥20日
後の磁気特性を調べた。その結果を第1表に示す。 第1表より明らかなとおり、同じコバルト被着量及びコ
バルト変成処理時間の場合、比較例では磁性酸化鉄粉の
保磁力が低く且つ経時変化が生じている。一方1本発明
の各実施例では、高い保磁力の磁性酸化鉄粉が得られる
と共にその経時変化が殆どなく、また飽和磁化も確保さ
れている。 なお、上記実施例ではコバルト変成処理としてコバルト
と鉄を被着したが、コバルトのみを被着する変成処理の
場合にも同様に適用できることは云うまでもない。
(Industrial Application Field) The present invention relates to the production of magnetic powder for magnetic recording, and more particularly to a method of producing cobalt-modified magnetic iron oxide powder that enables high-density recording. (Prior art) As magnetic powder for magnetic recording, magnetic iron oxide particles (γ-iron oxide particles) which have a high coercive force due to shape anisotropy are used. Cobalt or cobalt-modified magnetic iron oxide particles modified with cobalt and other elements are used as magnetic powder for magnetic recording. Among these methods, various methods have been proposed to produce the latter cobalt-modified magnetic iron oxide particles, but one of the most useful methods is to disperse magnetic iron oxide particles in an alkaline solution. There is a method of adding other components such as a salt or a cobalt salt and a ferrous salt to form cobalt-modified magnetic iron oxide particles. By this method, a layer containing cobalt is formed on the surface of the magnetic iron oxide particles, and magnetic properties are improved, such as an increase in coercive force and saturation magnetization per unit weight. The cobalt-modified iron oxide particles thus obtained are highly suitable as magnetic powder for magnetic recording. (Problem to be Solved by the Invention) However, in the above method, the coercive force of the γ-iron oxide particles increases as the amount of cobalt used increases;
In order to increase the reaction time to 000 seconds or more, it is necessary to extremely increase the amount of cobalt added and to lengthen the reaction time, and there is also the problem that increasing the amount of cobalt added causes changes over time. The purpose of the present invention is to eliminate the drawbacks of the above-mentioned prior art, to obtain high coercive force without adding a large amount of cobalt to γ-iron oxide, and without requiring long-term cobalt transformation treatment.
An object of the present invention is to provide a method for obtaining magnetic iron oxide powder for magnetic recording that does not cause changes over time. (Means for Solving the Problems) In order to achieve the above object, the present inventor conducted various studies regarding cobalt metamorphosis and treatment of its slurry, and found that when washing slurry after cobalt metamorphosis treatment with water, Ila group elements By adding in a specific manner, the γ-
The present invention was based on the discovery that it is possible to increase the coercive force of iron oxide and at the same time effectively prevent its change over time. That is, the method for producing magnetic iron oxide powder for magnetic recording according to the present invention involves using water to prepare an alkaline slurry containing cobalt-modified γ-iron oxide obtained by subjecting γ-iron oxide particles to cobalt modification treatment in an alkaline aqueous solution. When cleaning,
The method is characterized in that at least one of a magnesium salt, a calcium salt, a strontium salt, and a barium salt is added in advance to at least one of the alkaline slurry or the washing water. The present invention will be explained in more detail below. In the present invention, the steps to obtain cobalt-modified γ-iron oxide are the same as those of the conventional method, and γ-iron oxide particles are obtained by cobalt modification treatment in an alkaline aqueous solution. However, the cobalt metamorphic γ obtained by this cobalt metamorphic treatment
- When washing an alkaline slurry containing iron oxide with water, it is necessary to add a specific Ila group metal salt that is soluble in water. Here, usable salts include chlorides, sulfates, and nitrates of at least one of magnesium, calcium, strontium, and barium among the Ila group elements, and any salts that are soluble in water can be used. But it's okay. As for the mode of addition, such a group A metal salt may be added to the alkaline slurry obtained after the cobalt modification treatment, or it may be added to the washing water.
In addition, when adding these salts to the slurry obtained after the cobalt modification treatment, they may be added at any time after the cobalt modification treatment, and if they are added to the washing water, these salts may be added to the washing water during washing. Of course, they can be added, but in any case, if the pH value of the slurry becomes 9 or less, the effect of adding these Na group metal salts disappears.
It should be kept in mind. Further, the amount of these Group IIa metal salts added is preferably 0.1 to 2.0% by weight based on the cobalt-treated γ-iron oxide.
When the amount added is less than 0.1% by weight, the effect of increasing the coercive force becomes small and the change over time becomes large.On the other hand, even if the amount added is more than 2.0% by weight, no further addition effect can be obtained. On the contrary, especially when magnesium salts or calcium salts are used, these salts adhere to the particle surfaces as hydroxides, lowering the saturation magnetization value. Furthermore, it is not preferable because it has an adverse effect such as reducing the wettability with the binder during tape formation. In addition, when using a barium salt, the effect of the present invention is more easily exhibited if a sulfate is not used as the cobalt salt or the like used during the cobalt modification treatment. This is thought to be because barium sulfate is poorly soluble. (Function) Although the effect of the addition of the Up group metal salt in the present invention is not necessarily clear, according to the results of elemental analysis by the present inventors,
Depending on the type of Group A metal salt added, γ of the final cleaned product
-Magnesium in iron oxide. Since calcium, strontium, or barium was detected, it is possible that these metal ions somehow adhere to the surface of the cobalt-modified γ-iron oxide particles under alkaline conditions, and that this has some effect on the magnetic properties of the cobalt-modified magnetic particles. It is thought that there is. Furthermore, since the coercive force decreases less over time, these metal ions adhere in some form to the surface of the cobalt-treated γ-iron oxide particles under alkaline conditions, and the coercive force increased by the cobalt metamorphic treatment is reduced. It is thought that it also has a stabilizing effect. (Example) Examples of the present invention are shown below. γ-iron oxide powder (Kokakani 3500
e, saturation magnetization: 74 emu/g) 400g is 2.4
After adding it to a 2.5N caustic soda aqueous solution of Q and sufficiently dispersing it, the temperature of this dispersion was raised to 100°C, a cobalt chloride solution was added, and the mixture was reacted for 7 hours.
An iron solution was added and reacted for 1 hour to deposit Co(n) and Fe(II) on the surface of the γ-iron oxide particles. The amount of deposited is 2.5% by weight as cobalt atoms based on γ-iron oxide.
, 5.0% by weight as iron atoms. After cobalt metamorphosis treatment, γ-
50 mQ of a calcium chloride solution containing 0.5 vt% calcium based on iron oxide was added. Dilute this slurry with water and after decantation. The supernatant was discarded, and the same operation was repeated until the pH value of the slurry became 8.5 or less. This was then filtered and dried at 60°C for 12 hours to obtain magnetic iron oxide powder. In Example 1, barium chloride was used instead of calcium chloride, and the amount of barium chloride was 0.5%+1% as barium relative to γ-iron oxide. As a result, magnetic iron oxide powder was obtained. In Example 1, magnetic oxide was prepared in the same manner as in Example 1, except that magnesium chloride was used instead of calcium chloride, and the amount of magnesium chloride was 0.5 wt% as magnesium relative to γ-iron oxide. Obtained iron powder. In Example 1, strontium chloride was used instead of calcium chloride, and the amount of strontium chloride was 0.5 wt% as strontium relative to γ-iron oxide.
Magnetic iron oxide powder was obtained in the same manner as in Example 1. In Examples 1 to 4, chloride solutions were added to the alkaline slurry as the Na group metal salts, while in Examples 5 to 8, the respective chloride solutions were added to the cleaning solution. That is, calcium chloride (Example 5), barium chloride (Example 6), magnesium chloride (Example 7), Strontium chloride (Example 8) was added at 0.5 wt% to γ-iron oxide, 2
.. It was dissolved and washed at two levels of addition amount of 0 wt%. 1 In Example 1, after depositing cobalt chloride and ferrous chloride by cobalt modification treatment, washing was performed without using calcium chloride, and magnetic iron oxide powder was prepared in the same manner as in Example 1. I got it. Ion-exchanged water (Comparative Example 1) and industrial filtered water (Comparative Example 2) were used for washing. The magnetic properties of the magnetic iron oxide powder obtained in each of the above Examples and Comparative Examples were investigated immediately after washing and drying and after 20 days of washing and drying. The results are shown in Table 1. As is clear from Table 1, in the case of the same cobalt deposition amount and cobalt modification treatment time, the coercive force of the magnetic iron oxide powder was low and changed over time in the comparative example. On the other hand, in each embodiment of the present invention, magnetic iron oxide powder with a high coercive force is obtained, and there is almost no change over time, and saturation magnetization is also ensured. In the above embodiment, cobalt and iron are deposited as a cobalt metamorphic treatment, but it goes without saying that the same can be applied to a metamorphic treatment in which only cobalt is deposited.

【以下余白】[Left below]

(発明の効果) 以上詳述したように、本発明によれば、γ−酸化鉄粒子
をコバルト変成処理した後の洗浄に際し。 ■a族金属塩として、マグネシラ11塩、カルシウム塩
、ストロンチウム塩又はバリウム塩を用いて処理するの
で、高い保磁力を有し、かつ、保磁力の経時的な低下の
ない磁気特性に優れた磁気記録用磁性酸化鉄粉を得るこ
とができる。したがって。 コバルト変成処理におけるコバルト量を少なくすること
ができると共に変成処理時間を長くする必要がなく、生
産性よく安価に製造することが可能である。 特許出願人  昭和電工株式会社
(Effects of the Invention) As detailed above, according to the present invention, γ-iron oxide particles are washed after being subjected to cobalt modification treatment. ■As the group A metal salt is treated with magnesilla 11 salt, calcium salt, strontium salt, or barium salt, it has high coercive force and excellent magnetic properties with no decrease in coercive force over time. Magnetic iron oxide powder for recording can be obtained. therefore. The amount of cobalt in the cobalt metamorphosis treatment can be reduced, there is no need to lengthen the metamorphosis treatment time, and it is possible to manufacture with good productivity and at low cost. Patent applicant Showa Denko Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims]  γ−酸化鉄粒子をアルカリ性水溶液中においてコバル
ト変成処理して得られたコバルト変成γ−酸化鉄を含む
アルカリ性スラリーを水にて洗浄するに際し、このアル
カリ性スラリー若しくは洗浄水の少なくとも一方に、予
めマグネシウム塩、カルシウム塩、ストロンチウム塩及
びバリウム塩の少なくとも1種を添加することを特徴と
する磁気記録用磁性酸化鉄粉の製造法。
When washing an alkaline slurry containing cobalt-modified γ-iron oxide obtained by cobalt modification treatment of γ-iron oxide particles in an alkaline aqueous solution with water, a magnesium salt is added to at least one of the alkaline slurry or the washing water in advance. A method for producing magnetic iron oxide powder for magnetic recording, which comprises adding at least one of calcium salt, strontium salt, and barium salt.
JP63005386A 1988-01-13 1988-01-13 Manufacture of magnetic iron oxide powder for magnetic recording Pending JPH01184801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63005386A JPH01184801A (en) 1988-01-13 1988-01-13 Manufacture of magnetic iron oxide powder for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63005386A JPH01184801A (en) 1988-01-13 1988-01-13 Manufacture of magnetic iron oxide powder for magnetic recording

Publications (1)

Publication Number Publication Date
JPH01184801A true JPH01184801A (en) 1989-07-24

Family

ID=11609729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63005386A Pending JPH01184801A (en) 1988-01-13 1988-01-13 Manufacture of magnetic iron oxide powder for magnetic recording

Country Status (1)

Country Link
JP (1) JPH01184801A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626962A (en) * 1994-03-04 1997-05-06 Toda Kogyo Corporation Co-coated acicular magnetite particles and process for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819733A (en) * 1981-07-28 1983-02-04 Toshiba Corp Magnetic recording medium and its manufacture
JPS5998503A (en) * 1982-11-26 1984-06-06 Ishihara Sangyo Kaisha Ltd Magnetic iron oxide containing cobalt

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819733A (en) * 1981-07-28 1983-02-04 Toshiba Corp Magnetic recording medium and its manufacture
JPS5998503A (en) * 1982-11-26 1984-06-06 Ishihara Sangyo Kaisha Ltd Magnetic iron oxide containing cobalt

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626962A (en) * 1994-03-04 1997-05-06 Toda Kogyo Corporation Co-coated acicular magnetite particles and process for producing the same
US5650194A (en) * 1994-03-04 1997-07-22 Toda Kogyo Corporation Process for producing co-coated acicular magnetite particles

Similar Documents

Publication Publication Date Title
JPH01184801A (en) Manufacture of magnetic iron oxide powder for magnetic recording
JPS59107924A (en) Manufacture of magnetic iron oxide powder containing cobalt
US4686142A (en) Process for the production of iron oxides epitaxially coated with cobalt the coated oxides and their cue
JPS6135135B2 (en)
JPH0633116A (en) Ferromagnetic metallic powder for magnetic recording medium and production thereof
JP2677278B2 (en) Magnetic iron oxide powder for magnetic recording and manufacturing method thereof
JPS61141625A (en) Production of barium ferrite powder
JPH0755832B2 (en) Method for producing cobalt-containing ferromagnetic iron oxide powder
JPS59155106A (en) Manufacture of magnetic metal powder
JP2958370B2 (en) Method for producing composite ferrite magnetic powder
JPS6132259B2 (en)
JPS59153810A (en) Production of ferromagnetic fine metallic particle
JPH0417897B2 (en)
JPH0323224A (en) Production of complex-type ferritic magnetic powder
JPS6161405A (en) Manufacture of magnetic metal powder
JPH029723A (en) Laminar composite ferrite fine particle powder for magnetic recording and its production
JP2958369B2 (en) Method for producing composite ferrite magnetic powder
JPS63159224A (en) Production of fine ba ferrite particle for magnetic recording
JP2660714B2 (en) Method for producing cobalt-containing ferromagnetic iron oxide powder
JPS6261537B2 (en)
JPS61117122A (en) Preparation of fine barium ferrite powder
JPH07223822A (en) Acicular alpha-ferric oxide and production thereof
JPS6323139B2 (en)
JPH02133323A (en) Production of magnetic powder of magnetoplumbite type ferrite
JPH0114176B2 (en)